首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An L-asparaginase has been purified some 250-fold from extracts of Klebsiella aerogenes to near homogeneity. The enzyme has a molecular weight of 141,000 as measured by gel filtration and appears to consist of four subunits of molecular weight 37,000. The enzyme has high affinity for L-asparagine, with a Km below 10(-5) M, and hydrolyzes glutamine at a 20-fold lower rate, with a Km of 10(-3) M. Interestingly, the enzyme exhibits marked gamma-glutamyltransferase activity but comparatively little beta-aspartyl-transferase activity. A mutant strain lacking this asparaginase has been isolated and grows at 1/2 to 1/3 the rate of the parent strain when asparagine is provided in the medium as the sole source of nitrogen. This strain grows as well as the wild type when the medium is supplemented with histidine or ammonia. Glutamine synthetase activates the formation of L-asparaginase. Mutants lacking glutamine synthetase fail to produce the asparaginase, and mutants with a high constitutive level of glutamine synthetase also contain the asparaginase at a high level. Thus, the formation of asparaginase is regulated in parallel with that of other enzymes capable of supplying the cell with ammonia or glutamate, such as histidase and proline oxidase. Formation of the asparaginase does not require induction by asparaginase and is not subject to catabolite repression.  相似文献   

2.
Long-term memory impairment has been described previously in mice receiving inhibitors of protein synthesis. In the present work, the enzyme L-asparaginase was injected into mice by an intrathecal or by an intraperitoneal route and produced a significant impairment of memory. Glutamine and asparagine prevented the effect of asparaginase when injected by the intraperitoneal route.  相似文献   

3.
L-ASPARAGINASE has anti-leukaemic and immunosuppressive activities1 and following the observation that L-asparaginase inhibits plaque formation in L mouse fibroblast cultures by herpes simplex virus2, we report studies of the activity of the enzyme on the multiplication of several human and animal viruses in cell cultures. A preparation of L-asparagine-amidohydrolase (Farbenfabriken Bayer AG, Wuppertal), extracted from Escherichia coli and containing 240 IU/mg, was used. The cell culture synthetic media used (Eagle basal or minimum essential and 199) contain no asparagine, but small amounts of this amino-acid may be supplied by the calf serum added (10%) to the medium.  相似文献   

4.
Nitrogen represents a critical nutrient in raised bogs. In Sphagna , dominating this habitat, the prevalent storage amino acid asparagine is catabolized predominantly by the enzyme L-asparaginase (EC 3.5.1.1). L-asparaginase activity has been detected in each of 10 Sphagnum species investigated. In Sphagnum fallax Klinggr. (Klinggr. clone 1) cultivated under axenie conditions in continuous feed bioreactors, the enzyme displayed a light dependent increase in activity. We separated two isoforms, designated L-asparaginase 1 and 2, characterized by their different elution patterns from an anion-exchange column. In stem segments only L-asparaginase 2 could be detected, whereas in capitulae L-asparaginase 1 represented the dominating isoform. Purified chloroplasts displayed no L-asparaginase activity. Almost the entire activity was located in the cytosohc fraction. L-asparaginase 1 and 2 have been purified 82-fold and 188-fold, respectively, by ion-exchange, size-exclusion and hydrophobic interaction chrornatography. Identical pH optima (8.2) and molecular weights (126 000) were determined. The Km values for asparagine (7.4 m M for L-asparaginase 1 and 6.2 m M for L-asparaginase 2) were in the range of those described for higher plants. On the other hand Sphagnum L-asparaginase is comprised of four subunits as are the L-asparaginases of microorganisms. So, the characteristics of the bryophyte enzyme appear to be intermediate between those from higher plants and those from microorganisms.  相似文献   

5.
The cistron that codes for L-asparaginase I in Saccharomyces cerevisiae (aspl) is not genetically linked to either of the cistrons coding for expression of asparaginase II (asp2 and asp3). Cells containing different combinations of theses enzymes grow at different rates in media in which L-asparagine or D-asparagine is the only source of nitrogen for cell replication. Cells lacking L-asparaginase I but possessing asparaginase II grow more rapidly in medium containing D-asparagine as a nitrogen source than cells containing both enzymes, even though D-asparagine is not a substrate of L-asparaginase I. These results indicate that L-asparaginase I and asparaginase II interact in some way to regulate the utilization of asparagine as a nitrogen source for cell growth.  相似文献   

6.
L-Asparaginase was used to treat 40 patients with acute leukaemia or lymphosarcoma. Fifteen with acute lymphoblastic leukaemia either untreated or in relapse after previous therapy were given “Squibb,” “Bayer,” or “Porton” L-asparaginase. Five of these patients had complete remission of their disease, and four had good partial remission. Eleven patients with acute myeloid leukaemia were treated for a short period with L-asparaginase alone. None of them went into remission though a pronounced fall in the numbers of circulating white cells was seen. Six patients with lymphosarcoma received L-asparaginase, two of them having good partial remissions.The toxic side-effects of the L-asparaginase from the three sources seemed to vary, and L-asparaginase from Erwinia carotovora appeared to be antigenically different from the enzyme produced by Escherichia coli.The way in which leukaemic cells become resistant to the action of the enzyme requires further investigation. To overcome this resistance asparaginase should be used in combination with other drugs in the treatment of acute leukaemia.  相似文献   

7.
L-Asparaginase is widely used in the treatment of acute lymphoblastic leukemia. L-Asparaginase preparation derived from E. coli converts asparagine (Asn) and glutamine (Gln) to aspartate (Asp) and glutamate (Glu), respectively, and causes rapid depletion of Asn and Gln. It thus suppresses growth of malignant cells that are more dependent on an exogenous source of Asn and Gln than are normal cells. It remains unclear, however, which signaling events in leukemic cells are affected by L-asparaginase. Recently, amino acid sufficiency has been demonstrated to selectively regulate p70 S6 kinase (p70(s6k)) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), both of which are targeted by the anti-proliferative drug rapamycin. Here we demonstrate that addition of L-asparaginase to human leukemic cells inhibits activity of p70(s6k) and phosphorylation of 4E-BP1, but not activities of other cell growth-related serine/threonine kinases. The rate and kinetics of p70(s6k) inhibition by L-asparaginase were comparable to those seen by deprivation of Asn and/or Gln from cell culture media, suggesting that the effect of L-asparaginase on p70(s6k) is explained by depletion of Asn and/or Gln. Moreover, L-Asparaginase as well as rapamycin selectively suppressed synthesis of ribosomal proteins at the level of mRNA translation. These data indicate that L-asparaginase and rapamycin target a common signaling pathway in leukemic cells.  相似文献   

8.
9.
Non-specific cytotoxicity and specific antitumor activity of 5 preparations of L-asparaginase from E. coli were studied. Two cell line, i.e. the asparagine-dependent (Berkitt lymphoma cells) and asparagin-independent (human ovary cancer cells) were used as the test-system. Incorporation of 3H-thimidine into DNA was the criterion of the preparation effect on the cells. Preparation I with the specific activity of 60-90 IU per 1 mg of protein obtained at the first stages of purification had high non-specific cytotoxicity. Preparation II obtained after further purification of preparation I, as well as preparation II without any stabilizer with the specific activity of 200 IU/mg were not inferior to the "Bayer" preparation by their biological properties. Addition of L-asparaginase to the preparation as a stabilizer of excessive glycine (preparation IV) increased its non-specific cytotoxicity and interfered with the study of its properties in the cell systems. Mannitol (preparation V) had no effect on the biological activity of L-asparaginase preparation.  相似文献   

10.
11.
L-asparaginases catalyse the formation of the neuroactive amino acid L-aspartate by deamination of asparagine. The major pathophysiological significance of L-asparaginase activity is in its clinical use for the treatment of acute lymphatic leukaemia and neoplasias that require asparagine and obtain it from circulating pools. Here we report the identification and characterization of Gliap, a cytosolic L-asparaginase, which is the founding member of a new group of L-asparaginases in mammalia. Structural modelling suggests that Gliap is an atypical mammalian type-I asparaginase inasmuch as it harbours the active centre of a type-I glycosylasparaginase but, like plant-type asparaginases, lacks their auto-proteolytic site and, in addition, exhibits significant type-II L-asparaginase enzymatic activity. Moreover, in contrast to glycosylasparaginases Gliap is enriched in the cytosolic fraction and not in lysosomes. The protein is particularly abundant in liver, testis and brain. In brain Gliap is exclusively expressed in astrocytes and prominently present in structures reminiscent of glial endfeet. These data suggest that Gliap is involved in astroglial production of the neuroactive amino acid L-aspartate.  相似文献   

12.
Preparations of L-asparaginase made in the USSR, FRG and Japan were studied comparatively in 277 patients with acute lymphoblastic leukemia and lymphosarcomas. It was shown that the clinical characteristics of the preparation made in the USSR and the preparation (crasnitin) made in the FRG were identical. By the antileukemic action the preparation made in the USSR was superior to the preparation (leunase) made in Japan in the treatment of adult patients with such hemoblastosis forms. The effect of the three drugs in the treatment of children was analogous. The nature of the side effects of the three drugs was the same. However, their level was different. The allergenic effect of leunase on the patients was the most pronounced. L-Asparaginase made in the USSR and crasnitin are recommended for wide use in clinical practice.  相似文献   

13.
A high L-asparaginase (L-asparagine amidohydrolase: EC 3.5.1.1) activity was found under conditions of lysine overproduction in cultures of Corynebacterium glutamicum. L-Asparaginase was purified 98-fold by protamine sulphate precipitation. DEAE-Sephacel anion exchange, ammonium sulphate precipitation and Sephacryl S-200 gel filtration. The asparaginase protein was subjected to PAGE under non-denaturing conditions, identified by an in situ reaction and eluted from the gel in an active form. The estimated Mr from gel filtration and SDS-PAGE was 80,000. The L-asparaginase activity was inhibited by the L-asparagine analogue 5-diazo-4-oxo-L-norvaline. Neither D-asparagine nor L-glutamine was a substrate for the enzyme. L-Asparaginase was produced constitutively: its role may be that of an overflow enzyme, converting excess asparagine into aspartic acid, the direct precursor of lysine and threonine.  相似文献   

14.
A Chlamydomonas species isolated from a marine environment possesses an L-asparaginase, an enzyme not yet reported in the microalgae. This enzyme enabled the organism to grow as well with asparagine as sole nitrogen source as with inorganic nitrogen sources (NO3-, NH4+). Only the amide nitrogen was used for growth since growth did not occur on aspartate and aspartate accumulated in the media when cells were either grown on asparagine or during short-term incubations with L-[U-14C]asparagine. Cells grown on NO3-, NH4+, or L-asparagine in batch culture possessed equivalent asparaginase activities. However, nitrogen-limited cells possessed four times the activity of cells grown with sufficient nitrogen for normal growth, regardless of the possessed the lowest activity per cell, while lag phase and stationary phase cells possessed greater activity. The enzyme behaved like a periplasmic space enzyme since (1) breaking the cells did not release into solution more activity than was shown by whole cells and (2) whole cells converted L-[U-14C]asparagine to [14C]aspartate with little intracellular accumulation of radioactivity. Cell-free preparations of the enzyme possessed a Km value for asparagine of 1.1 x 10-4 M, with no glutaminase activity.  相似文献   

15.
L-Asparaginase is an antileukemic agent that depletes L-asparagine “an important nutrient for cancer cells” through the hydrolysis of L-asparagine into L-aspartic acid and ammonia leading to leukemia cell starvation and apoptosis in susceptible leukemic cell populations. Moreover currently, bacterial L-asparaginase has been limited by problems of lower productivity, stability, selectivity and a number of toxicities along with the resistance towards bacterial L-asparaginase. Then the current work aimed to provide pure L-asparaginase with in-vitro efficacy against various human carcinomas without adverse effects related to current L-asparaginase formulations. Submerged fermentation (SMF) bioprocess was applied and improved to maximize L-asparaginase production from Fusarium equiseti AHMF4 as alternative sources of bacteria. The enzyme production in SMF was maximized to reach 40.78 U mL−1 at the 7th day of fermentation with initial pH 7.0, incubation temperature 30 °C, 1.0% glucose as carbon source, 0.2% asparagine as nitrogen source, 0.1% alanine as amino acid supplement and 0.1% KH2PO4. The purification of AHMF4 L-asparaginase yielded 2.67-fold purification and 48% recovery with final specific activity of 488.1 U mg−1 of protein. Purified L-asparaginase was characterized as serine protease enzyme with molecular weight of 45.7 kDa beside stability at neutral pH and between 20 and 40 °C. Interestingly, purified L-asparaginase showed promising DPPH radical scavenging activity (IC50 69.12 μg mL−1) and anti-proliferative activity against cervical epitheloid carcinoma (Hela), epidermoid larynx carcinoma (Hep-2), hepatocellular carcinoma (HepG-2), Colorectal carcinoma (HCT-116), and breast adenocarcinoma (MCF-7) with IC50 equal to 2.0, 5.0, 12.40, 8.26 and 22.8 μg mL−1, respectively. The enzyme showed higher activity, selectivity and anti-proliferative activity against cancerous cells along with tiny cytotoxicity toward normal cells (WI-38) which indicates that it has selective toxicity and it could be applied as a less toxic alternative to the current formulations.  相似文献   

16.
Abstract— Glutamyl, glutaminyl. aspartyl and asparaginyl tRNAs of calf brain were analysed by reverse phase chromatography for isoacceptor tRNAs. The radioactivity profiles revealed two peaks for gluta-mate. three for glutamine, two for aspartate and one for asparagine. Comparison of brain tRNAs with tRNAs from other sources showed that glutamate and aspartate tRNAs of brain closely resembled a majority of other tRNAs in the number and relative abundance of isoacceptors. Glutamine and asparagine tRNAs from different sources exhibited more marked differences.  相似文献   

17.
A temperature-sensitive Escherichia coli mutant defective for the ability to utilize L-asparagine as a sole nitrogen source was isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutation (asu) produces two distinct phenotypic effects. Mutant strains grow poorly at high temperature on minimal plates containing asparagine as the sole nitrogen source; this effect is greatly exacerbated by the presence of methionine. Mutant strains utilize L-asparagine as a nitrogen source three to four times more efficiently at permissive temperatures than the wild-type strains. The mutation maps at 32.4 min on the E. coli chromosome, within the E. coli cotransduction gap. Mutant strains produce normal amounts of thermo-stable L-asparaginase I activity. The mutation therefore affects a component of the asparagine utilization system other than the catabolism of asparagine within the cell; it probably affects asparagine uptake.  相似文献   

18.
Helicobacter pylori (H. pylori) is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.  相似文献   

19.
The resistance to L-asparaginase (ASNase) has been associated to the overexpression of asparagine synthetase (AS), although the role played by other metabolic adaptations has not been yet defined. Both in ASNase-sensitive Jensen rat sarcoma cells and in ARJ cells, their ASNase-resistant counterparts endowed with a five-fold increased AS activity, ASNase treatment rapidly depletes intracellular asparagine. Under these conditions, cell glutamine is also severely reduced and the activity of glutamine synthetase (GS) is very low. After 24 h of treatment, while sensitive cells have undergone massive apoptosis, ARJ cells exhibit a marked increase in GS activity, associated with overexpression of GS protein but not of GS mRNA, and a partial restoration of glutamine and asparagine. However, when ARJ cells are treated with both ASNase and L-methionine-sulfoximine (MSO), an inhibitor of GS, no restoration of cell amino acids occurs and the cell population undergoes a typical apoptosis. No toxicity is observed upon MSO treatment in the absence of ASNase. The effects of MSO are not referable to depletion of cell glutathione or inhibition of AS. These findings indicate that, in the presence of ASNase, the inhibition of GS triggers apoptosis. GS may thus constitute a target for the suppression of ASNase-resistant phenotypes.  相似文献   

20.
Seven Mycobacterium strains were grown statically on salts-glycerol-asparagine (Sauton) or on salts-glucose-glutamate (Sym) media. At desired time of incubation, the bacteria were washed with water, disintegrated with powdered corundum and in resulting cell-free extracts L-asparaginase activity was determined by the Conway method. The majority of experiments were performed on M. phlei which exhibited considerable rise in L-asparaginase activity with increasing age of the culture. This change did not occur on Sym medium because of Zn2+, which proved to abolish the effect of the enzyme induction in vivo but did not inhibit the activity in vitro. Addition of rifampicin to Sauton culture media resulted in a low enzyme level. Exogenous asparagine and glycerol were not indispensable for the enzyme synthesis and could be replaced by glutamate and glucose, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号