首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular control of the switch from embryonic to fetal globin formation in man was investigated with studies of globin expression in erythroid cells of 35- to 56-day-old embryos. Analyses of globins synthesized in vivo and in cultures of erythroid progenitors (burst-forming units, BFUe) showed that cells of the yolk sac (primitive) erythropoiesis, in addition to embryonic chains, produced fetal and adult globins and that cells of the definitive (liver) erythropoiesis, in addition to fetal and adult globins, produce embryonic globins. That embryonic, fetal, and adult globins were coexpressed by cells of the same lineage was documented by analysis of globin chains in single BFUe colonies: all 67 yolk sac-origin BFUe colonies and 42 of 43 liver-origin BFUe colonies synthesized epsilon-, gamma-, and beta-chains. These data showed that during the switch from embryonic to adult globin formation, embryonic and definitive globin chains are coexpressed in the primitive, as well as in the definitive, erythroid cells. Such results are compatible with the postulate that the switch from embryonic to fetal globin synthesis represents a time-dependent change in programs of progenitor cells rather than a change in hemopoietic cell lineages.  相似文献   

2.
We have detected trans-acting factors that regulate developmental hemoglobin switching by fusing erythroid cells of different developmental programs. Adult erythroid cells of one anuran species, Xenopus laevis, were fused with tadpole erythroid cells of another frog, Rana catesbeiana. In a second set of experiments, dimethyl sulfoxide-induced murine erythroleukemia cells, which express only adult mouse globins, were fused with Rana tadpole erythroid cells, which express only embryonic and fetal-like globins. Adult Rana globin gene expression was detected in both sets of transient heterokaryons at 6 hr after fusion. Dot blots and Northern blots of total RNA from the heterokaryons contained material that reacted with an adult Rana alpha-globin probe; newly synthesized adult Rana hemoglobin tetramers were detected with native polyacrylamide gel electrophoresis. These results show that developmental stage-specific transacting factors for globin genes can function across vertebrate classes (mammalia to amphibia) and suggest that the mechanisms that regulate developmental hemoglobin switching are highly conserved.  相似文献   

3.
4.
5.
6.
7.
A cDNA library was prepared from poly(A) mRNA extracted from adult anemic hamster spleen erythroid cells. cDNA clones containing inserts coding for adult alpha and beta major globin chains were isolated. Their identity was confirmed by (a) translation of hybrid selected mRNA and (b) nucleotide sequence analysis of the inserts and comparison to the adult globin cDNAs of mouse, rabbit and human. Availability of sequences for embryonic (Li et al. (1992) Biochim. Biophys. Acta 1130, 218-220) and adult globin cDNAs (this report) will aid in investigations of the molecular mechanisms involved in the globin ontogeny of hamsters.  相似文献   

8.
9.
10.
Using the teleost Oryzias latipes (medaka), we isolated three embryonic globin cDNAs (em.alpha-0, em.alpha-1, and em.beta-1) from the embryos 5 days after fertilization (at 30 degrees C) and two adult globin cDNAs (ad.alpha-1 and ad.beta-1) from the kidney of the fully-grown adult fish, and predicted their amino acid sequences. Molecular phylogenetic analysis showed that the embryonic globins were highly homologous in amino acid sequence to the embryonic globins previously identified in rainbow trout and zebrafish, and that they formed a monophyletic group among the teleostean globin molecules. They were clearly discriminated from the adult globin of the medaka. RT-PCR analysis showed that the embryonic globin mRNAs were intensely expressed in stage 30 and 38 embryos and in young fish 30 days after hatching. The level of expression decreased drastically after the young fish stage, and was low in fully-grown adult fish. The adult alpha globin mRNA ad.alpha-1 was scarcely expressed in the embryos, and the level of expression gradually increased in young to fully-grown adult fish. Unexpectedly, the adult beta globin mRNA ad.beta-1 was expressed throughout life, from the early embryonic stage to the fully-grown adult stage. This expression profile was quite different from that of the rainbow trout previously investigated. Some globins of the medaka were expressed both in primitive hematopoiesis and in definitive hematopoiesis.  相似文献   

11.
Prior research has demonstrated that globin ontogeny of hamster proceeds nearly to completion during the several days that yolk sac erythroid cells (YSEC) circulate in the embryo; synthesis of embryonic globin chains gives way to synthesis of adult globin chains in these primitive cells. In the present study, we translated total cell RNA extracted from YSEC on days 9-13 of gestation in wheat germ cell-free extract, expecting to observe the same progressive rise that occurs in vivo in rates of translation of alpha- and beta-globin mRNA during ontogeny. The opposite occurred; translation rates of both globins decreased sharply. This disparity between synthesis of alpha- and beta-globins in vivo and in vitro suggested an element of control of translation attributable to the YSEC cytoplasm. We therefore assayed the effect of RNA-free clarified YSEC cytoplasm on cell-free translation of YSEC RNA. A repression of translation was detected of alpha- and beta-globin mRNA (not of embryonic globin mRNA), exercised strongly by cytoplasm from YSEC early in ontogeny (gestational day 9), and weakening as ontogeny progressed. The same effect was noted on alpha- and beta-globin mRNA of adult hamster and of rabbit. Heat treatment of cytoplasm abolished the greater part of the translation regulation, suggesting that the active agent is protein. Further characterization of this translational regulator included: (a) it binds to globin poly(A) mRNA but not to poly(A), (b) it was not detected in cell lysate of adult hamster brain, lung, or erythrocytes, and (c) it did not inhibit translation of adult hamster brain and liver RNA. We conclude that hamster globin ontogeny is substantially modulated by this translational regulation of alpha- and beta-globin expression.  相似文献   

12.
We studied the relationship between heme accumulation and globin synthesis in human erythroid precursors which were stimulated by 2 I.U. of erythropoietin in semi-solid cultures (1% methyl-cellulose, 20% fetal calf serum) and treated with 6-9 micrograms/ml of desferrioxamina (DF), a potent inhibitor of heme synthesis (6). Heme accumulation was detected by specific reaction with benzidine (4), globin synthesis by CM-cellulose column chromatography. Our results demonstrate that globin gene expression occurs in DF-treated erythroid cells which do not accumulate heme molecules. As heme does affect translation and stability of globin mRNA (10) our system might be suitable for studies focused on pathological alterations of erythropoiesis associated with the presence of unstable globin mRNAs and/or unstable globins.  相似文献   

13.
Erythrocytes of the adult axolotl, Ambystoma mexicanum, have multiple hemoglobins. We separated and purified two kinds of hemoglobin, termed major hemoglobin (Hb M) and minor hemoglobin (Hb m), from a five-year-old male by hydrophobic interaction column chromatography on Alkyl Superose. The hemoglobins have two distinct alpha type globin polypeptides (alphaM and alpham) and a common beta globin polypeptide, all of which were purified in FPLC on a reversed-phase column after S-pyridylethylation. The complete amino acid sequences of the three globin chains were determined separately using nucleotide sequencing with the assistance of protein sequencing. The mature globin molecules were composed of 141 amino acid residues for alphaM globin, 143 for alpham globin and 146 for beta globin. Comparing primary structures of the five kinds of axolotl globins, including two previously established alpha type globins from the same species, with other known globins of amphibians and representatives of other vertebrates, we constructed phylogenetic trees for amphibian hemoglobins and tetrapod hemoglobins. The molecular trees indicated that alphaM, alpham, beta and the previously known alpha major globin were adult types of globins and the other known alpha globin was a larval type. The existence of two to four more globins in the axolotl erythrocyte is predicted.  相似文献   

14.
We have analyzed the expression of endogenous murine genes and of transfected human fetal A gamma globin gene in GM 979, a mouse erythroleukemia line which produces adult as well as embryonic globins. Optimal induction of the endogenous murine adult globin genes was obtained with DMSO or HMBA while the epsilon y and beta h1 embryonic genes were preferentially induced by butyrate. Similarly, the transferred human A gamma-globin gene was preferentially induced by butyrate. These results as well as previous observations in vivo or in erythroid cell cultures suggest that butyrate preferentially induces the expression of fetal globin genes.  相似文献   

15.
In vitro suspension culture procedures for erythroid progenitor cells make it possible for us to obtain large cultures of erythrocyte populations for the investigation of globin gene switching. In this study we aimed to establish optimized culture systems for neonatal and adult erythroblasts and to explore the globin expression patterns in these culture systems. To culture CD34+ cells purified from human umbilical cord blood (CB) and adult bone marrow (BM), we respectively replaced the fetal bovine serum (FBS) with human cord serum and human adult serum. These CD34+ cells were then induced to erythroid differentiation. All the globin mRNA (including alpha-, zeta-, beta-, gamma-and epsilon-globin), the hemoglobin (Hb)-producing erythroid cells and the cellular distribution of fetal hemoglobin (Hb F) were identified during the culture process. The results showed that the globin expression pattern during erythroid differentiation in our culture systems closely recapitulated neonatal and adult patterns of globin expression in vivo, suggesting that our specially optimized culture systems not only overcame the higher Hb F levels in the BM-derived CD34+ culture in FBS-containing medium but also eliminated the disadvantages of low cell proliferation rate and low globin mRNA levels in serum-free medium.  相似文献   

16.
Red blood cell differentiation involves the coordinate expression of a set of polypeptides some of which are erythroid-specific (the abundant globins as well as minor species such as glycophorin, carbonic anhydrase I and the RBC lipoxygenase) whereas others are found also in a subset of other cells, e.g. beta spectrin and a 19 kd polypeptide (ep 19) found in adult liver and kidney as well as erythroid cells. To investigate the genetic mechanisms involved in the regulation of these classes of genes, the expression of lipoxygenase, ep 19 and beta globin mRNAs was investigated in cell hybrids between mouse erythroid (Friend) cells and mouse T-lymphoma or neuroblastoma cells. All three mRNAs are expressed or repressed together in cell hybrids between the Friend cell and lymphoma or neuroblastoma cells respectively. Moreover, studies of the chromatin structure surrounding the genes reveal that erythroid cell-specific DNaseI hypersensitive sites within the ep 19 and beta major globin genes are lost in the Friend cell X neuroblastoma hybrids whereas they are retained in the Friend cell X lymphoma cell hybrids. This implies that the trans-acting mechanism responsible for regulating the RBC phenotype in these cell hybrids acts at the level of the early chromatin changes thought to reflect a pre-activation stage in gene expression.  相似文献   

17.
Globin mRNA levels in 11–15-day mouse fetal liver cells have been estimated by in situ hybridization of a highly labeled DNA copy (cDNA) of adult globin messenger RNAs (mRNAs) (globin cDNA) to fixed preparations of cells. Under the conditions employed, no significant in situ hybridization occurred to lymphoma cells (L 51787), mouse L cells, or hepatocytes; whereas reticulocytes from phenyl hydrazine-treated mice showed extensive in situ hybridization. The proportion of fetal liver cells showing predominantly cytoplasmic in situ hybridization increased from about 30% at the 11th day of development to 80–85% by days 13–15. Unlike more mature cells, proerythroblasts did not show in situ hybridization, except to a slight extent at later stages of development. These studies therefore indicate that globin mRNAs begin to accumulate during or shortly after the proerythroblastbasophilic erythroblast transition. The fact that certain immature erythroid cells from 14-day fetal liver contain substantial amounts of globin mRNAs has been confirmed by comparing the hybridization in solution of globin cDNA to cytoplasmic RNA extracted from total fetal liver cells or from immature erythroid cells obtained by treatment of fetal liver cells with an antiserum raised against erythrocytes.  相似文献   

18.
19.
20.
Yolk sac derived erythroid cells in mouse embryos synthesize four embryonic globins of which two are alpha-like and two are beta-like. Pure globin messenger RNAs from these cells were used as templates for two successive polymerizing reactions and a mixture of double stranded cDNAs coding for the four globins was obtained. These molecules were blunt-end ligated to an ECoR1 digested pBR322 plasmid and the recombinant plasmids were used to transform E. coli Hb101. Bacterial clones which proved positive upon hybridization with 32P-labelled embryonic globin cDNA were amplified and their plasmid DNA was isolated. Three different plasmids were studied, namely no. 2, 16 and 54. The restriction map of these plasmids showed that: 1) plasmid no. 2 and 54 had lost extensive DNA sequences comprising the genes responsible for tetracycline resistance; 2) the size of inserted sequences ranges from 427 base pairs of plasmid no. 16 to about 280 base pairs of plasmid no. 54; 3) plasmid no. 2 does not share any of the studied restriction sites with the other plasmids, while no. 2 and 54 have at least one site in common. The coding properties of inserted DNA were determined by positive hybrid translation showing that no. 2 codes for the alpha-like embryonic chain x, while no. 16 and 54 code for a beta-like embryonic chain, either y or z.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号