首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influenza virus hemagglutinin (HA) is sorted to the apical membrane in polarized epithelial cells and associates with detergent-resistant membranes (DRMs). By systematic mutagenesis of the transmembrane residues, we show that hemagglutinin requires 10 contiguous transmembrane amino acids to enter detergent-resistant membranes and that the surface of the trimeric hemagglutinin transmembrane domain facing the lipid environment as well as that facing the interior of the trimer is important for stable association with detergent-resistant membranes. However, association with detergent-resistant membranes was not required for apical sorting. MAL/VIP17 is a protein that is required for apical transport and a small fraction of hemagglutinin co-precipitates with MAL. Mutations that prevented HA from being isolated in detergent-resistant membranes decreased co-precipitation with MAL. The hemagglutinin and MAL that co-precipitated were contained in a detergent-resistant vesicle. However, most of the co-precipitation of newly synthesized hemagglutinin with MAL occurred only after the majority of hemagglutinin reached the cell surface. Both the timing and the limited extent of co-precipitation suggest that the majority of vesicles containing hemagglutinin and MAL are not the detergent-resistant membrane transport intermediates carrying hemagglutinin from the TGN to the apical surface.  相似文献   

2.
Myelin sheets originate from distinct areas at the oligodendrocyte (OLG) plasma membrane and, as opposed to the latter, myelin membranes are relatively enriched in glycosphingolipids and cholesterol. The OLG plasma membrane can therefore be considered to consist of different membrane domains, as in polarized cells; the myelin sheet is reminiscent of an apical membrane domain and the OLG plasma membrane resembles the basolateral membrane. To reveal the potentially polarized membrane nature of OLG, the trafficking and sorting of two typical markers for apical and basolateral membranes, the viral proteins influenza virus–hemagglutinin (HA) and vesicular stomatitis virus–G protein (VSVG), respectively, were examined. We demonstrate that in OLG, HA and VSVG are differently sorted, which presumably occurs upon their trafficking through the Golgi. HA can be recovered in a Triton X-100-insoluble fraction, indicating an apical raft type of trafficking, whereas VSVG was only present in a Triton X-100-soluble fraction, consistent with its basolateral sorting. Hence, both an apical and a basolateral sorting mechanism appear to operate in OLG. Surprisingly, however, VSVG was found within the myelin sheets surrounding the cells, whereas HA was excluded from this domain. Therefore, despite its raft-like transport, HA does not reach a membrane that shows features typical of an apical membrane. This finding indicates either the uniqueness of the myelin membrane or the requirement of additional regulatory factors, absent in OLG, for apical delivery. These remarkable results emphasize that polarity and regulation of membrane transport in cultured OLG display features that are quite different from those in polarized cells.  相似文献   

3.
Lactase-phlorizin hydrolase (LPH) is an apical protein in intestinal cells. The location of sorting signals in LPH was investigated by preparing a series of mutants that lacked the LPH cytoplasmic domain or had the cytoplasmic domain of LPH replaced by sequences that comprised basolateral targeting signals and overlapping internalization signals of various potency. These signals are mutants of the cytoplasmic domain of the influenza hemagglutinin (HA), which have been shown to be dominant in targeting HA to the basolateral membrane. The LPH-HA chimeras were expressed in Madin-Darby canine kidney (MDCK) and colon carcinoma (Caco-2) cells, and their transport to the cell surface was analyzed. All of the LPH mutants were targeted correctly to the apical membrane. Furthermore, the LPH-HA chimeras were internalized, indicating that the HA tails were available to interact with the cytoplasmic components of clathrin-coated pits. The introduction of a strong basolateral sorting signal into LPH was not sufficient to override the strong apical signals of the LPH external domain or transmembrane domains. These results show that basolateral sorting signals are not always dominant over apical sorting signals in proteins that contain each and suggest that sorting of basolateral from apical proteins occurs within a common compartment where competition for sorting signals can occur.  相似文献   

4.
Transport from the TGN to the basolateral surface involves a rab/N-ethylmaleimide–sensitive fusion protein (NSF)/soluble NSF attachment protein (SNAP)/SNAP receptor (SNARE) mechanism. Apical transport instead is thought to be mediated by detergent-insoluble sphingolipid–cholesterol rafts. By reducing the cholesterol level of living cells by 60–70% with lovastatin and methyl-β-cyclodextrin, we show that the TGN-to-surface transport of the apical marker protein influenza virus hemagglutinin was slowed down, whereas the transport of the basolateral marker vesicular stomatitis virus glycoprotein as well as the ER-to-Golgi transport of both membrane proteins was not affected. Reduction of transport of hemagglutinin was accompanied by increased solubility in the detergent Triton X-100 and by significant missorting of hemagglutinin to the basolateral membrane. In addition, depletion of cellular cholesterol by lovastatin and methyl-β-cyclodextrin led to missorting of the apical secretory glycoprotein gp-80, suggesting that gp-80 uses a raft-dependent mechanism for apical sorting. Our data provide for the first time direct evidence for the functional significance of cholesterol in the sorting of apical membrane proteins as well as of apically secreted glycoproteins.  相似文献   

5.
Polarized sorting of membrane proteins in epithelial cells is mediated by cytoplasmic basolateral signals or by apical signals in the transmembrane or exoplasmic domains. Basolateral signals were generally found to be dominant over apical determinants. We have generated chimeric proteins with the cytoplasmic domain of either the asialoglycoprotein receptor H1 or the transferrin receptor, two basolateral proteins, fused to the transmembrane and exoplasmic segments of aminopeptidase N, an apical protein, and analyzed them in Madin-Darby canine kidney cells. Whereas both cytoplasmic sequences induced endocytosis of the chimeras, only that of the transferrin receptor mediated basolateral expression in steady state. The H1 fusion protein, although still largely sorted to the basolateral side in biosynthetic surface transport, was subsequently resorted to the apical cell surface. We tested whether the difference in sorting between trimeric wild-type H1 and the dimeric aminopeptidase chimera was caused by the number of sorting signals presented in the oligomers. Consistent with this hypothesis, the H1 signal was fully functional in a tetrameric fusion protein with the transmembrane and exoplasmic domains of influenza neuraminidase. The results suggest that basolateral signals per se need not be dominant over apical determinants for steady-state polarity and emphasize an important contribution of the valence of signals in polarized sorting.  相似文献   

6.
In polarized MDCK cells influenza virus (A/WSN/33) neuraminidase (NA) and human transferrin receptor (TR), type II glycoproteins, when expressed from cloned cDNAs, were transported and accumulated preferentially on the apical and basolateral surfaces, respectively. We have investigated the signals for polarized sorting by constructing chimeras between NA and TR and by making deletion mutants. NATR delta 90, which contains the cytoplasmic tail and transmembrane domain of NA and the ectodomain of TR, was found to be localized predominantly on the apical membrane, whereas TRNA delta 35, containing the cytoplasmic and transmembrane domains of TR and the ectodomain of NA, was expressed preferentially on the basolateral membrane. TR delta 57, a TR deletion mutant lacking 57 amino acids in the TR cytoplasmic tail, did not exhibit any polarized expression and was present on both apical and basolateral surfaces, whereas a deletion mutant (NA delta 28-35) lacking amino acid residues from 28 to 35 in the transmembrane domain of NA resulted in secretion of the NA ectodomain predominantly from the apical side. These results taken together indicate that the cytoplasmic tail of TR was sufficient for basolateral transport, but influenza virus NA possesses two sorting signals, one in the cytoplasmic or transmembrane domain and the other within the ectodomain, both of which are independently able to transport the protein to the apical plasma membrane.  相似文献   

7.
Epithelial cells line virtually every organ cavity in the body and are important for vectorial transport through epithelial monolayers such as nutrient uptake or waste product excretion. Central to these tasks is the establishment of epithelial cell polarity. During organ development, epithelial cells set up two biochemically distinct plasma membrane domains, the apical and the basolateral domain. Targeting of correct constituents to each of these regions is essential for maintaining epithelial cell polarity. Newly synthesized transmembrane proteins destined for the basolateral or apical membrane domain are sorted into separate transport carriers either at the TGN (trans-Golgi network) or in perinuclear REs (recycling endosomes). After initial delivery, transmembrane proteins, such as nutrient receptors, frequently undergo multiple rounds of endocytosis followed by re-sorting in REs. Recent work in epithelial cells highlights the REs as a potent sorting station with different subdomains representing individual targeting zones that facilitate the correct surface delivery of transmembrane proteins.  相似文献   

8.
K Matter  K Bucher    H P Hauri 《The EMBO journal》1990,9(10):3163-3170
Endogenous plasma membrane proteins are sorted from two sites in the human intestinal epithelial cell line Caco-2. Apical proteins are transported from the Golgi apparatus to the apical domain along a direct pathway and an indirect pathway via the basolateral membrane. In contrast, basolateral proteins never appear in the apical plasma membrane. Here we report on the effect of the microtubule-active drug nocodazole on the post-synthetic transport and sorting of plasma membrane proteins. Pulse-chase radiolabeling was combined with domain-specific cell surface assays to monitor the appearance of three apical and one basolateral protein in plasma membrane domains. Nocodazole was found to drastically retard both the direct transport of apical proteins from the Golgi apparatus and the indirect transport (transcytosis) from the basolateral membrane to the apical cell surface. In contrast, neither the transport rates of the basolateral membrane nor the sorting itself were significantly affected by the nocodazole treatment. We conclude that an intact microtubular network facilitates, but is not necessarily required for, the transport of apical membrane proteins along the two post-Golgi pathways to the brush border.  相似文献   

9.
In simple epithelial cells, apical and basolateral proteins and lipids in transit to the cell surface are sorted in the trans-Golgi network. We have recently isolated detergent-insoluble complexes from Madin-Darby canine kidney cells that are enriched in glycosphingolipids, apical cargo and a subset of the proteins of the exocytic carrier vesicles. The vesicular proteins are thought to be involved in protein sorting and include VIP21-caveolin. The vesicular protein VIP36 (36 kDa vesicular integral membrane protein) has been purified from a CHAPS-insoluble residue and a cDNA encoding VIP36 has been isolated. The N-terminal 31 kDa luminal/exoplasmic domain of the encoded protein shows homology to leguminous plant lectins. The transiently expressed protein is localized to the Golgi apparatus, endosomal and vesicular structures and the plasma membrane, as predicted for a protein involved in transport between the Golgi and the cell surface. It is diffusely localized on the plasma membrane but can be redistributed by antibody modulation into caveolae and clathrin-coated pits. We speculate that VIP36 binds to sugar residues of glycosphingolipids and/or glycosylphosphatidyl-inositol anchors and might provide a link between the extracellular/luminal face of glycolipid rafts and the cytoplasmic protein segregation machinery.  相似文献   

10.
Lipid polarity and sorting in epithelial cells   总被引:17,自引:0,他引:17  
Apical and basolateral membrane domains of epithelial cell plasma membranes possess unique lipid compositions. The tight junction, the structure separating the two domains, forms a diffusion barrier for membrane components and thereby prevents intermixing of the two sets of lipids. The barrier apparently resides in the outer, exoplasmic leaflet of the plasma membrane bilayer. First data are now available on the generation of these differences in Madin-Darby canine kidney (MDCK) cells, grown on filter supports. Experiments in which fluorescent precursors of apical lipids were introduced into the cell have demonstrated that upon biosynthesis apical lipids are sorted from basolateral lipids in an intracellular compartment. In this paper we present a model for the sorting process, the central point of which is that the two sets of lipids laterally segregate into microdomains that bud to form vesicles delivering the lipids to the apical and the basolateral plasma membrane domains, respectively.  相似文献   

11.
To determine the roles of cholesterol and the actin cytoskeleton in apical and basolateral protein organization and sorting, we have performed comprehensive confocal fluorescence recovery after photobleaching analyses of apical and basolateral and raft- and non-raft-associated proteins, both at the plasma membrane and in the Golgi apparatus of polarized MDCK cells. We show that at both the apical and basolateral plasma membrane domains, raft-associated proteins diffuse faster than non-raft-associated proteins and that, different from the latter, they become restricted upon depletion of cholesterol. Furthermore, only transmembrane apical proteins are restricted by the actin network. This indicates that cholesterol-dependent domains exist both at the apical and basolateral membranes of polarized cells and that the actin cytoskeleton has a predominant role in the organization of transmembrane proteins independent of their association with rafts at the apical membrane. In the Golgi apparatus apical proteins appear to be segregated from the basolateral ones in a compartment that is sensitive both to cholesterol depletion and actin rearrangements. Furthermore, consistent with the role of actin rearrangements in apical protein sorting, we found that apical proteins exhibit a differential sensitivity to actin depolymerization in the Golgi of polarized and nonpolarized cells.  相似文献   

12.
K Matter  M Brauchbar  K Bucher  H P Hauri 《Cell》1990,60(3):429-437
We studied the postsynthetic sorting of endogenous plasma membrane proteins in a polarized epithelial cell line, Caco-2. Pulse-chase radiolabeling was combined with domain-specific cell surface assays to monitor the arrival of three apical and one basolateral protein at the apical and basolateral cell surface. Apical proteins were inserted simultaneously into both membrane domains. The fraction targeted to the basolateral domain was different for the three apical proteins and was subsequently sorted to the apical domain by transcytosis at different rates. In contrast, a basolateral protein was found in the basolateral membrane only. Thus, sorting of plasma membrane proteins occurred from two sites: the Golgi apparatus and the basolateral membrane. These data explain apparently conflicting results of earlier studies.  相似文献   

13.
In Madin-Darby canine kidney (MDCK) cells (a polarized epithelial cell line) infected with influenza virus, the hemagglutinin behaves as an apical plasma membrane glycoprotein. To determine biochemically the domain on the plasma membrane, apical or basolateral, where newly synthesized hemagglutinin first appears, cells were cultured on Millipore filters to make both cell surface domains independently accessible. Hemagglutinin in virus-infected cells was pulse-labeled, chased, and detected on the plasma membrane with a sensitive trypsin assay. Under all conditions tested, newly made hemagglutinin appeared simultaneously on both domains, with the bulk found in the apical membrane. When trypsin was continuously present on the basolateral surface during the chase, little hemagglutinin was cleaved relative to the amount transported apically. In addition, specific antibodies against the hemagglutinin placed basolaterally had no effect on transport to the apical domain. These observations suggested that most newly synthesized hemagglutinin does not transiently appear on the basolateral surface but rather is delivered directly to the apical surface in amounts that account for its final polarized distribution.  相似文献   

14.
The influenza virus neuraminidase (NA), a type II transmembrane protein, is directly transported to the apical plasma membrane in polarized MDCK cells. By using deletion mutants and chimeric constructs of influenza virus NA with the human transferrin receptor, a type II basolateral transmembrane protein, we investigated the location of the apical sorting signal of influenza virus NA. When these mutant and chimeric proteins were expressed in stably transfected polarized MDCK cells, the transmembrane domain of NA, and not the cytoplasmic tail, provided a determinant for apical targeting in polarized MDCK cells and this transmembrane signal was sufficient for sorting and transport of the ectodomain of a reporter protein (transferrin receptor) directly to the apical plasma membrane of polarized MDCK cells. In addition, by using differential detergent extraction, we demonstrated that influenza virus NA and the chimeras which were transported to the apical plasma membrane also became insoluble in Triton X-100 but soluble in octylglucoside after extraction from MDCK cells during exocytic transport. These data indicate that the transmembrane domain of NA provides the determinant(s) both for apical transport and for association with Triton X-100-insoluble lipids.  相似文献   

15.
The effect of pH on the secretion of the gp 80 glycoprotein complex and lysozyme from MDCK cells was examined by treatment of the cells with either NH4Cl, chloroquine or monensin. In untreated cells gp 80 is sorted with approximately 75% efficiency into the apical pathway. Lysozyme is secreted in a nonpolar fashion at both cell surfaces. Treatment of the cells with the drugs had nearly identical effects on the transport kinetics and on the ratio of the proteins released at the two plasma membrane domains. At increasing drug concentrations, the transport of both proteins to the apical and the basolateral cell surface was equally retarded. Furthermore, we observed a dose-dependent decrease in the amount of gp 80 and lysozyme released at the basolateral cell surface, which was accompanied by a nearly equivalent increase in the secretion of the two proteins at the apical plasma membrane domain. A twofold rise in the apical to basolateral ratio was already found at drug concentrations which only marginally affected the kinetics of transport. These results show that an increase in intravesicular pH not only redirects secretory proteins sorted into the basolateral pathway (Caplan et al. Nature, 329, 632 (1987] but also secretory proteins devoid of sorting information for that pathway, presumably by modulating the vesicular traffic to the basolateral cell surface.  相似文献   

16.
The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B-dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity.  相似文献   

17.
In this study, the role of the amphiregulin precursor (pro-AR) cytoplasmic domain in the basolateral sorting and cell-surface processing of pro-AR in polarized epithelial cells has been investigated using Madin-Darby canine kidney cells stably expressing various human pro-AR forms. Our results demonstrate that newly synthesized wild-type pro-AR (50 kDa) is delivered directly to the basolateral membrane domain with >95% efficiency, where it is sequentially cleaved within the ectodomain to release several soluble amphiregulin (AR) forms. Analyses of a pro-AR cytoplasmic domain truncation mutant (ARTL27) and two pro-AR secretory mutants (ARsec184 and ARsec190) indicated that the pro-AR cytoplasmic domain is not required for efficient delivery to the plasma membrane, but does contain essential basolateral sorting information. We show that the pro-AR cytoplasmic domain truncation mutant (ARTL27) is not sorted in polarized Madin-Darby canine kidney cells, with approximately 65% of the newly synthesized protein delivered to the apical cell surface. Under base-line conditions, ARTL27 was preferentially cleaved from the basolateral surface with 4-fold greater efficiency compared with cleavage from the apical membrane domain. However, ARTL27 ectodomain cleavage could be stimulated equivalently from either membrane domain by a variety of different stimuli. The metalloprotease inhibitor BB-94 could inhibit both base-line and stimulus-induced ectodomain cleavage of wild-type pro-AR and ARTL27. These results indicate that the pro-AR cytoplasmic domain is required for basolateral sorting, but is not essential for ectodomain processing. Preferential constitutive cleavage of ARTL27 from the basolateral cell surface also suggests that the metalloprotease activity involved in base-line and stimulus-induced ARTL27 ectodomain cleavage may be regulated differently in the apical and basolateral membrane domains of polarized epithelial cells.  相似文献   

18.
Transforming growth factor (TGF)-beta receptors stimulate diverse signaling processes that control a wide range of biological responses. In polarized epithelia, the TGFbeta type II receptor (T2R) is localized at the basolateral membranes. Sequential cytoplasmic truncations resulted in receptor missorting to apical surfaces, and they indicated an essential targeting element(s) near the receptor's C terminus. Point mutations in the full-length receptor confirmed this prediction, and a unique basolateral-targeting region was elucidated between residues 529 and 538 (LTAxxVAxxR) that was distinct, but colocalized within a clinically significant signaling domain essential for TGFbeta-dependent activation of the Smad2/3 cascade. Transfer of a terminal 84 amino-acid fragment, containing the LTAxxVAxxR element, to the apically sorted influenza hemagglutinin (HA) protein was dominant and directed basolateral HA expression. Although delivery to the basolateral surfaces was direct and independent of any detectable transient apical localization, fluorescence recovery after photobleaching demonstrated similar mobility for the wild-type receptor and a missorted mutant lacking the targeting motif. This latter finding excludes the possibility that the domain acts as a cell membrane retention signal, and it supports the hypothesis that T2R sorting occurs from an intracellular compartment.  相似文献   

19.
《The Journal of cell biology》1995,129(5):1241-1250
In polarized epithelial MDCK cells, all known endogenous endocytic receptors are found on the basolateral domain. The influenza virus hemagglutinin (HA) which is normally sorted to the apical plasma membrane, can be converted to a basolateral protein by specific mutations in its short cytoplasmic domain that also create internalization signals. For some of these mutations, sorting to the basolateral surface is incomplete, allowing internalization of two proteins that differ by a single amino acid of the internalization signal to be compared at both the apical and basolateral surfaces of MDCK cells. The rates of internalization of HA-Y543 and HA-Y543,R546 from the basolateral surface of polarized MDCK cells resembled those in nonpolarized cells, whereas their rates of internalization from the apical cell surface were fivefold slower. However, HA-Y543,R546 was internalized approximately threefold faster than HA-Y543 at both membrane domains, indicating that apical endocytic pits in polarized MDCK cells retained the ability to discriminate between different internalization signals. Slower internalization from the apical surface could not be explained by a limiting number of coated pits: apical membrane contained 0.7 as many coated pits per cell cross-section as did basolateral membranes. 10-14% of HA-Y543 at the apical surface of polarized MDCK cells was found in coated pits, a percentage not significantly different from that observed in apical coated pits of nonpolarized MDCK cells, where internalization was fivefold faster. Thus, there was no lack of binding sites for HA-Y543 in apical coated pits of polarized cells. However, at the apical surface many more shallow pits, and fewer deep, mature pits, were observed than were seen at the basolateral. These results suggest that the slower internalization at the apical surface is due to slower maturation of coated pits, and not to a difference in recognition of internalization signals.  相似文献   

20.
Delivery of newly synthesized membrane-spanning proteins to the apical plasma membrane domain of polarized MDCK epithelial cells is dependent on yet unidentified sorting signals present in the luminal domains of these proteins. In this report we show that structural information for apical sorting of transmembrane neurotrophin receptors (p75NTR) is localized to a juxtamembrane region of the extracellular domain that is rich in O-glycosylated serine/threonine residues. An internal deletion of 50 amino acids that removes this stalk domain from p75NTR causes the protein to be sorted exclusively of the basolateral plasma membrane. Basolateral sorting stalk-minus p75NTR does not occur by default, but requires sequences present in the cytoplasmic domain. The stalk domain is also required for apical secretion of a soluble form of p75NTR, providing the first demonstration that the same domain can mediate apical sorting of both a membrane-anchored as well as secreted protein. However, the single N-glycan present on p75NTR is not required for apical sorting of either transmembrane or secreted forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号