首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mammalian monoamine oxidases (MAO), MAO-A and MAO-B, are similar in primary structures but have unique substrate/inhibitor selectivities. Carp (Cyprinus carpio) contains a MAO enzyme (C-MAO) with properties different from MAO-A and MAO-B. To determine the molecular characteristics of C-MAO and its phylogenetic relationship with other fish and mammalian MAOs, the primary structure of C-MAO was estimated. The putative C-MAO cDNA encodes 526 amino acids with 59.001 Da, and the deduced amino acid sequence showed as much as 68.9% homology with some mammalian MAO-A proteins, 69.8% homology with some mammalian MAO-B proteins, and as much as 92.4% homology with some fish MAOs. Comparison of two regions in the polypeptide sequence of C-MAO determining possible substrate/inhibitor preferences of MAO-A and MAO-B showed both 79.5% homologies.  相似文献   

2.
8-Aminoquinolines (8-AQs) are important class of anti-infective therapeutics. 5-Phenoxy 8-aminoquinoline analogs have shown improved metabolic stability compared to primaquine. In view or predictive role of monoamine oxidases (MAO) in metabolism of 8-aminoquinolines the 5-phenoxy analogs were evaluated in vitro for the inhibition of recombinant human MAO-A and MAO-B. The analogs were several folds more potent inhibitors of MAO-A and MAO-B compared to primaquine, the parent drug, with selectivity for MAO-B. 5-(4-Trifluoromethylphenoxy)-4-methylprimaquine (6) Inhibited MAO-B with IC(50) value of 150 nM (626-fold more potent than primaquine). These results will have important implications in optimizing metabolic stability of 8-AQs to improve therapeutic value and also indicate scope for development of 8-AQs as selective MAO inhibitors.  相似文献   

3.
The relative distribution of type A and type B monoamine oxidase (MAO) inside and outside the monoaminergic synaptosomes in preparations from hypothalamus and striatum of the guinea pig was determined by incubation of synaptosomal preparations of these regions with low concentrations of [14C]5-hydroxytryptamine (5-HT), noradrenaline, and dopamine. The deamination within the monoaminergic synaptosomes was hindered by selective amine uptake inhibitors. In the absence of these inhibitors, both intra- and extraneuronal deamination was measured. The two forms of the enzyme were differentiated with the irreversible and selective MAO-A and MAO-B inhibitors clorgyline and selegiline (l-deprenyl), respectively. [14C]5-HT was deaminated greater than 90% by MAO-A both inside and outside the 5-hydroxytryptaminergic synaptosomes prepared from the guinea pig hypothalamus. The deamination of [14C]noradrenaline within the noradrenergic synaptosomes of the hypothalamic preparation was in the ratio 75:25% for MAO-A:MAO-B; the corresponding ratio outside these synaptosomes was 45:55%. The deamination of [14C]dopamine within dopaminergic synaptosomes in the striatal preparation was 65% type A:35% type B, whereas outside these synaptosomes the ratio was 35:65%. Because the relative amounts and the distribution of the two forms of MAO in the guinea pig brain seem to be similar to those previously detected for the human brain, the MAO in the guinea pig brain may be a good model for the MAO in the human brain.  相似文献   

4.
Mitochondrial monoamine oxidase (MAO) has been considered to be involved in neuronal degeneration either by increased oxidative stress or protection with the inhibitors of type B MAO (MAO-B). In this paper, the role of type A MAO (MAO-A) in apoptosis was studied using human neuroblastoma SH-SY5Y cells, where only MAO-A is expressed. An endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, an MAO-A inhibitor, reduced membrane potential, DeltaPsim, in isolated mitochondria, and induced apoptosis in the cells, which 5-hydroxytryptamine, an MAO-A substrate, prevented. In contrast, beta-phenylethylamine, an MAO-B substrate, did not suppress the DeltaPsim decline by N-methyl(R)salsolinol. The binding of N-methyl(R)salsolinol to mitochondria was inhibited by clorgyline, a MOA-A inhibitor, but not by (-)deprenyl, an MAO-B inhibitor. RNA interference targeting MAO-A significantly reduced the binding of N-methyl(R)salsolinol with simultaneous reduction in the MAO activity. To examine the intervention of MAO-B in the apoptotic process, human MAO-B was transfected to SH-SY5Y cells, but the sensitivity to N-methyl(R)salsolinol was not affected, even although the activity and protein of MAO increased markedly. These results demonstrate a novel function of MAO-A in the binding of neurotoxins and the induction of apoptosis, which may account for neuronal cell death in neurodegenerative disorders, including Parkinson's disease.  相似文献   

5.
The rate of benzylamine utilization by monoamine oxidase (MAO)-B from human blood platelets was 2-4 times higher than that for octopamine. Both activities were inhibited 100% by 10(-7) M deprenyl (a specific MAO-B inhibitor) and were not affected by clorgyline (a specific MAO-A inhibitor) or by polyclonal antibodies to MAO-A. The preincubation of platelet MAO-B with purified MAO-A from mitochondrial membranes of human placenta resulted in appearance of excess octopamine activity. This additional activity was not precipitated by antibodies to MAO-A or inhibited by deprenyl but was inhibited by clorgyline. Incubation of the MAO-A preparation from placenta at 45 degrees C for 15 min before its preincubation with MAO-B caused 50% loss of both activities. Protease inhibitors had no effect on the modification of MAO. These data indicate that MAO-A or a factor tightly bound to it can modify MAO-B yielding a form of the enzyme with both MAO-A and MAO-B substrate and inhibitor affinities and MAO-B immunospecificity.  相似文献   

6.
4-(O-Benzylphenoxy)-N-methylbutylamine (Bifemelane, BP-N-methylbutylamine), a new psychotropic drug, was found to inhibit monoamine oxidase (MAO) in human brain synaptosomes. It inhibited type A MAO (MAO-A) competitively and type B (MAO-B) noncompetitively. BP-N-methylbutylamine had a much higher affinity to MAO-A than an amine substrate, kynuramine, and it was a more potent inhibitor of MAO-A than of MAO-B. The Ki values of MAO-A and -B were determined to be 4.20 and 46.0 microM, respectively, while the Km values of MAO-A and -B with kynuramine were 44.1 and 90.0 microM, respectively. The inhibition of MAO-A and -B by BP-N-methylbutylamine was found to be reversible by dialysis of the incubation mixture. MAO-A in human placental and liver mitochondria and in a rat clonal pheochromocytoma cell line, PC12h, was inhibited competitively by BP-N-methylbutylamine, while MAO-B in human liver mitochondria was inhibited noncompetitively, as in human brain synaptosomes. BP-N-methylbutylamine was not oxidized by MAO-A and -B. The effects of other BP-N-methylalkylamines, such as BP-N-methylethylamine, -propylamine, and -pentanylamine, on MAO activity were examined. BP-N-methylbutylamine was the most potent inhibitor of MAO-A, and BP-N-methylethylamine and -propylamine inhibited MAO-B competitively, whereas BP-N-methylbutylamine and -pentanylamine inhibited it noncompetitively. Inhibition of these BP-N-methylalkylamines on MAO-A and -B is discussed in relation to their chemical structure.  相似文献   

7.
M Naoi  T Nagatsu 《Life sciences》1987,40(11):1075-1082
Type A monoamine oxidase (MAO-A) in human placental mitochondria was competitively inhibited by naturally occurring substances, quinoline and quinaldine, using kynuramine as substrate. Quinoline had a higher affinity for MAO than kynuramine. MAO-A in human brain synaptosomal mitochondria was also competitively inhibited by quinoline, while type B MAO (MAO-B) was reversibly and non-competitively inhibited by quinoline. Quinoline inhibited MAO-A much more potently than MAO-B. Of several compounds structurally similar to quinoline, isoquinoline noncompetitively inhibited MAO-A and -B activity.  相似文献   

8.
In a recent study it was shown that 8-benzyloxycaffeine analogues act as potent reversible inhibitors of human monoamine oxidase (MAO) A and B. Although the benzyloxy side chain appears to be particularly favorable for enhancing the MAO inhibition potency of caffeine, a variety of other C8 oxy substituents of caffeine also lead to potent MAO inhibition. In an attempt to discover additional C8 substituents of caffeine that lead to potent MAO inhibition and to explore the importance of the ether oxygen for the MAO inhibition properties of C8 oxy-substituted caffeines, a series of 8-sulfanyl- and 8-aminocaffeine analogues were synthesized and their human MAO-A and -B inhibition potencies were compared to those of the 8-oxycaffeines. The results document that the sulfanylcaffeine analogues are reversible competitive MAO-B inhibitors with potencies comparable to those of the oxycaffeines. The most potent inhibitor, 8-{[(4-bromophenyl)methyl]sulfanyl}caffeine, exhibited an IC50 value of 0.167 μM towards MAO-B. While the sulfanylcaffeine analogues also exhibit affinities for MAO-A, they display in general a high degree of MAO-B selectivity. The aminocaffeine analogues, in contrast, proved to be weak MAO inhibitors with a number of analogues exhibiting no binding to the MAO-A and -B isozymes. The results of this study are discussed with reference to possible binding orientations of selected caffeine analogues within the active site cavities of MAO-A and -B. MAO-B selective sulfanylcaffeine derived inhibitors may act as lead compounds for the design of antiparkinsonian therapies.  相似文献   

9.
Norrie disease gene is distinct from the monoamine oxidase genes   总被引:3,自引:2,他引:1       下载免费PDF全文
The genes for MAO-A and MAO-B appear to be very close to the Norrie disease gene, on the basis of loss and/or disruption of the MAO genes and activities in atypical Norrie disease patients deleted for the DXS7 locus; linkage among the MAO genes, the Norrie disease gene, and the DXS7 locus; and mapping of all these loci to the chromosomal region Xp11. The present study provides evidence that the MAO genes are not disrupted in "classic" Norrie disease patients. Genomic DNA from these "nondeletion" Norrie disease patients did not show rearrangements at the MAOA or DXS7 loci. Normal levels of MAO-A activities, as well as normal amounts and size of the MAO-A mRNA, were observed in cultured skin fibroblasts from these patients, and MAO-B activity in their platelets was normal. Catecholamine metabolites evaluated in plasma and urine were in the control range. Thus, although some atypical Norrie disease patients lack both MAO-A and MAO-B activities, MAO does not appear to be an etiologic factor in classic Norrie disease.  相似文献   

10.
A number of N-substituted-propargylamines are well known mechanism-based MAO inhibitors. Clorgyline and deprenyl in fact represent archetypal MAO-A and MAO-B inhibitors respectively. In the present study several ring-substituted deprenyl structural analogues were synthesized and alterations of selectivity and potency towards MAO-A and MAO-B activities were found. When deprenyl and its structural analogues were further modified to their corresponding quaternary ammonium salts, i.e. by attaching either an extra propargyl or a methyl group to the nitrogen atom, the potency of inhibition of MAO-B activity was drastically reduced and inhibition of MAO-A activity substantially increased. Such a complete inversion of selectivity may be related to a hydrophilic and electrophilic region seemingly present only in the MAO-A but not in the MAO-B molecule. The results also suggest that at least three sites are required for the selectivity and mechanism-based action of an inhibitor towards MAO.  相似文献   

11.
Monoamine oxidase (MAO) catalyzes the oxidative deamination of amines. The enzyme exists in two forms, MAO-A and MAO-B, which differ in substrate specificity and sensitivity to various inhibitors. Membrane fractions containing either expressed MAO-A or MAO-B have been non-covalently immobilized in the hydrophobic interface of an immobilized artificial membrane (IAM) liquid chromatographic stationary phase. The MAO-containing stationary phases were packed into glass columns to create on-line immobilized enzyme reactors (IMERs) that retained the enzymatic activity of the MAO. The resulting MAO-IMERs were coupled through a switching valve to analytical high performance liquid chromatographic columns. The multi-dimensional chromatographic system was used to characterize the MAO-A (MAO-A-IMER) and MAO-B (MAO-B-IMER) forms of the enzyme including the enzyme kinetic constants associated with enzyme/substrate and enzyme/inhibitor interactions as well as the determination of IC(50) values. The results of the study demonstrate that the MAO-A-IMER and the MAO-B-IMER can be used for the on-line screening of substances for MAO-A and MAO-B substrate/inhibitor properties.  相似文献   

12.
Two types of monoamine oxidase activity (MAO-A and MAO-B) help regulate the levels of biogenic amines such as catecholamines and serotonin. Although MAO-A has greater activity toward most catecholamines than MAO-B, no direct experiments have determined the types and levels of MAO activity that are normally expressed in noradrenergic neurons. Noradrenergic neurons from neonatal rat superior cervical ganglia were isolated and cultured under conditions that permit either continued expression of the noradrenergic phenotype or promote a transition to a predominantly cholinergic phenotype. After 14-21 days in vitro, neurons from both types of cultures were assayed for the type and amount of monoamine oxidase activity using tryptamine, a common substrate for both MAO-A and MAO-B. Neurons cultured under noradrenergic conditions expressed sevenfold greater MAO activity than neurons cultured under cholinergic conditions. Essentially all MAO activity in the noradrenergic cultures was inhibited by preincubation with 10(-8)-10(-9) M clorgyline, which indicated that this activity was primarily MAO-A. Cultures grown under cholinergic conditions exhibited 6- to 10-fold lower MAO-A activity and an 8- to 10-fold lower level of catecholamine synthesis from labeled precursors compared to neurons grown under noradrenergic conditions. These results directly demonstrate that high MAO-A activity is expressed in noradrenergic neurons in vitro. The corresponding decreases in both MAO-A specific activity and catecholamine synthesis as neurons become cholinergic in vitro suggest that the expression of the noradrenergic phenotype involves the coordinate regulation of degradative as well as synthetic enzymes involved in catecholamine metabolism.  相似文献   

13.
Abstract: A series of methylquinolines (MQ) were found to inhibit markedly type A monoamine oxidase (MAO) in human brain synaptosomal mitochondria. 4-MQ and 6-MQ inhibited type A MAO (MAO-A) competitively and 7- and 8-MQ inhibited MAO-A noncompetitively. Among these four isomers of MQ, 6-MQ was the most potent inhibitor; the K i value toward MAO-A was 23.4 ± 1.8 μ M , which was smaller than the K m value toward kynuramine, ± amine substrate, 46.2 ± 2.8 μ M . On the other hand, MQ were very weak inhibitors of type B MAO (MAO-B) and 8-MQ did not inhibit MAO-B in brain synaptosomal mitochondria. The inhibition of MAO-A proved to be reversible; by dialysis the inhibition of MQ was completely reversible. The affinity of these isomers of MQ toward MAO-A or -B was confirmed further with human liver mitochondria as sources of MAO-A and -B and with human placental mitochondria and rat pheochromocytoma PC12h cell line as sources of MAO-A. The relationship of the chemical structure of structurally related quinoline and isoquinoline derivatives to inhibition of the activity of type A or B MAO was examined.  相似文献   

14.
Monoamine oxidase (MAO) is an enzyme involved in brain catabolism of monoamine neurotransmitters whose oxidative deamination results in the production of hydrogen peroxide. It has been documented that hydrogen peroxide derived from MAO activity represents a special source of oxidative stress in the brain. In this study we investigated the potential effects of the production of hydroxyl radicals (*OH) on MAO-A and MAO-B activities using mitochondrial preparations obtained from rat brain. Ascorbic acid (100 microM) and Fe2+ (0.2, 0.4, 0.8, and 1.6 microM) were used to induce the production of *OH. Results showed that the generation of *OH significantly reduced both MAO-A (85-53%) and MAO-B (77-39%) activities, exhibiting a linear correlation between both MAO-A and MAO-B activities and the amount of *OH produced. The reported inhibition was found to be irreversible for both MAO-A and MAO-B. Assuming the proven contribution of MAO activity to brain oxidative stress, this inhibition appears to reduce this contribution when an overproduction of *OH occurs.  相似文献   

15.
Monoamine oxidase deficiency in males with an X chromosome deletion   总被引:9,自引:0,他引:9  
Mapping of the human MAOA gene to chromosomal region Xp21-p11 prompted our study of two affected males in a family previously reported to have Norrie disease resulting from a submicroscopic deletion in this chromosomal region. In this investigation we demonstrate in these cousins deletion of the MAOA gene, undetectable levels of MAO-A and MAO-B activities in their fibroblasts and platelets, respectively, loss of mRNA for MAO-A in fibroblasts, and substantial alterations in urinary catecholamine metabolites. The present study documents that a marked deficiency of MAO activity is compatible with life and that genes for MAO-A and MAO-B are near each other in this Xp chromosomal region. Some of the clinical features of these MAO deletion patients may help to identify X-linked MAO deficiency diseases in humans.  相似文献   

16.
The distributions of monoamine oxidase (MAO)-A and -B proteins and mRNAs in human heart, lung, liver, duodenum, kidney and vasculature were compared using immunohistochemistry and cRNA in situ hybridisation. MAO-A and -B mRNA were detected in all tissues, to differing extents, but particularly in glomeruli, hepatocytes, and the crypts, muscularis mucosa and muscularis externa of duodenum. Renal proximal and distal tubules and loops of Henle had more intense labelling for mRNA of MAO-B than MAO-A; this was reflected in MAO protein expression. Little immunoreactivity was detected in glomeruli. Hepatocytes expressed MAO-A moderately, but MAO-B strongly. In lungs, similar moderately intense labelling for both MAO mRNAs and immunoreactivities was evident in pneumocytes, and epithelial and smooth muscle cells. Cardiomyocytes contained both MAO isoforms, but with more, albeit moderate, labelling for MAO-A. Both isoforms were expressed equally in duodenal villi, crypts, muscularis externa and mucosa; lower level expression occurred in mucosal and submucosal cells. MAO-A and -B mRNA were detected in endothelia, adventitia and media of a renal interlobular artery, but protein immunoreactivities were chiefly in the adventitia. The data reveal widespread tissue distribution of MAO mRNAs and proteins, but indicate that presence of MAO mRNAs does not invariably reflect quantitatively its protein expression.  相似文献   

17.
Ten novel 3,5-diaryl pyrazolines were synthesized and investigated for their monoamine oxidase (MAO) inhibitory property. All the molecules were found to be reversible and selective inhibitor for either one of the isoform (MAO-A or MAO-B). Further insights in the theoretical evaluation of the possible interactions between the compounds and monoamine oxidases (MAO-A or MAO-B) have been developed through docking studies. The theoretical values are in congruence with their experimental values.  相似文献   

18.
OBJECTIVE: Monoamine oxidase (MAO), the enzyme responsible for metabolism of monoamine neurotransmitters, has an important role in the brain development and function, and MAO inhibitors have a range of potential therapeutic uses. We investigated systematically in vitro effects of pharmacologically different antidepressants and mood stabilizers on MAO activity. Methods: Effects of drugs on the activity of MAO were measured in crude mitochondrial fraction isolated from cortex of pig brain, when radiolabeled serotonin (for MAO-A) or phenylethylamine (for MAO-B) was used as substrate. The several antidepressants and mood stabilizers were compared with effects of well known MAO inhibitors such as moclobemide, iproniazid, pargyline, and clorgyline. Results: In general, the effect of tested drugs was found to be inhibitory. The half maximal inhibitory concentration, parameters of enzyme kinetic, and mechanism of inhibition were determined. MAO-A was inhibited by the following drugs: pargyline > clorgyline > iproniazid > fluoxetine > desipramine > amitriptyline > imipramine > citalopram > venlafaxine > reboxetine > olanzapine > mirtazapine > tianeptine > moclobemide, cocaine > lithium, valproate. MAO-B was inhibited by the following drugs: pargyline > clorgyline > iproniazid > fluoxetine > venlafaxine > amitriptyline > olanzapine > citalopram > desipramine > reboxetine > imipramine > tianeptine > mirtazapine, cocaine > moclobemide, lithium, valproate. The mechanism of inhibition of MAOs by several antidepressants was found various. Conclusions: It was concluded that MAO activity is acutely affected by pharmacologically different antidepressants at relatively high drug concentrations; this effect is inhibitory. There are differences both in inhibitory potency and in mechanism of inhibition between both several drugs and the two MAO isoforms. While MAO inhibition is not primary biochemical effect related to their therapeutic action, it can be supposed that decrease of MAO activity may be concerned in some effects of these drugs on serotonergic, noradrenergic, and dopaminergic neurotransmission.  相似文献   

19.
Summary In the mammalian pineal gland, serotonin (5-HT) is located both in the pinealocytes and in the noradrenergic nerve terminals. Pineal 5-HT can be metabolized by three different routes, one of these being its deamination, catalized by monoamine oxidase (MAO). MAO is known to exist as two isozymes, MAO-A and MAO-B. Using two different cytochemical methods at the ultrastructural level, we have localized the presence of MAO in the pineal gland of the rat. The use of selective inhibitors of A-type (clorgyline) and B-type (deprenyl) has shown that MAO-A is localized in the noradrenergic nerve terminals, while pinealocytes contain MAO-B. Taking into account that 5-HT is only deaminated by MAO-A, the specific association of each MAO isozyme with a defined cell type implicates that two cellular compartments are needed in the pineal gland for the biosynthesis of 5-methoxytryptophol and 5-methoxyindole acetic acid, while for the synthesis of melatonin and 5-methoxytryptamine just one cellular compartment, the pinealocyte, is appropriate.  相似文献   

20.
Monoamineoxidase activity was studied in minks of three behavioural groups--those bred for absence of aggression towards man, those bred for high aggression to man, and those of non-selected population. Breeding for the absence of aggression was accompanied by a decrease of MAO-B activity with unchanged MAO-A activity. The minks bred for aggressive behaviour towards man, as compared to those bred for the absence of aggression, were characterised by increased MAO-A and MAO-B activities in the brain stem. The effect of emotional stress on MAO-A and MAO-B was similar in aggressive, non-aggressive and unselected minks and was expressed in a decrease of both MAO-A and MAO-B activity. The MAO activity of cerebral hemispheres remained unaffected both by selection for behaviour and by the emotional stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号