首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorptive properties of phospholipids of pulmonary surfactant are markedly influenced by the presence of three related proteins (26-38 KD, reduced) found in purified surfactant. Whether these proteins are pre-assembled with lipids before secretion is uncertain but would be expected for a lipoprotein secretion. We performed indirect immunocytochemistry on frozen thin sections of rat lung to identify cells and intracellular organelles that contain these proteins. The three proteins, purified from lavaged surfactant, were used to generate antisera in rabbits. Immunoblotting of rat surfactant showed that the IgG reacted with the three proteins and a 55-60 KD band which may be a polymer of the lower MW species. Specific gold labeling occurred over alveolar type II cells, bronchiolar Clara cells, alveolar macrophages, and tubular myelin. In type II cells labeling occurred in synthetic organelles and lamellar bodies, which contain surfactant lipids. Lamellar body labeling was increased fivefold by pre-treating tissue sections with a detergent. Multivesicular bodies and some small apical vesicles in type II cells were also labeled. Secondary lysosomes of alveolar macrophages were immunoreactive. Labeling in Clara cells exceeded that of type II cells, with prominent labeling in secretory granules, Golgi apparatus, and endoplasmic reticulum. These observations clarify the organelles and pathways utilized in the elaboration of surfactant. After synthesis, the proteins move, probably via multivesicular bodies, to lamellar bodies. Both lipids and proteins are present in tubular myelin. Immunologically identical or closely similar proteins are synthesized by Clara cells and secreted from granules which appear not to contain lipid. The role of these proteins in bronchiolar function is unknown.  相似文献   

2.
Using immunogold labeling of fixed, cryosubstituted tissue sections, we compared the distribution of lysozyme, an oxidant-sensitive lamellar body protein, with that of surfactant protein A (SP-A) in rat Type II cells, extracellular surfactant forms, and alveolar macrophages. Morphometric analysis of gold particle distribution revealed that lysozyme and SP-A were present throughout the secretory and endosomal pathways of Type II cells, with prominent localization of lysozyme in the peripheral compartment of lamellar bodies. All extracellular surfactant forms were labeled for both proteins with preferential labeling of tubular myelin and unilamellar vesicles. Labeling of tubular myelin for SP-A was striking when compared with that of lamellar bodies and other extracellular surfactant forms. Lamellar body-like forms and multilamellar structures were uniformly labeled for lysozyme, suggesting that this protein is rapidly redistributed within these forms after secretion of lysozyme-laden lamellar bodies. By contrast, increased labeling for SP-A was observed over peripheral membranes of lamellar body-like forms and multilamellar structures, apparently reflecting progressive SP-A enrichment of these membranes during tubular myelin formation. The results indicate that lysozyme is an integral component of the lamellar body peripheral compartment and secreted surfactant membranes, and support the concept that lysozyme may participate in the structural organization of lung surfactant.  相似文献   

3.
Summary Dog lungs have been fixed by immersion and submitted to two histochemical procedures. An iodoplatinate reaction technique to demonstrate choline phospholipids stains cell membranes, inclusion bodies of type II alveolar epithelial cells and tubular myelin figures of pulmonary surfactant, the latter as electron-dense lines measuring 5 nm. The ruthenium red procedure gives rise to an intense contrast of the free surface of alveolar epithelium. The 5 nm-lines of the pulmonary surfactant are seen as electron-lucent lines, but bordered by electron-dense rims. Though both techniques have limitations in their interpretation, which are discussed in this paper, they demonstrate the tubular myelin figures to be a highly organized mixture of phospholipids and glycoproteins.  相似文献   

4.
Dog lungs have been fixed by immersion and submitted to two histochemical procedures. An iodoplatinate reaction technique to demontrate choline phospholipids stains cell membranes, inclusion bodies of type II alveolar epithelial cells and tubular myelin figures of pulmonary surfactant, the latter as electron-dense lines measuring 5 nm. The ruthenium red procedure gives rise to an intense contrast of the free surface of alveolar epithelium. The 5 nm-lines of the pulmonary surfactant are seen as electron-lucent lines, but bordered by electron-dense rims. Though both techniques have limitations in their interpretation, which are discussed in this paper, they demonstrate the tubular myelin figures to be a highly organized mixture of phospholipids and glycoproteins.  相似文献   

5.
Surfactant protein A (SP-A) is the most abundant of the surfactant-associated proteins. SP-A is involved in the formation of tubular myelin, the modulation of the surface tension-reducing properties of surfactant phospholipids, the metabolism of surfactant phospholipids, and local pulmonary host defense. We hypothesized that elimination of SP-A would alter the regulation of SP-B gene expression and the formation of tubular myelin. Midtrimester human fetal lung explants were cultured for 3-5 days in the presence or absence of an antisense 18-mer phosphorothioate oligonucleotide (ON) complementary to SP-A mRNA. After 3 days in culture, SP-A mRNA was undetectable in antisense ON-treated explants. After 5 days in culture, levels of SP-A protein were also decreased by antisense treatment. SP-B mRNA levels were not affected by the antisense SP-A ON treatment. However, there was decreased tubular myelin formation in the antisense SP-A ON-treated tissue. We conclude that selective elimination of SP-A mRNA and protein results in a decrease in tubular myelin formation in human fetal lung without affecting SP-B mRNA. We speculate that SP-A is critical to the formation of tubular myelin during human lung development and that the regulation of SP-B gene expression is independent of SP-A gene expression.  相似文献   

6.
Rat alveolar Type II cells were immunostained with antibodies directed against chromogranin A (monoclonal, LK2H10) and chromogranins A and B (polyclonal, LKZM1U). The chromogranins or chromogranin-like proteins were identified in cells in lung tissue sections and isolated Type II cells at the light and electron microscopic levels. We used post-embedding immunoelectron microscopy, with immunogold, to detect the proteins' immunoreactivity in osmicated tissues. Gold particles were distributed over the phospholipid lamellae within the lamellar bodies of alveolar Type II cells and over the lattice structure of tubular myelin. Quantitative analysis of gold labeling densities in the various cell compartments indicated that only the latter two structures were specifically labeled. Controls, which included pre-absorption of both anti-chromogranin antibodies with excess chromogranin A or with native surfactant, resulted in a greater than 60% decrease in gold labeling. A possible role of chromogranins or chromogranin-like proteins as Ca2+ binding proteins in alveolar Type II cells is discussed.  相似文献   

7.
Immunogold labeling on sections of a freeze-substituted tubular myelin-enriched fraction isolated from a bronchoalveolar lavage of rat lung showed that surfactant protein A (SP-A) occurs predominantly at the corners of the tubular myelin lattice. Seventy-nine percent of the gold particles were located within 20 nm from a corner. Extracellular SP-A was detected only in the tubular myelin lattice and not in vesicles or secreted lamellar bodies. Ultra-thin cryosections of rat lung fixed in vivo showed that intracellular SP-A was distributed homogeneously over the stacked membranes of lamellar bodies in alveolar Type II cells. The presence of SP-A at the corners of the tubular myelin lattice suggests an important role of this protein in the formation and/or maintenance of this highly ordered lattice.  相似文献   

8.
A special exposure system was used for the inhalation of nickel oxide (NiO) aerosol by Wistar male rats. The median aerodynamic diameter and the geometric standard deviation were 1.2 μm and 2.2, respectively. A histopathological study of the rats was performed immediately, and at intervals of 12 and 20 mo after a 1-mo expsoure to NiO. Electron microscopy showed that localization of NiO particles was restricted to the lungs and that each particle had been engulfed by the alveolar macrophages. Type II pneumocytes and nonciliated bronchiolar epithelial cells (Clara cells), as well as numerous tubular myelin (surfactant) in the alveoli were prominent. In rats dissected after 12 mo, clusters of NiO particles were still present within the terminal bronchioli, alveolar walls, and lysosomes of the alveolar macrophages. Pools of tubular myelin were observed in the peribron-chial lymphatics. The Clara cells, which project into the lumen of bronchioli, showed active secretion and were filled with smooth en-doplasmic reticulum (SER) in the apical cytoplasm. In the experimental group sacrificed after 20 mo, one rat had papillary adenocarcinoma and two rats showed adenomatosis in the peripheral portion of the lung, but none in the upper respiratory tract.  相似文献   

9.
The goal of this study was to compare the functions of Clara and type II cells during alveolar clearance and recycling of surfactant protein (SP) A, a secretory product of both cell types. We examined the incorporation of instilled biotinylated SP-A (bSP-A) into rat lung type II and Clara cells as a measure of clearance and recycling of the protein. Ultrastructural localization of bSP-A was accomplished by an electron-microscopic immunogold technique at 7, 30, and 120 min after intratracheal instillation. Localization of bSP-A was quantitatively evaluated within extracellular surfactant components (lipid-rich forms: myelin figures, vesicles, and tubular myelin; and lipid-poor hypophase) and in compartments of type II and Clara cells. bSP-A was incorporated into myelinic and vesicular forms of extracellular surfactant, but tubular myelin and hypophase had little bSP-A. Lamellar bodies of type II cells demonstrated a significant time-dependent increase in their incorporation of bSP-A. There was a concentration of bSP-A in the secretory granules and mitochondria of Clara cells, but no Clara cell compartment showed a pattern of time-dependent change in immunolabeling. Our immunolabeling data demonstrated a time-dependent movement of exogenous SP-A from extracellular components into type II cells and their secretory granules. Clara cells did not demonstrate a time-dependent incorporation of bSP-A into their secretory granules during the period of this study. If Clara cells recycle SP-A, they must reach a steady state very quickly or very slowly.  相似文献   

10.
Rodent and primate lung surfactant was studied at the ultrastructural level utilizing procedures that retained most of the carbohydrates and lipids in thin section. The three-dimensional aspect of tubular myelin surfactant was observed to be four, lipid bilayer membranes oriented at right angles so that in cross-section it was square. In longitudinal section it appeared as two parallel lipid bilayers. Inside the tubular myelin was a homogeneous matrix material that completely filled the tubule except for a small, central area. A single multilamellar body, after it expanded and rearranged lamellae to form tubular myelin surfactant, still retained its basic morphology so that it was possible to determine the number and orientation of bodies that comprised a given surfactant area. This enabled quantification of surfactant by serial sectioning. Each transformed multilamellar body was observed to contain from 2 to 13 groups of tubular myelin, oriented at angles within the transformed body. With three-dimensional understanding, many of the areas previously reported to be homogeneous were determined to actually be oblique cross or longitudinal sections through tubular myelin surfactant.Five distinct layers characterized tubular myelin surfactant: (1) Unexpanded layer—up to 63 recently secreted multilamellar bodies. (2) Formation layerp?aired lamellae expanding and rearranging to form tubules. (3) Mature layer—tubular myelin surfactant. (4) Air-surfactant interface layer—usually a single lipid bilayer which was the outermost layer of tubular myelin of from 1 to 12 transformed multilamellar bodies. (5) Degraded surfactant layer—lipid bilayer spheres were formed at the interface and degraded in the alveolar space.  相似文献   

11.
Pulmonary surfactant is a complex mixture of lipids and proteins, of which surfactant protein A (SP-A) is the most abundant glycoprotein. The SP-A molecule has several distinct structural features that include a lectin-like domain, sharing structural features with other mammalian lectins. We have tested the hypothesis that lectin activity of the SP-A molecule is required for the binding to its receptor on the surface of alveolar Type II cells. By using colloidal gold immunocytochemistry in conjunction with electron microscopy, we evaluated the ability of mannosylated proteins to inhibit canine SP-A binding to rat Type II cells in vitro. After preincubation of SP-A with the mannosylated protein horse-radish peroxidase (HRP), SP-A was incubated with isolated filter-grown Type II cells. HRP did not alter the binding of SP-A to the Type II cell surface. Evidence that SP-A did bind to HRP was shown by coincident observation of gold-labeled SP-A and HRP precipitates. These results provide visual evidence that the lectin activity associated with SP-A is not required for its binding to receptor on rat alveolar Type II epithelial cells.  相似文献   

12.
Pulmonary surfactant isolated from gene-targeted surfactant protein A null mice (SP-A(-/-)) is deficient in the surfactant aggregate tubular myelin and has surface tension-lowering activity that is easily inhibited by serum proteins in vitro. To further elucidate the role of SP-A and its collagen-like region in surfactant function, we used the human SP-C promoter to drive expression of rat SP-A (rSPA) or SP-A containing a deletion of the collagen-like domain (DeltaG8-P80) in the Clara cells and alveolar type II cells of SP-A(-/-) mice. The level of the SP-A in the alveolar wash of the SP-A(-/-,rSP-A) and SP-A(-/-,DeltaG8-P80) mice was 6.1-and 1.3-fold higher, respectively, than in the wild type controls. Tissue levels of saturated phosphatidylcholine were slightly reduced in the SP-A(-/-,rSP-A) mice compared with SP-A(-/-) littermates. Tubular myelin was present in the large surfactant aggregates isolated from the SP-A(-/-,rSP-A) lines but not in the SP-A(-/-,DeltaG8-P80) mice or SP-A(-/-) controls. The equilibrium and minimum surface tensions of surfactant from the SP-A(-/-,rSP-A) mice were similar to SP-A(-/-) controls, but both were markedly elevated in the SP-A(-/-,DeltaG8-P80) mice. There was no defect in the surface tension-lowering activity of surfactant from SP-A(+/+,DeltaG8-P80) mice, indicating that the inhibitory effect of DeltaG8-P80 on surface activity can be overcome by wild type levels of mouse SP-A. The surface activity of surfactant isolated from the SP-A(-/-,rSP-A) but not the SP-A(-/-,DeltaG8-P80) mice was more resistant than SP-A(-/-) littermate control animals to inhibition by serum proteins in vitro. Pressure volume relationships of lungs from the SP-A(-/-), SP-A(-/-,rSP-A), and SP-A(-/-,DeltaG8-P80) lines were very similar. These data indicate that expression of SP-A in the pulmonary epithelium of SP-A(-/-) animals restores tubular myelin formation and resistance of isolated surfactant to protein inhibition by a mechanism that is dependent on the collagen-like region.  相似文献   

13.
Tubular myelin figures of pulmonary surfactant were examined by electron microscopy after fixation in glutaraldehyde and postfixation in an osmium tetroxide-ferrocyanide mixture. Bilayered membranes were seen as parallel arrays or as lattices with spacings varying from about 36 to 50 nm. This method also produced good visualization of drumstick-like particles, 5 nm in diameter and about 15 nm in length. The particles were regularly spaced at intervals of 16 nm in rows along the rectangular angles of myelin membranes. Depending on the size of the tubules the particles contacted each other in the center of the tubules at low diameters (tubular diameter less than 40 nm) and formed a continuous filamentous central core, or they were separated from one another (tubular diameter greater than 40 nm). In the latter case the central core had a hollow appearance. Based on further findings employing tannic acid, lipid extraction with 2,2-dimethoxypropane, and a ruthenium red-osmium tetroxide technique for the demonstration of polyanionic proteins it is suggested that these particles are protein in nature and that they are involved in the formation and maintenance of the structure of tubular myelin. A new concept of the ultrastructure of tubular myelin figures is proposed.  相似文献   

14.
To determine potential relationships between transforming growth factor (TGF)-alpha and surfactant homeostasis, the metabolism, function, and composition of surfactant phospholipid and proteins were assessed in transgenic mice in which TGF-alpha was expressed in respiratory epithelial cells. Secretion of saturated phosphatidylcholine was decreased 40-60% by expression of TGF-alpha. Although SP-A, SP-B, and SP-C mRNA levels were unchanged by expression of TGF-alpha, SP-A and SP-B content in bronchoalveolar lavage fluid was decreased. The minimum surface tension of surfactant isolated from the transgenic mice was significantly increased. Incubation of cultured normal mice type II cells with TGF-alpha in vitro did not change secretion of surfactant phosphatidylcholine and SP-B, indicating that TGF-alpha does not directly influence surfactant secretion. Expression of a dominant negative (mutant) EGF receptor in the respiratory epithelium blocked the TGF-alpha-induced changes in lung morphology and surfactant secretion, indicating that EGF receptor signaling in distal epithelial cells was required for TGF-alpha effects on surfactant homeostasis. Because many epithelial cells were embedded in fibrotic lesions caused by TGF-alpha, changes in surfactant homeostasis may at least in part be influenced by tissue remodeling that results in decreased surfactant secretion. The number of nonembedded type II cells was decreased 30% when TGF-alpha was expressed during development and was increased threefold by TGF-alpha expression in adulthood, suggesting possible alteration of type II cells on surfactant metabolism in the adult lung. Abnormalities in surfactant function and decreased surfactant level in the airways may contribute to the pathophysiology induced by TGF-alpha in both the developing and adult lung.  相似文献   

15.
Substance P, an eleven amino acid neuropeptide, significantly inhibited release of [3H]phosphatidylcholine from pulmonary Type II epithelial cells in vitro. Basal release and release in response to the beta-adrenergic agonist, terbutaline and 12-O-tetradecanoylphorbol 13-acetate (TPA) were significantly decreased in the presence of substance P. Inhibitory effects of substance P were noted following a 1 h exposure of primary cultures of Type II cells in vitro and persisted up to 3 h in the presence of the secretagogues, TPA and terbutaline. The IC50 values for substance P inhibition of [3H]PC release were 10 microM for basal release, 40 microM for TPA-induced release and 50 microM for terbutaline-induced release. The related neuropeptide, physalaemin and the stable active analog of substance P, [pGlu5, MePhe8, MeGly9]substance P [5-11], had no significant inhibitory effects on surfactant release whether in the presence or absence of TPA or terbutaline. These data support the hypothesis that NH2-terminal basic groups of substance P are necessary for inhibition of surfactant secretion from isolated Type II cells and support the concept that an inhibitory system contributes to mediation of surfactant secretion from Type II epithelial cells.  相似文献   

16.
To determine whether small hydrophobic surfactant peptides (SP-B and SP-C) participate in recycling of pulmonary surfactant phospholipid, we determined the effect of these peptides on transfer of 3H- or 14C-labelled phosphatidylcholine from liposomes to isolated rat alveolar Type II cells and Chinese hamster lung fibroblasts. Both natural and synthetic SP-B and SP-C markedly stimulated phosphatidylcholine transfer to alveolar Type II cells and Chinese hamster lung fibroblasts in a dose- and time-dependent fashion. Effects of the peptides on phospholipid uptake were dose-dependent, but not saturable and occurred at both 4 and 37 degrees C. Uptake of labelled phospholipid into a lamellar body fraction prepared from Type II cells was augmented in the presence of SP-B. Neither SP-B nor SP-C augmented exchange of labelled plasma membrane phosphatidylcholine from isolated Type II cells or enhanced the release of surfactant phospholipid when compared to liposomes without SP-B or SP-C. Addition of native bovine SP-B and SP-C to the phospholipid vesicles perturbed the size and structure of the vesicles as determined by electron microscopy. To determine the structural elements responsible for the effect of the peptides on phospholipid uptake, fragments of SP-B were synthesized by solid-phase protein synthesis and their effects on phospholipid uptake assessed in Type II epithelial cells. SP-B (1-60) stimulated phospholipid uptake 7-fold. A smaller fragment of SP-B (15-60) was less active and the SP-B peptide (40-60) failed to augment phospholipid uptake significantly. Like SP-B and SP-C, surfactant-associated protein (SP-A) enhanced phospholipid uptake by Type II cells. However, SP-A failed to significantly stimulate phosphatidylcholine uptake by Chinese hamster lung fibroblasts. These studies demonstrate the independent activity of surfactant proteins SP-B and SP-C on the uptake of phospholipid by Type II epithelial cells and Chinese hamster lung fibroblasts in vitro.  相似文献   

17.
Three surface-active fractions which differ in their morphology have been isolated from rat lung homogenates by ultracentrifugation in a discontinuous sucrose density gradient. In order of increasing density, the fractions consisted, as shown by electron microscopy, primarily of common myelin figures, lamellar bodies, and tubular myelin figures. The lipid of all three fractions contained approximately 94% polar lipids and 2% cholesterol. In the case of the common myelin figures and the lamellar bodies, the polar lipids consisted of 73% phosphatidylcholines, 9% phosphatidylserines and inositols, and 8% phosphatidylethanolamines. In the case of the tubular myelin figures, the respective percentages were 58, 19, and 5. Over 90% of the fatty acids of the lecithins of all three fractions were saturated. Electrophoresis of the proteins of the fractions in sodium dodecyl sulfate or Triton X-100 revealed that the lamellar bodies and the tubular myelin figures differed in the mobilities of their proteins. The common myelin figures, however, contained proteins from both of the other fractions. These data indicate that, whereas the lipids of the extracellular, alveolar surfactant(s) originate in the lamellar bodies, the proteins arise from another source. It is further postulated that the tubular myelin figures represent a liquid crystalline state of the alveolar surface-active lipoproteins.  相似文献   

18.
During lung injury alveolar epithelial cells are directly exposed to changes in PO(2) and PCO(2). Integrity of alveolar epithelial type II cells (AECII) is critical in lung injury but the effect of hypoxia and hypercapnia on AECII function, viability and proliferation has not been clearly investigated. Aim of the present work was to determine the direct effect of hypoxia and hypercapnia on surfactant protein expression, proliferation and apoptosis of lung epithelial cells in vitro. A549 alveolar epithelia cells were subjected to hypoxia (1%O(2)-5% CO(2)) or hypercapnia (21% O(2-) 15% CO(2)) and expression of surfactant protein C was measured and compared to normal conditions (21% O(2)- 5% CO(2)). Cell cycle progression and apoptosis were measured by flow cytometric analysis. RESULTS: A549 alveolar epithelial cells produce surfactant proteins, including surfactant protein C, when cultured under normal conditions, which is reduced under hypoxic conditions. Specifically, pro-SpC expression is moderately decreased after 8 h of culture in hypoxia, and is completely attenuated after 48 h. Hypercapnia decreases pro-SpC expression only after 48 h of exposure. Stimulation with TNF-alpha partly reverses pSPC decrease observed under hypoxic and hypercapnic conditions. Hypoxic culture of A549 cells results in progressive arrest of cells in the G1 phase of the cell cycle and increased apoptosis first observed 4 h following exposure and peaking at 24 h. In contrast hypercapnia has no significant effect on alveolar epithelial cell proliferation or apoptosis. CONCLUSIONS: Taken together we can conclude that hypoxia rapidly and severely affects AECII function and viability while hypercapnia has an inhibitory effect on pro-SpC production only after prolonged exposure.  相似文献   

19.
20.
Pulmonary surfactant conventionally is prepared from material obtained by endobronchial lavage. Although it has been assumed that the components of surfactant are secreted by alveolar type II cells, direct proof of this assumption has not been available. Furthermore, it is possible that the final material obtained by lavage has been modified after secretion or altered during the isolation procedure. It has been shown previously that type II cells, after 1 day in primary culture, secrete saturated phosphatidylcholine, one of the lipid components of surfactant. Because saturated phosphatidylcholine is not unique to surfactant and because type II cells in culture lose differentiated characteristics over the first several days in culture, it has not previously been established how closely the secretory products of cultures of type II cells resemble surfactant as obtained by endobronchial lavage. We therefore studied the morphologic, physical and chemical characteristics of the material that type II cells secrete under basal conditions and after stimulation with terbutaline or 12-O-tetradecanoyl-13-phorbol acetate. The secreted material resembled surfactant obtained by lavage; it was similar morphologically to the lamellar material and tubular myelin seen in the fluid-filled alveoli of fetal rats, it lowered surface tension to 5 mN per meter, and it contained the 72000 dalton apolipoprotein of surfactant (as measured by the 'rocket' immunoelectrophoresis technique). When cells were incubated for 22 h with [1-(14)C]acetate, the distribution of radioactivity in the secreted material was very similar to the phospholipid composition of rat surfactant. We conclude that the material secreted by alveolar type II cells after 1 day in primary culture is similar to surfactant obtained by endobronchial lavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号