首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Lyme disease spirochaete, Borrelia burgdorferi, is transmitted to mammals by Ixodes ticks and can infect multiple tissues. Host cell attachment may be critical for tissue colonization, and B. burgdorferi cultivated in vitro recognizes heparin- and dermatan sulphate-related glycosaminoglycans (GAGs) on the surface of mammalian cells. To determine whether growth of the spirochaete in the mammalian host alters GAG binding, we assessed the cell attachment activities of B. burgdorferi grown in vitro or in dialysis membrane chambers implanted intraperitoneally in rats. Host-adapted B. burgdorferi exhibited approximately threefold better binding to purified heparin and dermatan sulphate and to GAGs expressed on the surface of cultured endothelial cells. Three B. burgdorferi surface proteins, Bgp, DbpA and DbpB, have been demonstrated previously to bind to GAGs or to GAG-containing molecules, and we show here that recombinant derivatives of each of these proteins were able to bind to purified heparin and dermatan sulphate. Immunofluorescent staining of in vitro-cultivated or host-adapted spirochaetes revealed that DbpA and DbpB were present on the bacterial surface at higher levels after host adaptation. Recombinant Bgp, DbpA and DbpB each partially inhibited attachment of host-adapted B. burgdorferi to cultured mammalian cells, consistent with the hypothesis that these proteins may promote attachment of B. burgdorferi during growth in the mammalian host. Nevertheless, the partial nature of this inhibition suggests that multiple pathways promote mammalian cell attachment by B. burgdorferi in vivo. Given the observed increase in cell attachment activity upon growth in the mammalian host, analysis of host-adapted bacteria will facilitate identification of the cell binding pathways used in vivo.  相似文献   

2.
Tick-borne relapsing fever, caused by pathogenic Borrelia such as B. hermsii and B. turicatae, features recurrent episodes of bacteraemia, each of which is caused by a population of spirochaetes that expresses a different variable major protein. Relapsing fever is also associated with the infection of a variety of tissues, such as the central nervous system. In this study, we show that glycosaminoglycans (GAGs) mediate the attachment of relapsing fever spirochaetes to mammalian cells. B. hermsii strain DAH bound to immobilized heparin, and heparin and dermatan sulphate blocked bacterial binding to host cells. Bacterial binding was diminished by inhibition of host cell GAG synthesis or sulphation, or by the enzymatic removal of GAGs. GAGs mediated the attachment of relapsing fever spirochaetes to potentially relevant target cells, such as endothelial and glial cells. B. hermsii was able to attach to GAGs independently of variable major proteins, because strains expressing the variable major proteins Vsp33, Vlp7 or no variable major protein at all each recognized GAGs. Nevertheless, we found that a variable major protein of B. turicatae directly promoted GAG binding by this relapsing fever spirochaete. B. turicatae strain Oz1 serotype B, which expresses the variable major protein VspB, bound to GAGs more efficiently than did B. turicatae Oz1 serotype A, which expresses VspA. Recombinant VspB, but not VspA, bound to heparin and dermatan sulphate. Previous studies have shown that strain Oz1 serotype B grows to higher concentrations in the blood than does Oz1 serotype A. Thus, relapsing fever spirochaetes have the potential to express Vsp-dependent and Vsp-independent GAG-binding activities and, for one pair of highly related B. turicatae strains, differences in GAG binding correlate with differences in tissue tropism.  相似文献   

3.
Wu SC  Chiang JR  Lin CW 《Biomacromolecules》2004,5(6):2160-2164
Glycosaminoglycans (GAGs) are present in the extracellular matrix and/or tissue cell surface and, by binding to specified GAG-binding proteins, control many important cellular functions. Some animal viruses had evolved to use GAGs as part of their strategy to invade host cells. In this study, two putative GAG-binding proteins were identified from the E protein sequence of the live-attenuated strain CH2195LA of Japanese encephalitis virus (JEV): (i) the first GAG-binding region at residues from E-279 to E-297 (279KLTSGHLKCRLKMDKLALK297) and (ii) the second GAG-binding region at residues from E-397 to E-416 (397KAGSTLGKAFFSTTLKGAQR416). Four recombinant proteins with or without these two GAG-binding regions were expressed in Escherichia coli and purified to examine their GAG-binding properties. The first GAG binding region was demonstrated to exhibit a higher affinity in heparin-Sepharase column. Dose-dependent increases of BHK-21 cell binding were also demonstrated by cell binding enzyme-linked immunosorbent assay (ELISA). Immobilized on glass coverslips, the GAG-binding recombinant protein of JEV promoted BHK-21 cell adhesion and proliferation. The present studies demonstrate the recombinant GAG-binding proteins of JEV stimulate cell adhesive and proliferation with a potential for applications in tissue engineering.  相似文献   

4.
ADAMTS-4, also referred to as aggrecanase-1, is a glutamyl endopeptidase capable of generating catabolic fragments of aggrecan analogous to those released from articular cartilage during degenerative joint diseases such as osteoarthritis. Efficient aggrecanase activity requires the presence of sulfated glycosaminoglycans (GAGs) attached to the aggrecan core protein, implying the contribution of substrate recognition/binding site(s) to ADAMTS-4 activity. In the present study, we demonstrate that full-length ADAMTS-4 (M(r) approximately 68,000) undergoes autocatalytic C-terminal truncation to generate two discrete isoforms (M(r) approximately 53,000 and M(r) approximately 40,000), which exhibit a marked reduction in affinity of binding to sulfated GAGs. C-terminal sequencing and mass analyses revealed that the GAG-binding thrombospondin type I motif was retained following autocatalysis, indicating that sites present in the C-terminal cysteine (cys)-rich and/or spacer domains also effect binding of full-length ADAMTS-4 to sulfated GAGs. Binding-competition experiments conducted using native and deglycosylated aggrecan provided direct evidence for interaction of the ADAMTS-4 cysteine-rich/spacer domains with aggrecan GAGs. Furthermore, synthetic peptides mimicking putative (consensus) GAG-binding sequences located within the ADAMTS-4 cysteine-rich and spacer domains competitively blocked binding of sulfated GAGs to full-length ADAMTS-4, thereby identifying multiple GAG-binding sites, which may contribute to the regulation of ADAMTS-4 function.  相似文献   

5.
Spirochete bacteria of the Borrelia burgdorferi sensu lato complex cause Lyme borreliosis. The three pathogenic subspecies Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto differ in their disease profiles and susceptibility to complement lysis. We investigated whether complement resistance of Borreliae could be due to acquisition of the main soluble inhibitors of the alternative complement pathway, factor H and the factor H-like protein 1. When exposed to nonimmune EDTA-plasma, the serum-resistant B. afzelii and B. burgdorferi sensu stricto strains bound factor H/factor H-like protein 1 to their surfaces. Assays with radiolabeled proteins showed that factor H bound strongly to the B. burgdorferi sensu stricto strain. To identify factor H ligands on the borrelial surface, we analyzed a panel of outer surface proteins of B. burgdorferi sensu stricto with the surface plasmon resonance technique. The outer surface lipoprotein OspE was identified as a specific ligand for factor H. Using recombinant constructs of factor H, the binding site for OspE was localized to the C-terminal short consensus repeat domains 15-20. Specific binding of factor H to B. burgdorferi sensu stricto OspE may help the pathogen to evade complement attack and phagocytosis.  相似文献   

6.
The attachment of pathogenic microorganisms to host cells and tissues is often mediated through the expression of surface receptors recognizing components of the extracellular matrix (ECM). Here, we investigate the ability of Borrelia spirochaetes to bind the ECM constituent, fibronectin. Borrelia lysates were separated by SDS–PAGE, transferred to nitrocellulose and probed with alkaline phosphatase-labelled fibronectin (fibronectin-AP). Five of six Borrelia species and four of eight B. burgdorferi sensu lato isolates expressed one or more fibronectin-binding proteins. Borrelia burgdorferi isolate B31 expressed a 47 kDa (P47) fibronectin-binding protein that was localized to the outer envelope based on susceptibility to proteinase K. The interaction of P47 with fibronectin was specific, and the region of fibronectin bound by P47 mapped to the gelatin/collagen binding domain. P47 was purified by affinity chromatography, digested with endoproteinase Lys-C, and the peptide fragments analysed by liquid chromatography/tandem mass spectroscopy. A search of protein databases disclosed that the P47 peptide mass profile matched that predicted for the bbk32 gene product of B. burgdorferi isolate B31. The bbk32 gene was cloned into Escherichia coli , and the ability of recombinant BBK32 to bind fibronectin and inhibit the attachment of B. burgdorferi was demonstrated. The identification of BBK32 as a receptor for fibronectin binding may enhance our understanding of the pathogenesis and chronic nature of Lyme disease.  相似文献   

7.
Glycoprotein C (gC) mediates the attachment of HSV-1 to susceptible host cells by interacting with glycosaminoglycans (GAGs) on the cell surface. gC contains a mucin-like region located near the GAG-binding site, which may affect the binding activity. Here, we address this issue by studying a HSV-1 mutant lacking the mucin-like domain in gC and the corresponding purified mutant protein (gCΔmuc) in cell culture and GAG-binding assays, respectively. The mutant virus exhibited two functional alterations as compared with native HSV-1 (i.e. decreased sensitivity to GAG-based inhibitors of virus attachment to cells and reduced release of viral particles from the surface of infected cells). Kinetic and equilibrium binding characteristics of purified gC were assessed using surface plasmon resonance-based sensing together with a surface platform consisting of end-on immobilized GAGs. Both native gC and gCΔmuc bound via the expected binding region to chondroitin sulfate and sulfated hyaluronan but not to the non-sulfated hyaluronan, confirming binding specificity. In contrast to native gC, gCΔmuc exhibited a decreased affinity for GAGs and a slower dissociation, indicating that once formed, the gCΔmuc-GAG complex is more stable. It was also found that a larger number of gCΔmuc bound to a single GAG chain, compared with native gC. Taken together, our data suggest that the mucin-like region of HSV-1 gC is involved in the modulation of the GAG-binding activity, a feature of importance both for unrestricted virus entry into the cells and release of newly produced viral particles from infected cells.  相似文献   

8.
The outer surface protein C (OspC) of the Lyme disease agent, Borrelia burgdorferi, is an immunoprotective antigen in laboratory models of infection. However, to understand its protective effects, it is important to identify the key epitopes of this protein. We produced a borreliacidal anti-OspC monoclonal antibody specific to the B31 strain and identified its binding site. The specificity of MAb 16.22 was determined by Western blot reactivity using OspC derived from different Borrelia isolates which had varying amino acid sequences. Comparison of the OspC sequences and binding data suggested that MAb 16.22 binds to amino acids 133-147 of the OspC protein. To test this hypothesis, we synthesized a 15-amino acid peptide containing the target sequence and, using competition enzyme-linked immunosorbent assay (ELISA), we found that this peptide included the epitope of MAb 16.22. In addition, we determined that MAb 16.22 is able to kill of B. burgdorferi in a complement-independent fashion.  相似文献   

9.
Factor H and factor H-like protein 1 (FH/FHL-1) are soluble serum proteins that negatively regulate the alternative pathway of complement. It is now well recognized that many pathogenic bacteria, including Borrelia burgdorferi, bind FH/FHL-1 on their cell surface to evade complement-mediated destruction during infection. Recently, it was suggested that B. burgdorferi open reading frame bbA68, known as complement regulator-acquiring surface protein 1 (CRASP-1), encodes the major FH/FHL-1-binding protein of B. burgdorferi. However, because several other proteins have been identified on the surface of B. burgdorferi that also can bind FH/FHL-1, it is presently unclear what role CRASP-1 plays in serum resistance. To examine the contribution of CRASP-1 in serum resistance, we generated a B. burgdorferi mutant that does not express CRASP-1. The B. burgdorferi CRASP-1 mutant, designated B31cF-CRASP-1, was found to be as susceptible to human serum as a wild-type strain of Borrelia garinii 50 known to be sensitive to human serum. To further examine the role of CRASP-1 in serum resistance, we also created a shuttle vector that expresses CRASP-1 from the native B. burgdorferi gene, which was designated pKFSS-1::CRASP-1. When the pKFSS-1::CRASP-1 construct was transformed into the B. burgdorferi B31cF-CRASP-1 mutant, wild-type levels of serum resistance were restored. Additionally, when pKFSS-1::CRASP-1 was transformed into the serum-sensitive B. garinii 50 isolate, human serum resistance was imparted on this strain to a level indistinguishable from wild-type B. burgdorferi. The combined data led us to conclude that CRASP-1 expression is necessary for B. burgdorferi to resist killing by human serum.  相似文献   

10.
Glycosaminoglycans (GAGs) commonly participate in herpesvirus entry. They are thought to provide a reversible attachment to cells that promotes subsequent receptor binding. Murine gamma-herpesvirus-68 (MHV-68) infection of fibroblasts and epithelial cells is highly GAG-dependent. This is a function of the viral gp150, in that gp150-deficient mutants are much less GAG-dependent than wild-type. Here we show that the major MHV-68 GAG-binding protein is not gp150 but gp70, a product of ORF4. Surprisingly, ORF4-deficient MHV-68 showed normal cell binding and was more sensitive than wild-type to inhibition by soluble heparin rather than less. Thus, the most obvious viral GAG interaction made little direct contribution to infection. Indeed, a large fraction of the virion gp70 had its GAG-binding domain removed by post-translational cleavage. ORF4 may therefore act mainly to absorb soluble GAGs and prevent them from engaging gp150 prematurely. In contrast to gp70, gp150 bound poorly to GAGs, implying that it provides little in the way of adhesion. We hypothesize that it acts instead as a GAG-sensitive switch that selectively activates MHV-68 entry at cell surfaces.  相似文献   

11.
The thyX gene for thymidylate synthase of the Lyme borreliosis (LB) agent Borrelia burgdorferi is located in a 54-kb linear plasmid. In the present study, we identified an orthologous thymidylate synthase gene in the relapsing fever (RF) agent Borrelia hermsii, located it in a 180-kb linear plasmid, and demonstrated its expression. The functions of the B. hermsii and B. burgdorferi thyX gene products were evaluated both in vivo, by complementation of a thymidylate synthase-deficient Escherichia coli mutant, and in vitro, by testing their activities after purification. The B. hermsii thyX gene complemented the thyA mutation in E. coli, and purified B. hermsii ThyX protein catalyzed the conversion of dTMP from dUMP. In contrast, the B. burgdorferi ThyX protein had only weakly detectable activity in vitro, and the B. burgdorferi thyX gene did not provide complementation in vivo. The lack of activity of B. burgdorferi's ThyX protein was associated with the substitution of a cysteine for a highly conserved arginine at position 91. The B. hermsii thyX locus was further distinguished by the downstream presence in the plasmid of orthologues of nrdI, nrdE, and nrdF, which encode the subunits of ribonucleoside diphosphate reductase and which are not present in the LB agents B. burgdorferi and Borrelia garinii. Phylogenetic analysis suggested that the nrdIEF cluster of B. hermsii was acquired by horizontal gene transfer. These findings indicate that Borrelia spp. causing RF have a greater capability for de novo pyrimidine synthesis than those causing LB, thus providing a basis for some of the biological differences between the two groups of pathogens.  相似文献   

12.
Borrelia burgdorferi, the etiological agent of Lyme disease, comprises three genospecies, Borrelia garinii, afzelii, and burgdorferi sensu strictu, that exhibit different pathogenicity and differ in the susceptibility to C-mediated killing. We examined C-sensitive and C-resistant strains of B. burgdorferi for deposition of C3 and late C components by fluorescence microscope and flow cytometry. Despite comparable deposition of C3 on the two strains, the resistant strain exhibited reduced staining for C6 and C7, barely detectable C9, and undetectable poly C9. Based on these findings, we searched for a protein that inhibits assembly of C membrane attack complex and documented an anti-human CD59-reactive molecule on the surface of C-resistant spirochetes by flow cytometry and electron microscopy. A molecule of 80 kDa recognized by polyclonal and monoclonal anti-CD59 Abs was identified in the membrane extract of C-resistant strains by SDS-PAGE and Western blot analysis. The molecule was released from the bacterial wall using deoxycholate and trypsin, suggesting its insertion into the bacterial membrane. The CD59-like molecule acts as C inhibitor on Borrelia because incubation with F(ab')(2) anti-CD59 renders the serum-resistant strain exquisitely susceptible to C-mediated killing and guinea pig erythrocytes bearing C5b-8, unlike the RBC coated with C5b-7, are protected from reactive lysis by the bacterial extract. Western blot analysis revealed preferential binding of the C inhibitory molecule to C9 and weak interaction with C8 beta.  相似文献   

13.
Lyme borreliosis is an infectious disease caused by the tick-borne spirochete Borrelia burgdorferi, which carries the potential for chronic infection. Ag on the etiologic Borrelia are currently being defined structurally and their ability to elicit immune responses delineated. EBV can be used to immortalize human B. burgdorferi-specific B cells from infected donors and generate antibodies against antigenic epitopes encountered in natural infection. A human mAb secreting EBV-transformed B cell line, D7, has been developed that is specific for a 93-kDa B. burgdorferi protein and has been used to characterize this potentially important Ag. D7 produces an IgG3 antibody that detects the 93-kDa Ag as well as smaller fragments at 46 kDa and lower molecular mass. The antibody detects similar epitopes on all B. burgdorferi isolates tested and on a Borrelia hermsii protein with molecular mass greater than 100 kDa but binds poorly to Treponema species. In contrast, polyclonal sera from Lyme disease patients show little binding to the homologous Ag in B. hermsii. Structurally, the 93-kDa protein is associated with the flagellum and may be firmly anchored in the protoplasmic cylinder. It is not solubilized by nonionic detergent treatment of the whole Borrelia. Antibodies against a comparable m.w. protein are present in sera from patients with both early and late infection. Thus, antibodies against this Ag are a sensitive and specific marker of Borrelia infection. This Ag is likely of structural importance and may represent a target of host defenses.  相似文献   

14.
Floden AM  Watt JA  Brissette CA 《PloS one》2011,6(11):e27502
Borrelia burgdorferi is the causative agent of Lyme disease, the most commonly reported arthropod-borne disease in the United States. B. burgdorferi is a highly invasive bacterium, yet lacks extracellular protease activity. In order to aid in its dissemination, B. burgdorferi binds plasminogen, a component of the hosts' fibrinolytic system. Plasminogen bound to the surface of B. burgdorferi can then be activated to the protease plasmin, facilitating the bacterium's penetration of endothelial cell layers and degradation of extracellular matrix components. Enolases are highly conserved proteins with no sorting sequences or lipoprotein anchor sites, yet many bacteria have enolases bound to their outer surfaces. B. burgdorferi enolase is both a cytoplasmic and membrane associated protein. Enolases from other pathogenic bacteria are known to bind plasminogen. We confirmed the surface localization of B. burgdorferi enolase by in situ protease degradation assay and immunoelectron microscopy. We then demonstrated that B. burgdorferi enolase binds plasminogen in a dose-dependent manner. Lysine residues were critical for binding of plasminogen to enolase, as the lysine analog εaminocaproic acid significantly inhibited binding. Ionic interactions did not play a significant role in plasminogen binding by enolase, as excess NaCl had no effects on the interaction. Plasminogen bound to recombinant enolase could be converted to active plasmin. We conclude that B. burgdorferi enolase is a moonlighting cytoplasmic protein which also associates with the bacterial outer surface and facilitates binding to host plasminogen.  相似文献   

15.
Borrelia burgdorferi sensu lato organisms, comprising B. burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii, are tick-borne pathogens causing Lyme borreliosis in humans. To identify putative virulence determinants, a B. afzelii DNA library was screened for Congo red dye binding, a property associated with virulence in pathogenic bacteria. One clone was found to carry a 663-nucleotide-long open reading frame encoding a Congo red dye-binding protein with a calculated molecular mass of 25,660 Da. The amino acid sequence deduced from its nucleotide sequence was found to include a consensus bacterial lipidation site present at residues 15 to 18 (Leu-Ser-Gly-Cys). The lipoprotein nature was demonstrated by incorporation of radioactive palmitate; hence, this protein has been termed NlpH, for new lipoprotein H. NlpH is located on the surface of B. afzelii, and the nlpH gene is found on a circular plasmid. The nlpH gene is also found in B. burgdorferi sensu stricto and B. garinii. Immediately upstream of nlpH is located a smaller reading frame encoding a polypeptide containing the casein kinase II phosphorylation recognition sequence, (Ser/Thr)-X-Y-(Glu/Asp), repeated 10 times.  相似文献   

16.
Abstract The complete nucleotide sequence of the Borrelia burgdorferi dnaA gene (encoding the initiator protein of chromosome replication) and its flanking regions was determined. The putative DnaA polypeptide exhibited 29–42% identity with those of other eubacteria. The gene order in the dnaA region at the centre of the B. burgdorferi linear chromosome is rnpA-rpmH-dnaN-dnaA-gyrB-gyrA in contrast to the consensus eubacterial order of rnpA-rpmH-dnaN-recF-gyrB , suggesting a rearrangement during the evolution of the Borrelia chromosome. We did not detect the multiple 9-nucleotide repeats known as DnaA boxes, which characterise origin of replications, in the dnaA-gyrB and dnaA-dnaN intergenic regions. In addition B. burgdorferi DnaA protein differs considerably from those of other eubacteria in a normally highly conserved region at the C-terminus of the polypeptide which may be involved in DNA binding.  相似文献   

17.
Borrelia burgdorferi, the agent of Lyme disease, disseminates from the site of deposition by Ixodes ticks to cause systemic infection. Dissemination occurs through the circulation and through tissue matrices, but the B. burgdorferi molecules that mediate interactions with the endothelium in vivo have not yet been identified. In vivo selection of filamentous phage expressing B. burgdorferi protein fragments on the phage surface identified several new candidate adhesins, and verified the activity of one adhesin that had been previously characterized in vitro. P66, a B. burgdorferi ligand for beta(3)-chain integrins, OspC, a protein that is essential for the establishment of infection in mammals, and Vls, a protein that undergoes antigenic variation in the mammal, were all selected for binding to the murine endothelium in vivo. Additional B. burgdorferi proteins for which no functions have been identified, including all four members of the OspF family and BmpD, were identified as candidate adhesins. The use of in vivo phage display is one approach to the identification of adhesins in pathogenic bacteria that are not easily grown in the laboratory, or for which genetic manipulations are not straightforward.  相似文献   

18.
Lyme disease Borreliae are highly dependent on the uptake of nutrients provided by their hosts. Our study describes the identification of a 36 kDa protein that functions as putative dicarboxylate-specific porin in the outer membrane of Lyme disease Borrelia. The protein was purified by hydroxyapatite chromatography from Borrelia burgdorferi B31 and designated as DipA, for dicarboxylate-specific porin A. DipA was partially sequenced, and corresponding genes were identified in the genomes of B. burgdorferi B31, Borrelia garinii PBi and Borrelia afzelii PKo. DipA exhibits high homology to the Oms38 porins of relapsing fever Borreliae. B. burgdorferi DipA was characterized using the black lipid bilayer assay. The protein has a single-channel conductance of 50 pS in 1 M KCl, is slightly selective for anions with a permeability ratio for cations over anions of 0.57 in KCl and is not voltage-dependent. The channel could be partly blocked by different di- and tricarboxylic anions. Particular high stability constants up to about 28,000 l/mol (in 0.1 M KCl) were obtained among the 11 tested anions for oxaloacetate, 2-oxoglutarate and citrate. The results imply that DipA forms a porin specific for dicarboxylates which may play an important role for the uptake of specific nutrients in different Borrelia species.  相似文献   

19.
The interaction of chemokines with glycosaminoglycans (GAGs) facilitates the formation of localized chemokine gradients that provide directional signals for migrating cells. In this study, we set out to understand the structural basis and impact of the differing oligomerization propensities of the chemokines monocyte chemoattractant protein (MCP)-1/CCL2 and MCP-3/CCL7 on their ability to bind GAGs. These chemokines provide a unique comparison set because CCL2 oligomerizes and oligomerization is required for its full in vivo activity, whereas CCL7 functions as a monomer. To identify the GAG-binding determinants of CCL7, an unbiased hydroxyl radical footprinting approach was employed, followed by a focused mutagenesis study. Compared with the size of the previously defined GAG-binding epitope of CCL2, CCL7 has a larger binding site, consisting of multiple epitopes distributed along its surface. Furthermore, surface plasmon resonance (SPR) studies indicate that CCL7 is able to bind GAGs with an affinity similar to CCL2 but higher than the non-oligomerizing variant, CCL2(P8A), suggesting that, in contrast to CCL2, the large cluster of GAG-binding residues in CCL7 renders oligomerization unnecessary for high affinity binding. However, the affinity of CCL7 is more sensitive than CCL2 to the density of heparan sulfate on the SPR surfaces; this is likely due to the inability of CCL7 to oligomerize because CCL2(P8A) also binds significantly less tightly to low than high density heparan sulfate surfaces compared with CCL2. Together, the data suggest that CCL7 and CCL2 are non-redundant chemokines and that GAG chain density may provide a mechanism for regulating the accumulation of chemokines on cell surfaces.  相似文献   

20.
Borrelia burgdorferi, the aetiological agent of Lyme disease, employs sophisticated means to survive in diverse mammalian hosts. Recent studies demonstrated that acquisition of complement regulators factor H and factor H-like protein-1 (FHL-1) allows spirochetes to resist complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASPs) that bind factor H and/or FHL-1. In this study we have identified and characterized one of those B. burgdorferi proteins, named BbCRASP-2. BbCRASP-2 is distinct from the four previously identified factor H/FHL-1-binding CRASPs of B. burgdorferi strains. The single copy of the gene encoding BbCRASP-2, cspZ, is located on the linear plasmid lp28-3. BbCRASP-2 is highly divergent from the factor H/FHL-1-binding protein BbCRASP-1 and from members of the factor H-binding Erp (OspE/F-related) protein family. Peptide mapping analysis revealed that the factor H/FHL-1 binding site is discontinuous and it was found that C-terminal truncations abrogate factor H and FHL-1 binding. The predominant BbCRASP-2 binding site of both host complement regulators was mapped to the short consensus repeat 7 (SCR 7). Factor H and FHL-1 bound to BbCRASP-2 maintain cofactor activity for factor I-mediated C3b inactivation and accelerate the decay of the C3 convertase. Expression of BbCRASP-2 in serum-sensitive B. burgdorferi mutant B313 increased resistance to complement-mediated lysis. The characterization of BbCRASP-2 now provides a complete picture of the three diverse complement regulator-binding protein families of B. burgdorferi yielding new insights into the pathogenesis of Lyme disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号