首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice bearing the Ehrlich ascites tumor were fed diets rich in either coconut oil or sunflower oil. From 20 to 40% less lipid was present in the ascites tumor fluid when the mice were fed the sunflower oil diet. This was associated with a reduction in the amount of very low density lipoproteins (VLDL) and high density lipoproteins (HDL), the main lipoprotein fractions present in the ascites tumor fluid. The VLDL from the mice fed sunflower oil contained more cholesteryl esters and a lower free to esterified cholesterol ratio than those from the mice fed coconut oil. Very little change occurred in the composition of the HDL. All of the lipids contained in both lipoprotein fractions exhibited appreciable differences in fatty acid composition. Much more monoenoic and less polyenoic fatty acid were present in the lipids from the mice fed the coconut oil diet, but no appreciable change in saturated fatty acid content occurred. Similar changes in fatty acid composition were observed in the blood plasma of the tumor-bearing mice. There was no qualitative difference in the apolipoprotein patterns of either the ascites fluid VLDL or HDL. Pyrene fluorescence studies indicated that the fluidity of the VLDL was increased when the mice were fed the sunflower oil diets. No difference in HDL fluidity, however, was observed by this technique. These results indicate that the amount, composition, and physical properties of certain of the lipoproteins contained in the ascites tumor fluid can be modified by changing the composition of the dietary fat fed to mice bearing the Ehrlich ascites tumor.  相似文献   

2.
The membrane fluidity of murine lymphoid GRSL tumor cells has been shown to depend on their site of growth in the host. Tumor cells located in ascites, in contrast to those in the enlarged spleen, show a very high plasma membrane fluidity, mainly due to a decreased level of cellular (membrane) cholesterol. Yet, the rate of cholesterol biosynthesis in the tumor cells as estimated by the activity of HMG-CoA reductase and the incorporation of [14C]acetate into cholesterol was extremely high when compared to various lymphoid cells in normal control mice. Also the rate of biosynthesis and the cholesterol content in liver and spleen of tumor-bearing mice were substantially higher than in the organs of control mice. Blood plasma cholesterol, however, was decreased in tumor-bearing mice as a result of altered lipoprotein patterns. Outgrowth of the tumor was accompanied by a strong reduction in plasma high-density lipoproteins. Low-density lipoproteins became transiently increased, but eventually all lipoproteins, and consequently the plasma cholesterol content decreased to very low levels, especially so in the ascites plasma. The low transfer of [14C]cholesteryl ester-labeled lipoproteins between blood and ascites plasma after either intravenous or intraperitoneal injection suggested a hampered flow between the two compartments. Also apparent differences in cholesteryl ester fatty acid composition between lipoproteins of the blood and ascites plasma indicated the lack of a rapid equilibration between the two compartments. The results suggest that the limited availability of lipoproteins as an additional source of cholesterol to the rapidly growing ascites cells promotes their high membrane fluidity.  相似文献   

3.
The membrane fluidity of murine lymphoid GRSL tumor cells has been shown to depend on their site of growth in the host. Tumor cells located in ascites, in contrast to those in the enlarged spleen, show a very high plasma membrane fluidity, mainly due to a decreased level of cellular (membrane) cholesterol. Yet, the rate of cholesterol biosynthesis in the tumor cells as estimated by the activity of HMG-CoA reductase and the incorporation of [14C]acetate into cholesterol was extremely high when compared to various lymphoid cells in normal control mice. Also the rate of biosynthesis and the cholesterol content in liver and spleen of tumor-bearing mice were substantially higher than in the organs of control mice. Blood plasma cholesterol, however, was decreased in tumor-bearing mice as a result of altered lipoprotein patterns. Outgrowth of the tumor was accompanied by a strong reduction in plasma high-density lipoproteins. Low-density lipoproteins became transiently increased, but eventually all lipoproteins, and consequently the plasma cholesterol content decreased to very low levels, especially so in the ascites plasma. The low transfer of [14C]cholesteryl ester-labeled lipoproteins between blood and ascites plasma after either intravenous or intraperitoneal injection suggested a hampered flow between the two compartments. Also apparent differences in cholesteryl ester fatty acid composition between lipoproteins of the blood and ascites plasma indicated the lack of a rapid equilibration between the two compartments. The results suggest that the limited availability of lipoproteins as an additional source of cholesterol to the rapidly growing ascites cells promotes their high membrane fluidity.  相似文献   

4.
1. The effect of different dietary fat intake on the lipid composition and fluidity of microsomal membranes as well as in the enzymatic activity of the Ca2+-ATPase from chick breast muscle was investigated. 2. When a standard diet was supplemented with 10% sunflower seed oil, an increase in the relative amounts of unsaturated fatty acids and membrane fluidity and a decrease in the cholesterol content was observed. 3. The presence of 6% cholesterol in the diet does not modify the fatty acid composition and the fluidity of the membrane but increased, in a low extension, the cholesterol content. 4. The provision of the sunflower seed oil-rich diet supplemented with cholesterol just 48 hr before death promoted an increase in the relative amounts of unsaturated fatty acids and cholesterol content whereas the membrane fluidity decreased in a significant extent. 5. Despite that dietary lipids gave rise in some cases to changes in lipid composition and in the physical state of the microsomal membrane, neither the Ca2+ uptake capacity nor the ATPase activity were significantly affected.  相似文献   

5.
GRSL lymphoma cells were isolated from various growth sites in the host. The relative membrane lipid fluidities of these cells and of normal lymphoid cells were estimated by fluorescence polarization, using the probe diphenylhexatriene and by measuring the (free) cholesterol/phospholipid molar ratio in whole cells. The results indicate that the membrane fluidity (reciprocal of the lipid structural order) of the lymphoma cells increases in the order of their location: peripheral blood less than spleen less than mesenterial lymph node less than ascites fluid. The membrane fluidities of normal lymphocytes from thymus, mesenterial lymph node and spleen were about the same, but higher than of peripheral blood lymphocytes, and between those of the lymphoma cells from lymph node and spleen. These results are confirmed by more extensive analysis on purified plasma membranes from the splenic and ascitic GRSL lymphoma cells and from normal splenocytes and thymocytes. The significantly higher lipid order parameter found in the GRSL plasma membrane isolated from the spleen as compared to those from the ascites cells could be fully explained by the differences measured in the major chemical determinants of the fluidity, i.e., the cholesterol/phospholipid ratio, the sphingomyelin content and the degree of saturation of the fatty acyl groups of the phospholipids. It was also found that the cholesterol/phospholipid ratio in erythrocyte membranes isolated from the peripheral blood of the tumor bearers was higher than in those from normal control mice. The observed differences in membrane fluidity between distinct subsets of tumor cells may be relevant to the sensitivity of these cells to immune attack or to drugs.  相似文献   

6.
GRSL lymphoma cells were isolated from various growth sites in the host. The relative membrane lipid fluidities of these cells and of normal lymphoid cells were estimated by fluorescence polarization, using the probe diphenylhexatriene and by measuring the (free) cholesterol/phospholipid molar ratio in whole cells. The results indicate that the membrane fluidity (reciprocal of the lipid structural order) of the lymphoma cells increases in the order of their location: peripheral blood < spleen < mesenterial lymph node < ascites fluid. The membrane fluidities of normal lymphocytes from thymus, mesenterial lymph node and spleen were about the same, but higher than of peripheral blood lymphocytes, and between those of the lymphoma cells from lymph node and spleen. These results are confirmed by more extensive analysis on purified plasma membranes from the splenic and ascitic GRSL lymphoma cells and from normal splenocytes and thymocytes. The significantly higher lipid order parameter found in the GRSL plasma membrane isolated from the spleen as compared to those from the ascites cells could be fully explained by the differences measured in the major chemical determinants of the fluidity, i.e., the cholesterol/phospholipid ratio, the sphingomyelin content and the degree of saturation of the fatty acyl groups of the phospholipids. It was also found that the cholesterol/phospholipid ratio in erythrocyte membranes isolated from the peripheral blood of the tumor bearers was higher than in those from normal control mice. The observed differences in membrane fluidity between distinct subsets of tumor cells may be relevant to the sensitivity of these cells to immune attack or to drugs.  相似文献   

7.
The lipid fluidity in purified plasma membranes (PM) of murine leukemic GRSL cells, as measured by fluorescence polarization, is much higher than in PM of normal thymocytes. This was found to be due to relatively low contents of cholesterol and sphingomyelin and a high amount of unsaturated fatty acyl chains, especially linoleic acid, in the phospholipids. PM from GRSL cells contain markedly more phosphatidylethanolamine than those from thymocytes. For both GRSL cells and thymocytes the detailed lipid composition of isolated PM was compared with that of the corresponding shed extracellular membranes (ECM), which were isolated from the ascites fluid and from thymus cell suspensions, respectively. The somewhat decreased lipid fluidity of thymocyte ECM as compared to their PM, can be ascribed to the increased cholesterol/phospholipid molar ratio (0.88 vs. 0.74). No other major differences were found between the lipid composition of these membranes. In contrast, significant differences were found between PM and ECM from GRSL cells. In this system a much lower lipid fluidity of the shed ECM was found, due to the much increased cholesterol/phospholipid molar ratio (3.5-fold) and sphingomyelin (9-fold) content, as compared to the PM. Further, the ECM contain relatively more lysophosphatidylethanolamine and less phosphatidylcholine and -inositol. ECM contain a higher amount of polyunsaturated fatty acids, especially in the phosphatidylethanolamine and lysophosphatidylethanolamine classes. On the other hand, the fatty acids of phosphatidylcholine and lysophosphatidylcholine are more saturated than in PM. In particular, ECM of GRSL cells contain less oleic and linoleic acid residues and more arachidonic acid and 22:polyunsaturated fatty acid residues than PM. The possible relevance of these differences with respect to the mechanism of shedding of vesicles from the cell surface, is discussed.  相似文献   

8.
The fluorescence polarization technique with 1,6-diphenyl 1,3,5-hexatriene as a probe was used to determine the lipid microviscosity, η, of isolated plasma membranes of mouse thymus-derived ascitic leukemia (GRSL) cells and of extracellular membraneous vesicles exfoliated from these cells and occurring in the ascites fluid. For comparison, η was also determined in isolated plasma cell supernatants.For isolated plasma membranes of thymocytes and GRSL cells η values at 25° C amounted to 4.67 and 3.28 P, respectively, which were higher than the microviscosities of the corresponding intact cells, 3.24 and 1.73 P, respectively.Microviscosities inextracellular membranes of thymocytes and GRSL cells were 5.96 and 5.83 P, respectively. The fluidity difference between these membranes and plasma membranes was most pronounced for the leukemic cells and was thereby correlated with a large difference in cholesterol/phospholipid molar ratio (1.19 for extracellular membranes and 0.37 for plasma membranes). It is proposed that extracellular membraneous vesicles are shed from the surface of GRSL cells similar to the budding process of viruses, that is by selection of the most rigid parts of the host cell membrane.Liposomes of total lipid extracts of plasma membranes and extracellular membranes of both cell types exhibited about the same microviscosity as the corresponding intact membranes, indicating virtually no contribution of (glyco)-protein to the lipid fluidity as measured by the fluorescence polarization technique. For both cell types η (25° C) values of liposomes consisting of membrane phospholipids varied between 1.5 and 1.9 P, much lower than the values for total lipids, indicating a significant rigidizing effect of cholesterol in each type of membrane.  相似文献   

9.
Work by other investigators has shown that an increase in dietary content of monounsaturated fatty acids can result in a decreased plasma low density lipoprotein (LDL) cholesterol concentration. This observation, combined with the epidemiologic evidence that monounsaturated fat-rich diets are associated with decreased rates of death from coronary heart disease, suggests that inclusion of increased amounts of mono-unsaturated fat in the diet may be beneficial. The present study was carried out in a primate model, the African green monkey, to evaluate the effects of dietary monounsaturated fat on plasma lipoprotein cholesterol endpoints. Two study periods were carried out in which the fatty acid compositions of the experimental diets were varied. All diets contained 35% of calories as fat. In the first experimental period, a mixture of fats was used to set the dietary fatty acid composition to be approximately 50-60% of the desired fatty acid, either saturated, monounsaturated, or polyunsaturated (n-6). In the second experimental period, pure fats were used (palm oil, oleic acid-rich safflower oil, and linoleic acid-rich safflower oil) to maximize the difference in fatty acid composition. The effects of the more exaggerated dietary fatty acid differences of period 2 were similar to those that have been reported in humans. For the group fed the diet enriched in monounsaturated fat compared to saturated fat, whole plasma and LDL cholesterol concentrations were significantly lower while high density lipoprotein (HDL) cholesterol concentrations were not affected. For the group fed the diet enriched in polyunsaturated fat compared to saturated fat, both LDL and HDL cholesterol concentrations were significantly lower than in the group fed saturated fat. LDL cholesterol concentrations were comparable in the monounsaturated and polyunsaturated fat groups and the percentage of cholesterol in LDL was lowest in the monounsaturated fat fed group. Trends were similar for the mixed fat diets, although no statistically significant differences in plasma lipoprotein endpoints could be attributed to monounsaturated fatty acids in this dietary comparison. Since effects on plasma lipoproteins similar to those seen in humans were identified in this primate model, relevant mechanisms for the effects of dietary fatty acids on lipoprotein endpoints related to coronary artery atherosclerosis, per se, can subsequently be examined.  相似文献   

10.
The fatty acyl group composition of Ehrlich ascites tumor cell plasma membranes was modified by feeding the tumor-bearing mice diets rich in either coconut or sunflower oil. When coconut oil was fed, the oleate content of the membrane phospholipids was elevated and the linoleate content reduced. The opposite occurred when sunflower oil was fed. Qualitatively similar changes were observed in the plasma membrane phosphatidylethanolamine, phosphatidylcholine and mixed phosphatidylserine plus phosphatidylinositol fractions. These diets also produced differences in the sphingomyelin fraction, particularly in the palmitic and nervonic acid contents. Unexpectedly, the saturated fatty acid content of the plasma membrane phospholipids was somewhat greater when the highly polyunsaturated sunflower oil was fed. The small quantities of neutral lipids contained in the plasma membrane exhibited changes in acyl group composition similar to those observed in the phospholipids. These fatty acyl group changes were not accompanied by any alteration in the cholesterol or phospholipid contents of the plasma membranes. Therefore, the lipid alterations produced in this experimental model system are confined to the membrane acyl groups.  相似文献   

11.
The fatty acyl group composition of Ehrlich ascites tumor cell plasma membranes was modified by feeding the tumor-bearing mice diets rich in either coconut or sunflower oil. When coconut oil was fed, the oleate content of the membrane phospholipids was elevated and the linoleate content reduced. The opposite occurred when sunflower oil was fed. Qualitatively similar changes were observed in the plasma membrane phosphatidylethanolamine, phosphatidylcholine and mixed phosphatidylserine plus phosphatidylinositol fractions. These diets also produced differences in the sphingomyelin fraction, particularly in the palmitic and nervonic acid contents. Unexpectedly, the saturated fatty acid content of the plasma membrane phospholipids was somewhat greater when the highly polyunsaturated sunflower oil was fed. The small quantities of neutral lipids contained in the plasma membrane exhibited changes in acyl group composition similar to those observed in the phospholipids. These fatty acyl group changes were not accompanied by any alteration in the cholesterol or phospholipid contents of the plasma membranes. Therefore, the lipid alterations produced in this experimental model system are confined to the membrane acyl groups.  相似文献   

12.
The fatty acid composition of plasma membrane derived from Ehrlich ascites tumor cells was altered in vivo by changing the dietary lipid of the tumor-bearing mice. The activity of (sodium + potassium)-adenosinetriphosphatase ((Na+ + K+ATPase), in partially purified plasma membranes, was measured ass a function of temperature. Arrhenius plots of the data were biphasic. Striking differences, dependent on the membrane fatty acid composition, were observed in the transition temperature and in the energies of activation below the transition temperature. The transition temperatures for the (Na+ + K+)-ATPase of plasma membrane derived from tumor cells grown in mice fed a regular chow diet containing a mixture of fatty acids (PMC), a 16% sunflower oil diet (PMSU), or a 4% tristearin diet (PMTS) were 20, 21, and 13.5 degrees C, respectively...  相似文献   

13.
The modulation of rat brain microsomal and synaptosomal membrane lipid by diet fat was examined. Brain synaptosomal and microsomal membrane composition was compared for rats fed on diets containing either soya-bean oil (SBO), SBO plus choline, SBO lecithin, sunflower oil (SFO), chow or low-erucic acid rape-seed oil (LER) for 24 days. Cholesterol and phosphatidylcholine levels in both membranes were altered by diet. Diet fat also affected the microsomal content of sphingomyelin. Change in membrane phosphatidylcholine level was related to the relative balance of omega-6, omega-3 and monounsaturated fatty acids within the diets fed. The highest phosphatidylcholine levels appeared in membranes of animals fed on SBO lecithin and the lowest in those fed on LER. Microsomal membrane cholesterol and sphingomyelin content increased by feeding on SBO lecithin. In both synaptosomal and microsomal membranes a highly significant correlation was observed between membrane phosphatidylcholine and cholesterol content. The fatty acyl composition of phospholipids from both membranes also altered with diet and age. Alteration in fatty acid composition was observed in response to dietary levels of omega-6, omega-3 and monounsaturated fatty acids, but the unsaturation index of each phospholipid remained constant for all diet treatments. These changes in lipid composition suggest that dietary fat may be a significant modulator in vivo of the physicobiochemical properties of brain synaptosomal and microsomal membranes.  相似文献   

14.
The radiation response of Bp8 sarcoma ascites tumour cells with differences in membrane fatty acid composition was studied. The cells were grown i.p. in NMRI mice and their membrane composition was changed in response to different dietary regimes provided to the host animals. Three diets that differed only with regard to the source of fatty acids, i.e. sunflower seed oil, coconut oil, hydrogenated lard and a fourth commercially available standard laboratory diet, were given to the mice for different lengths of time, before implantation of the tumour cells. The time course for the dietary regimes to induce different levels of changes in membrane fatty acid composition of the ascites cells was established. The evaluation of the radiosensitivity of cells with different membrane fatty acid composition was done in vitro. Cell survival, expressed by D0, varied only insignificantly between the four dietary groups, while their repair capacity (Dq and n) differed significantly. Increased repair capacity was observed for ascites cells grown in animals on diets enriched in sunflower seed oil and coconut oil, compared with cells from mice fed the hydrogenated lard diet or from cells from the control animals. The membrane fatty acid composition of the cells from the two dietary groups with increased levels of repair capacity differed extensively, and in general there was no correlation observed between radiation response and the membrane fatty acid composition of the four dietary groups studied. For two of the dietary groups, coconut oil and control, with marked differences in membrane fatty acid composition, the effects of irradiation on ascites tumour growth rate and cell cycle distribution were followed in vivo. For none of these parameters was an effect of membrane fatty acid composition on radiation response observed.  相似文献   

15.
It has been demonstrated that the type of dietary fat affects insulin receptors in various tissues in normal humans and animals by altering membrane fluidity. This study compares the effects of n-3 fatty acids from fish oil and n-6 fatty acids from corn oil on red blood cell membrane insulin receptors in normal and hypercholesterolemic minipigs. A group of minipigs were made hypercholesterolemic by feeding cholesterol and lard for 2 months; the other group served as controls and was fed stock diet. Both groups were then fed experimental diets containing either corn oil or menhaden oil or a mixture of the two for 23 additional weeks. Blood was collected at 0, 2, 12 and 23 weeks after the start of the experimental diets and membranes were prepared from the red blood cells. Insulin binding to red blood cell membranes was measured by radioreceptor assay. Plasma insulin was measured by radioimmunoassay. Insulin binding to red blood cell membrane was compared with the fluidity of the membrane measured and reported earlier. There was no significant effect of cholesterol feeding on plasma insulin concentrations. After 23 weeks on experimental diet plasma insulin was significantly higher in minipigs fed menhaden oil compared to those fed corn oil. No such effect was observed in hypercholesterolemic minipigs. No significant effect of either hypercholesterolemia or fish oil was observed on red blood cell insulin binding. A significant negative relationship was observed between insulin binding and anisotropy at 4°C for all probes but at 37°C significant negative relationship was observed only with polar probes. The data suggest that n-3 fatty acids from fish oil significantly increases plasma insulin in minipigs compared to n-6 fatty acids from corn oil. However, the unsaturation has no significant effect on insulin receptors on erythrocytes. Similarly, prior hypercholesterolemic state also has no effect on plasma insulin levels or the insulin binding to red blood cell membranes.  相似文献   

16.
Effects of high dietary cholesterol on erythrocyte membrane lipids were studied. Feeding rats with a diet containing 0.5% cholesterol and 0.15% sodium cholate for two weeks induced changes in erythrocyte membrane lipids including a decrease in cholesterol, an increase in α-tocopherol (α-Toc) and changes in the fatty acid composition of phospholipids. Oleic acid and linoleic acid increased, while arachidonic acid decreased in phosphatidylcholine. Saturated fatty acids decreased and unsaturated fatty acids increased in phosphatidylethanolamine. Almost the same changes in membrane lipids were also noted after six weeks of feeding rats with the diet. A diet containing 0.5% cholesterol but without sodium cholate caused a decrease in erythrocyte cholesterol and an increase in erythrocyte α-Toc after two weeks of feeding, as compared to the basal diet, indicating that high dietary cholesterol, but not sodium cholate, was responsible for these changes in the erythrocyte membrane.  相似文献   

17.
Hyperthermia-induced cell lethality is thought to be mediated through injury to the cell membrane. Membrane perturbation results in the release of prostaglandins (PG) and leukotrienes (LT). These compounds are potent biological mediators and may modify the tumor microenvironment and therapeutic efficacy. Membrane composition and PG/LT release are influenced by the dietary fatty acids. The relationship between these variables and response to hyperthermia was examined in vitro using murine P388 leukemia cells grown as an ascites in mice provided either saturated fatty acid diet (SFA; 16% beef tallow) or unsaturated fatty acid diet (UFA; 16% safflower oil). Cells were harvested and exposed in vitro to either 37 degrees C or 43.5 degrees C for periods up to 2 hours. Hyperthermic exposure for 2 hours resulted in 40% cell lethality in SFA cells and 55% in UFA cells. The phospholipid and total cholesterol content was higher (33% and 50% respectively) in the UFA versus the SFA cells. Hyperthermia produced a six-fold increase in prostaglandin E2 PGE2 release by SFA cells and a 4.5-fold increase by UFA cells. No LTC4 was detected. Alteration of dietary fat affects cell lethality and PG release following hyperthermic treatment. The increase in phospholipid and cholesterol content of UFA cells may be a response to reduced membrane fluidity.  相似文献   

18.
The influence of 4 weeks treatment with fish oil and coconut oil enriched diets on the chemical composition of rat liver plasma membranes and LDL and on the binding of LDL to liver membranes was investigated. Rats fed fish oil diet showed a total, LDL and HDL plasma cholesterol concentration lower than the values observed in rats fed coconut oil and to a lesser extent lower than those of rats fed standard laboratory diet. LDL of rats on fish oil diet had a relative percentage of cholesterol and phospholipid lower, while that of triacylglycerol was greater. Furthermore, fish oil feeding was associated with a greater concentration of n - 3 fatty acids and a lower arachidonic and linoleic acid content in LDL. Liver plasma membranes isolated from fish oil rats showed a higher percentage of n - 3 fatty acids, while only a trace amount of these fatty acids was found in control and coconut oil fed animals. In binding experiments performed with LDL and liver membranes from fish oil fed rats and control rats, binding affinity (Kd = 3.47 +/- 0.93 and 4.56 +/- 1.27, respectively) was significantly higher (P less than 0.05) as compared to that found using membranes and lipoprotein from coconut oil fed rats (Kd = 6.82 +/- 2.69). In cross-binding experiments performed with fish oil LDL and coconut oil liver plasma membranes or coconut oil LDL and fish oil liver plasma membranes, the LDL binding affinity was comparable and similar to that found in fish oil fed animals. No difference was found in the Bmax among all the groups of binding experiments. Our data seem to indicate that during fish oil diet the higher binding affinity of LDL to liver plasma membranes might be partly responsible of the hypocholesterolemic action of marine oil rich diet as compared to saturated diet. Furthermore, the modifications of binding affinity induced by changes of LDL and membrane source, suggest that lipoprotein and liver plasma membrane composition may be an important variable in binding studies.  相似文献   

19.
Lipid composition of the isolated rat intestinal microvillus membrane   总被引:13,自引:4,他引:9  
1. Rat intestinal microvillus plasma membranes were prepared from previously isolated brush borders and the lipid composition was analysed. 2. The molar ratio of cholesterol to phospholipid was greatest in the membranes and closely resembled that reported for myelin. 3. Unesterified cholesterol was the major neutral lipid. However, 30% of the neutral lipid fraction was accounted for by glycerides and fatty acid. 4. Five phospholipid components were identified and measured, including phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, sphingomyelin and lysophosphatidylcholine. Though phosphatidylethanolamine was the chief phospholipid, no plasmalogen was detected. 5. In contrast with other plasma membranes in the rat, the polar lipids of the microvillus membrane were rich in glycolipid. The cholesterol:polar lipid (phospholipid+glycolipid) ratio was about 1:3 for the microvillus membrane. Published data suggest that this ratio resembles that of the liver plasma membrane more closely than myelin or the erythrocyte membrane. 6. The fatty acid composition of membrane lipids was altered markedly by a single feeding of safflower oil. Membrane polar lipids did not contain significantly more saturated fatty acids than cellular polar lipids. Differences in the proportion of some fatty acids in membrane and cellular glycerides were noted. These differences may reflect the presence of specific membrane glycerides.  相似文献   

20.
In view of the importance of membrane fluidity on cell functions, the influence of phospholipid acyl groups on membrane fluidity, and the changes in lipid metabolism induced by copper (Cu) deficiency, this study was designed to examine the influence of dietary Cu on the lipid composition and fluidity of liver plasma membranes. Male Sprague-Dawley rats were divided into two dietary treatments, namely Cu deficient and Cu adequate. After 8 weeks of treatment, liver plasma membranes were isolated by sucrose density gradient centrifugation. The lipid fluidity of plasma membranes, as assessed by the intramolecular eximer fluorescence of 1,3-di(1-pyrenyl) propane, was significantly depressed by Cu deficiency. In addition, Cu deficiency significantly reduced the content of arachidonic and palmitoleic acids but increased the docosatetraenoic and docosahexaenoic acids of membrane phospholipids. This alteration in unsaturated phospholipid fatty acid composition, especially the large reduction in arachidonic acid, may have contributed to the depressed membrane fluidity. Furthermore, Cu deficiency also markedly altered the fatty acid composition of the triacylglycerols associated with the plasma membranes. Thus, the lipid composition and fluidity of liver plasma membranes are responsive to the animal's Cu status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号