首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Mink are seasonal photosensitive breeders; testis activity is triggered when days have less than 10 h light. Increasing and decreasing plasma concentrations of prolactin induce the spring and autumn moults. In a 5 year experiment, males were maintained under short days (8 h light:16 h dark) at 13 degrees C or long days (16 h light:8 h dark) at 21 degrees C, winter and summer conditions, respectively. Under winter and summer conditions, circannual cycles of prolactin secretion and moulting were observed at intervals of about 11 months. Recurrence of testis cycles was not evident. In a second experiment, males were maintained under an 8 h light:16 h dark cycle from the winter solstice or under 10 h light:14 h dark, 12 h light:12 h dark or 14 h light:10 h dark cycles from 10 February. Under 8 h light:16 h dark cycle, testis regression was slightly later than under natural conditions, indicating photorefractoriness. However, mink remained sensitive to light: the longer the photoperiod, the faster the testis regression. In a third experiment, males were transferred under 8 h light:16 h dark or 16 h light:8 h dark from 15 May (group 1), 12 June (group 2) or 4 July (group 3); males submitted to long days received melatonin capsules on the day of transfer. Increasing concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and testis volume were shown by half the males in group 2 and nearly all the males in group 3; the constant release of melatonin from implants was more efficient than short days; but in the three groups, prolactin concentrations decreased in the few days after short-day or melatonin treatment. Overall, the results demonstrate endogenous circannual rhythms of prolactin secretion, body weight and moulting. Although a refractory period to short days was observed, the annual cycle of testis activity totally relies on the annual changes in daylength.  相似文献   

2.
This study was performed to determine whether rapid alternation between long and short days abolished seasonal variations in the activity of the hypothalamo-pituitary-testis axis observed normally in Alpine and Saanen male goats during the year. Three groups of 6 males were used: group 1 remained in open sheds under the natural annual change in daylength from 16 h of light (long day) to 8 h of light (short day). Group 2 was exposed to 1 month of long days alternated with 1 month of short days; and group 3 to 2 months of long days alternated with 2 months of short days. In group 1, blood samples were taken in December, February and June; in groups 2 and 3, samples were obtained once during short and long days for the melatonin assay. For luteinizing hormone and testosterone determinations monthly samples from group 1 were obtained from September to August while, in groups 2 and 3, blood samples were taken on 4 occasions during long and short days. Weekly blood samples were taken from all groups during the whole of the experiment to measure prolactin and testosterone concentrations. Melatonin profiles indicated that secretion by the pineal gland of male goats from the treated groups adapted to rapid changes in daylength: duration of nocturnal secretion was close to that of the dark period. Treated goats were also able to transduce this signal adequately and always responded to long days by increasing their prolactin concentration (mean +/- s.e.m.; group 2: 62.4 +/- 6.8 ng/ml; group 3: 102.3 +/- 15.7 ng/ml) and to short days with a decrease in prolactin concentrations (35.0 +/- 3.6 and 46.1 +/- 9.5 ng/ml, respectively). In the treated groups, luteinizing hormone pulse frequency varied with day length. In group 2, it was higher in long days (1.1 +/- 0.3 pulses in 8 hours) than in short days (0.7 +/- 0.3) while, in group 3, this frequency was higher in short days (1.9 +/- 0.3) than in long days (0.5 +/- 0.2). Testosterone secretion also varied with daylength; in group 2, the testosterone concentrations were maximum during long days (5.8 +/- 1.4 ng/ml) while in group 3 the maximum testosterone concentrations occurred during short days (6.4 +/- 1.2 ng/ml). These results lead to the conclusion that rapid alternation of long and short days either attenuated (group 3) or prevented (group 2) seasonal changes in the activity of the hypothalamo-pituitary axis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The objective was to determine whether refractoriness to short and long days were involved in the end and onset of the breeding season, respectively, in goats adapted to subtropical latitudes. Ovariectomized does given a subcutaneous implant constantly releasing estradiol-l7 β (OVX+E) were used in two experiments. Plasma LH concentrations were determined twice weekly. In Experiment 1, the control group remained in an open-shed pen (natural day length and ambient temperature). Two experimental groups were placed in light-proof buildings (with natural temperature variations). One group was exposed to natural simulated increasing days (winter to spring), whereas the other was exposed to a winter solstice photoperiod (10 h of light) from December 21 to April 28. In Experiment 2, the control group remained under natural day length and ambient temperature. One experimental group was exposed to natural simulated decreasing days (summer to autumn), whereas the other group was exposed to a summer solstice photoperiod (14 h of light) from June 21 to October 20. In Experiment 1, the breeding season was not prolonged in does maintained in the winter solstice day length. Mean dates of decrease in LH secretion (end of the breeding season) did not differ significantly between does exposed to natural (February 3 ± 5 d) or natural simulated photoperiod (January 26 ± 14 d) and those exposed to constant short days of winter solstice (February 4 ± 10 d). In Experiment 2, the onset of the breeding season was not delayed in does maintained in the summer solstice day length. Mean dates of increase in LH secretion (onset of the breeding season) did not differ significantly between does exposed to natural (September 7 ± 8 d) or natural simulated photoperiod (September 18 ± 10 d) and those exposed to constant long days photoperiod of summer solstice (September 24 ± 4 d). In goats adapted to a subtropical environment, we concluded that: 1) the end of breeding season was due to refractoriness to short days, and not the inhibitory effect of increasing day length; and 2) the onset of the breeding season was due to refractoriness to long days, and not a stimulatory effect of decreasing day length.  相似文献   

4.
The pineal hormone melatonin serves as a signal of day length in the regulation of annual rhythms of physiological functions and behavior. The duration of high melatonin levels in body fluids is proportional to the duration of the dark period of the day. Due to the direct suppression of melatonin by light, the overt melatonin rhythm may differ from the endogenous rhythm driven by the hypothalamic circadian clock. The aim of this study was to find out possible differences between the overt and endogenous melatonin rhythms in goats during the course of a year. Seven Finnish landrace goats (nonlactating females) were kept under artificial lighting that approximately simulated the annual changes of day length at 60 degrees N. Blood samples for melatonin measurements by radioimmunoassay were collected at 2-h intervals during six seasons: winter (light:dark 6:18 h), early spring (10:14), late spring (14:10), summer (18:6), early fall (14:10), and late fall (10:14). Melatonin profiles were determined for 2 consecutive days, first in light-dark (LD) conditions and then in continuous darkness (DD). In LD conditions, the profiles matched the dark period with one exception: In winter, the mean peak duration was significantly shorter than the scotoperiod. In DD conditions, two types of endogenous melatonin patterns were found: a "winter pattern" (peak duration 13-15 h) in winter, early spring, early fall, and late fall, and a "summer pattern" (duration about 11 h) in late spring and summer. Thus, in equal habitual LD conditions in late spring and early fall (LD 14:10), the endogenous melatonin rhythms were not quite similar: The pattern in late spring resembled that in summer, and the pattern in early fall that in winter. These results suggest that, in addition to the light-adjusted overt melatonin rhythm, the endogenous rhythm of melatonin secretion varies during the course of a year.  相似文献   

5.
Plasma prolactin and rectal temperature show a circadian rhythm in newborn sheep raised under continuous light. Melatonin lowers the concentration of plasma prolactin but it is not known if it affects its circadian rhythm. To detect whether melatonin acts on the circadian system we studied the effect of a subcutaneous melatonin implant in the circadian rhythms of prolactin and rectal temperature in newborn lambs raised under continuous light. We placed catheters in the pedal artery and vein in 9 newborn lambs (2-5 days of age). A subcutaneous melatonin implant was placed in 4 of the lambs at 9-12 days of age. Blood samples and rectal temperature measurements were obtained hourly for a period of 24 h, 11-15 days after the implant, at 20-27 days of age. To avoid interferences of heparin in our melatonin assay, serum melatonin concentration was measured before and during the implant in three additional newborns. Prolactin and melatonin were measured by RIA. Melatonin concentrations were 52.8 +/- 45.9 pg/ml (day) and 315.5 +/- 77.0 pg/ml (night) before treatment (SEM, P less than 0.001), and increased to 594.1 +/- 54.5 pg/ml after placing the implant (there was no difference in melatonin concentration between day and night during the time that the implant was in place). Melatonin had no effect on rectal temperature or its rhythm, but decreased basal plasma prolactin concentration (control: 97.5 +/- 11.3 ng/ml; treated: 25.1 +/- 2.4 ng/ml, P less than 0.001) and abolished the prolactin circadian rhythm, (Cosinor analysis): control: log prolactin (ng/ml) = 1.8 + 0.26 cos 15 (t - 11.16), p = 0.05; treated: log prolactin (ng/ml) = 1.2 + 0.14 cos 15 (t - 9.43), P = 0.36.  相似文献   

6.
Comparisons have been made between the effects of shortened daylength and melatonin treatment on plasma prolactin and melatonin levels in pinealectomised (Px) and sham-operated (Sh) ewes. Twenty-two anoestrous Merino crossbred ewes, maintained under normal grazing conditions, were assigned to four groups for a period of 9 weeks. Group 1 remained untreated (control), Group 2 was herded into a dark shed at 1600 h each day until dark (approx 4 h), ewes in Group 3 were injected with 100 μg melatonin s.c. at 1600 h each day and ewes in Group 4 were implanted with a melatonin capsule releasing 125–200 μg/day. Another group (Group 5) of 4 Px and 4 Sh ewes from the same flock was maintained in an animal house and subjected to shortened daylength (10. 5 h L : 13. 5 h D, lights off 1600 h). Three weeks after the treatments began, ewes in Groups 1–4 were exposed to a fertile ram and ewes in Group 5 to a vasectomised ram and the day of mating noted. No differences were evident between Groups 1–4 in the ewes' response to the ram, time taken to conceive, duration of gestation or number of lambs born. In untreated Px ewes no plasma melatonin (< 20 pg/ml) was found in either day or night samples, whereas intact animals showed the characteristic night-time rise. The silastic implants produced stable daytime blood levels of 90–120 pg/ml, whereas a single injection of 100 μg melatonin caused a transitory (2–3 h) rise. Shortened daylength (Group 2) or a single daily injection of melatonin (Group 3) lowered prolactin levels but only in ewes with an intact pineal gland, whereas melatonin implants (Group 4) caused a reduction in plasma prolactin in both Px and Sh sheep. The results indicate that light-induced alterations in prolactin production in sheep involve both the pineal gland and melatonin. Continuous melatonin release from implants caused changes in plasma prolactin levels similar to those seen following exposure to short days.  相似文献   

7.
The aim of the study was to find out whether there is a daily rhythm in goat serum cortisol concentrations, whether the concentration profiles differ between normal light:dark and constant dark conditions, and whether any seasonal variations might be detected in daily cortisol secretion patterns. Seven Finnish landrace goats were kept at indoor temperature (18-23°C) under artficial lighting that approximately simulated the annual changes of daylength at 60°N. Blood samples were collected for cortisol measurements by radioimmunoassay at 2h intervals during six times of the year: winter (light:dark 6:18h), early spring (10:14h), late spring (14:10h), summer (18:6h), early fall (14:10h), and late fall (10:14h). Cortisol profiles were determined for two consecutive days, first in light:dark (LD) conditions and then in continuous darkness (DD). There was no significant daily rhythm in serum cortisol levels in any time of the year, nor did the profiles in LD and DD conditions show any differences. A significant seasonal variation was, however, detected among the overall cortisol levels. In winter, the concentrations were higher than in any other season, and from early spring to summer they were at their lowest. Under equal photoperiods, the cortisol levels were higher in fall than spring. The difference between winter and summer was confirmed in the following year in LD conditions. There was no correlation between the serum cortisol and progesterone levels. The results suggest that the possible circadian variation of cortisol secretion in goats is completely masked by external factors, and the lighting conditions do not have immediate effects on the daily secretion patterns. The seasonal variation in the overall cortisol levels is most probably related to the changes in photoperiod, because other conditions were relatively constant during the experiment.  相似文献   

8.
Adult female Bennett's wallabies were treated with reductions in daylength, melatonin implants or injections of melatonin 2 h before dusk in early or mid-seasonal reproductive quiescence. In early reproductive quiescence (5 weeks after the winter solstice) reproductive quiescence did not end in response to 3 or 5 h of reduced daylength or in response to injections (400 ng/kg) or implants (0.5 g in a Silastic rubber envelope) of melatonin. Reductions in daylength at this time of year did, however, result in an extension of the circadian pattern of melatonin secretion. In mid-reproductive quiescence (21 weeks after the winter solstice) treatment with a 5 h reduction in daylength, melatonin injections administered 2 h before dusk or melatonin implants did result in the termination of reproductive quiescence and reactivation of the quiescent corpus luteum within a period of 5 days. The results of these experiments indicate that, in early reproductive quiescence, the Bennett's wallaby is refractory to the influence of reduced daylength or melatonin, although capable of responding to such reduced days in terms of an increased duration of melatonin secretion. Bennett's wallabies therefore exhibit a refractoriness to short days similar to that of some seasonal eutherians although it remains to be established whether this refractory response is the cause of the transition to seasonal reproductive quiescence.  相似文献   

9.
The reproductive neuroendocrine response of Suffolk ewes to the direction of daylength change was determined in animals which were ovariectomized and treated with constant release capsules of oestradiol. Two groups of animals were initially exposed to 16 or 10 h light/day for 74 days. On day zero of the study, when one group of ewes was reproductively stimulated (elevated LH concentrations) and the other reproductively inhibited (undetectable LH concentrations), half the animals from each group were transferred to an intermediate daylength of 13 h light/day. The remaining ewes were maintained on their respective solstice photoperiods to control for photorefractoriness. LH concentrations rose in animals experiencing a 3 h decrease in daylength from 16L:8D to 13L:11D while LH concentrations fell to undetectable values in those that experienced a 3 h increase in daylength from 10L:14D to 13L:11D. The photoperiodic response of the Suffolk ewe, therefore, depends on her daylength history. Such a result could be explained if the 24-h secretory pattern of melatonin secretion, known to transduce photoperiodic information to the reproductive axis, was influenced by the direction of change of daylength. Hourly samples for melatonin were collected for 24 h 17 days before and three times after transfer to 13L:11D. The melatonin secretory profile always conformed to daylength. Therefore, the mechanism by which the same photoperiod can produce opposite neuroendocrine responses must lie downstream from the pineal gland in the processing of the melatonin signal.  相似文献   

10.
Seasonal cycles in the size of the testes, blood plasma concentration of testosterone, FSH and prolactin, intensity of the sexual skin flush, timing of rutting behaviour and moulting of the body coat were recorded in Soay rams after s.c. implantation of melatonin contained in a Silastic envelope which increased the circulating blood levels of melatonin to 200-600 pg/ml for many months. Two groups of 8 adult rams were held under alternating periods of short days (8L:16D) and long days (16L:8D) to drive the seasonal cycles and the treatments with melatonin were initiated during the long or short days, and one group of 8 ram lambs was kept out of doors and given implants during the long days of summer (4 melatonin-implanted and 4 control (empty implants) rams per group). The treatments demonstrated that melatonin implants during exposure to long days resulted in a rapid 'switch on' of reproductive redevelopment similar to that produced by exposure to short days melatonin implants prevented the rams from showing the normal responses to changes in the prevailing photoperiod rendering them nonphotoperiodic; and long-term cyclic changes in testicular activity, prolactin secretion and other characteristics occurred in the melatonin-implanted rams; the pattern was similar to that previously observed in rams exposed to prolonged periods of short days. The overall results are consistent with the view that melatonin is the physiological hormone that relays the effects of changing photoperiod on reproduction and other seasonal features, and that continuous exogenous melatonin from an implant interferes with the normal 'signal' and produces an over-riding short-day response.  相似文献   

11.
The cabbage butterfly, Pieris melete is multivoltine with a pupal summer and winter diapause. Summer and winter diapause are induced principally by relatively long and short daylengths, respectively. The intermediate to relatively short daylengths of autumn permitted some pupae to develop without diapause in the field. A short daylength had a stronger diapause inducing effect than a relatively long one under higher temperatures. The principal sensitive phase for photoperiodic response occurred before the late 3rd larval instar. The critical daylength for wild autumnal populations was between 12h 30min and 12h 40min at an average temperature of 20.5 degrees C. A night interruption by 2h of light averted diapause most effectively when it was placed 10 to 12h after lights-off. High temperatures and long days during summer inhibited the incidence of diapause, suggesting that the occurrence of summer diapause is due to the specific climatic conditions occurring in April and early May, rather than to the high temperatures in summer. This indicates that the butterfly has a cryptic ability to reproduce in summer. High temperatures delayed diapause development, whereas low temperatures enhanced it, indicating that the optimum temperature of diapause development is lower. The diapause regulating mechanisms thus ensure that the species synchronises its development and reproduction with the growth seasons of the host plants and provide the species with a high degree of flexibility in its life cycle.  相似文献   

12.
Time measurement and the control of flowering in plants   总被引:12,自引:0,他引:12  
Many plants are adapted to flower at particular times of year, to ensure optimal pollination and seed maturation. In these plants flowering is controlled by environmental signals that reflect the changing seasons, particularly daylength and temperature. The response to daylength varies, so that plants isolated at higher latitudes tend to flower in response to long daylengths of spring and summer, while plants from lower latitudes avoid the extreme heat of summer by responding to short days. Such responses require a mechanism for measuring time, and the circadian clock that regulates daily rhythms in behaviour also acts as the timer in the measurement of daylength. Plants from high latitudes often also show an extreme response to temperature called vernalisation in which flowering is repressed until the plant is exposed to winter temperatures for an extended time. Genetic approaches in Arabidopsis have identified a number of genes that control vernalisation and daylength responses. These genes are described and models presented for how daylength might regulate flowering by controlling their expression by the circadian clock. BioEssays 22:38-47, 2000.  相似文献   

13.
Goat kids born in spring attain sexual maturity during the first autumn after birth in temperate regions, at about 30 weeks of age. This study observed sexual development in autumn-born kids and the influence of late-summer, prenatal light treatment on onset of puberty. The breeding season of 14 female British Saanen dairy goats was artificially advanced by 4 months, using a treatment of long days during the winter followed by melatonin treatment in spring. Five goats were treated with a photoperiod of 20 h light:4 h dark (lights on 04.00 h) for 62.1 +/- 1.4 days (mean +/- SEM, n = 5) prepartum (14 August to 15 October). The remaining nine goats were kept under a natural photoperiod: 20 kids from these mothers were followed, five males and five females from each group. Testicular development was assessed by means of weekly measurement of scrotal circumference. Blood samples were taken once a week from all kids from 4 weeks of age for 5 months. Plasma was assayed for progesterone in females and testosterone in males. Autumn-born female kids initiated oestrous cyclicity in January, at a mean age of 12.8 +/- 0.8 weeks. Puberty onset was significantly delayed (P less than 0.03, unpaired Student's t test) in females exposed to 20 h light:4 h dark in utero and occurred at a mean age of 16.5 +/- 1.4 weeks. Testicular development was significantly delayed and plasma testosterone concentrations were lower in autumn-born male kids that experienced 20 h light:4 h dark in utero than in kids from mothers in a natural photoperiod.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Angus and Angus crossbred prepubertal heifers were ovariectomized and randomly assigned to either increasing light simulating the photoperiod of the vernal equinox to the summer solstice (I) or decreasing light simulating the photoperiod of the autumnal equinox to the winter solstice (D) for 43 degrees N latitude. Three blood samples were taken each week for 14 weeks, the first at 11:00 h and two others 2 days later, 1 h before lights on (dark), 1 h before lights off (light). At the end of 14 weeks 4 heifers from each treatment group were cannulated and samples were taken for 12 h at 15-min intervals, 6 h in the light and 6 h in the dark. All sera were assayed for LH, FSH and prolactin. In addition, the samples taken at 15-min intervals were assayed for melatonin. In samples taken weekly at 11:00 h circulating concentrations of LH and prolactin were higher among animals in Group I, while FSH concentrations were not different between Groups D and I. In samples collected weekly in the light or the dark, LH and prolactin concentrations were higher in Group I animals. However, prolactin concentrations were higher and LH concentrations tended to be higher in samples taken in the dark. FSH concentrations were not different between either D or I or dark and light. In samples taken at 15-min intervals the prolactin baseline was higher and pulse amplitude tended to be higher for Group I animals. Neither LH nor FSH pulse characteristics differed between I and D; however, LH baseline and LH pulse amplitude were higher in the dark. Melatonin pulse amplitude was higher among animals in Group D and higher in serum collected in the dark. These results suggest that photoperiod alters circulating concentrations of LH and prolactin and alters pulsatile release of LH, prolactin and melatonin in the prepubertal heifer.  相似文献   

15.
对生活于苏格兰西北部拉姆岛上的野化山羊(Caprahircus)种群在1981、1982和2000年三年中的日活动节律进行了分析研究。详细分析了两个主要气象因素(温度和降水)以及昼长季节变化对该种群动物的日活动节律的影响。研究结果表明,拉姆岛上野化山羊的日取食活动时间百分比随月平均温度上升而显著下降,但卧息活动时间百分比随月平均温度的上升而显著上升,而降水则对二者无显著影响。拉姆岛所在地区的昼长季节性变化明显,每年6、7月白昼时间最长,而12、1月最短。由于受昼长季节变化影响,尽管该山羊种群的日取食活动时间百分比随季节变化而由夏季到冬季增加,但其真正用于取食活动的白昼时间由夏季到冬季反而减少。研究表明,白昼时间长短的季节变化是制约该山羊种群取食活动的一个重要因素,尤其是在食物匮乏而天气寒冷、阴湿的冬季。进而探讨了这种制约作用对其冬季取食量和冬季存活率的影响,以及对种群数量的调节意义。  相似文献   

16.
In the cabbage butterfly, Pieris melete, summer and winter diapause are induced principally by long and short daylengths, respectively; the intermediate daylengths (12-13 h) permit pupae to develop without diapause. In this study, photoperiodic control of summer and winter diapause was systematically investigated in this butterfly by examining the photoperiodic response, the number of days required to induce 50% summer and winter diapause and the duration of diapausing pupae induced under different photoperiods. Photoperiodic response curves at 18 and 20 degrees C showed that all pupae entered winter diapause at short daylengths (8-11 h), the incidence of diapause dropped to 82.3-85.5% at 22 degrees C without showing a significant difference between short daylengths, whereas the incidence of summer diapause induced by different long daylengths (14-18 h) was varied and was obviously affected by temperature. By transferring from various short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) to an intermediate daylength (LD 12.5:11.5) at different times after hatching, the number of cycles required to induce 50% winter diapause (7.28 at LD 8:16, 7.16 at LD 9:15, 7.60 at LD 10:14 and 6.94 at LD 11:13) showed no significant difference, whereas by transferring from various long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) to an intermediate daylength (LD 12.5:11.5) at different times, the number of cycles required to induce 50% summer diapause (5.95 at LD 14:10, 8.02 at LD 15:9, 6.80 at LD 16:8, 7.64 at LD 17:7) were significantly different. The intensity of winter diapause induced under different short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) was not significantly different with an average diapause duration of 87 days at a constant temperature of 20 degrees C and 92 days at a mean daily temperature of 19.0 degrees C, whereas the intensity of summer diapause induced under different long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) was significantly different (the diapause duration ranged from 75 to 86 days at a constant temperature of 20 degrees C and from 76 to 88 days at a mean daily temperature of 19.0 degrees C). All results suggested that photoperiodic control of diapause induction and termination is significantly different between aestivation and hibernation.  相似文献   

17.
Studies on the maternal transfer of photoperiodic information in mammals indicate that the daily photoperiod perceived by the mother during the gestation-lactation period is communicated to the fetus either through the placenta or via the milk. However, the impact of photoperiodic exposures during gestation and lactation on the maternal pineal and reproductive physiology has not been reported for any tropical rodent. The exposure of pregnant female Indian palm squirrels (Funambulus pennanti) to constant light (24 h light:0 h dark), constant dark (0 h light:24 h dark), long daylength (14 h light:10 h dark) or short daylength (10 h light:14 h dark) during early gestation (< 30 days) resulted in the resorption of pregnancy, while during late gestation (> 30 days), it did not interfere with the maintenance of pregnancy. Alterations in photoperiodic condition during late gestation and lactation altered the postpartum recovery process. Pineal gland activity, as assessed by pineal mass, protein content and plasma melatonin, was lowest during the breeding phase, but increased gradually after parturition until the next breeding phase. During gestation and lactation, constant light, long daylength and short daylength conditions were less effective, while constant dark condition had a profound effect in depressing pineal gland activity, which subsequently advanced postpartum recovery. Hence, lactating females under constant darkness prepare themselves for next mating much earlier than females under natural daylength (12 h light:12 h dark) conditions. Therefore, photoperiodic information, mediated via the pineal gland, may be important for maintaining gestation physiology as well as postpartum recovery in female rodents.  相似文献   

18.
Plasma prolactin concentrations were higher (P < 0.001) in newborn red deer calves whose mothers had been maintained for the last 14 weeks of gestation in long days (18 h light) (group L, n = 9) than in those whose mothers had been kept over the same period in short days (6 h light) (group S, n = 5). After transfer of all hinds and suckled calves on the day of birth to constant intermediate daylength (12 h light), prolactin concentrations decreased exponentially (P < 0.001) in group L calves, but not in group S, during the first 21 days. Thereafter, prolactin fell to a nadir in group L calves and rose to peak values in group S calves at 8-12 weeks post partum (P = 0.003), before converging again by 14 weeks. The pattern of prolactin secretion over the first 14 weeks of life was therefore significantly affected by prenatal photoperiod. Plasma prolactin concentrations in the adult hinds were higher (P < 0.001) in group L than group S at 4-10 weeks before parturition; they were similarly high around parturition and fell thereafter to baseline values after 7 weeks. These results provide evidence that deer fetuses respond to photoperiodic information, thereby acquiring a photoperiodic history in utero that influences postnatal responses to photoperiod.  相似文献   

19.
Effects of short-day photoperiod, pinealectomy, and melatonin on sexual maturation were tested in Peromyscus leucopus from either Connecticut (CT) or Georgia (GA). Laboratory reared-stocks from CT and GA were exposed to short daylength (photoperiod) from birth or 25 days of age. At 12 wk of age, delay in sexual maturation was indicated in most CT mice by decreased testis length, combined testes weight, and seminal vesicle weight. Conversely, GA animals did not delay sexual maturation when exposed to short-day photoperiod from either birth or 25 days of age. These results indicate that responses to short daylengths differ for juvenile CT and GA populations. In a second experiment, pinealectomized or sham-operated CT males were exposed to short-day (9L:15D) or long-day (16L:8D) photoperiod from birth. Pinealectomy blocked the effect of short daylength on reproduction. Therefore, the pineal must be involved in the delay of sexual maturation observed for short-day CT mice. The effects of melatonin, a pineal gland hormone, were tested with chronic s.c. implants or daily injections. In CT mice given either melatonin implants or afternoon injections, sexual maturation was delayed. GA mice were insensitive to all melatonin treatments. Further, no differences in circadian organization (phase angle, duration of activity, period under constant dark) between GA and CT animals were apparent. Collectively, these studies indicate that melatonin is involved in the mechanism responsible for delay of sexual maturation in CT mice. Short-day insensitivity of GA Peromyscus leucopus probably results from a deficiency in the melatonin effector pathway and is not due to a disruption of circadian organization.  相似文献   

20.
Seasonal changes in nocturnal prolactin secretion and their relationship with melatonin secretion were monitored in wild (Mouflon, Ovis gmelini musimon) and domesticated sheep (breed Manchega, Ovis aries). Two groups of eleven adult females each, were maintained outdoors under natural photoperiod. Plasma concentrations of prolactin and melatonin were determined during the summer and winter solstices and the autumn and spring equinoxes. Blood samples were collected every 3h during the night hours, and 1h before and after the onset of darkness and sunrise. Maximum mean plasma concentrations of prolactin during the dark-phase in Mouflons were observed in the summer solstice, (P<0.001) and in the summer solstice and spring equinox in Manchega ewes (P<0.001). Mean plasma concentrations of prolactin were higher in the wild species (P<0.001) during the summer solstice. In contrast, during the spring equinox, mean levels of prolactin were higher in Manchega ewes than in Mouflons (P<0.05). Plasma prolactin concentrations showed a nocturnal rhythm in both breeds, with seasonal variations (P<0.001). The increase in plasma melatonin levels during the first hour after sunset was accompanied to increasing concentrations of PRL 1h after the onset of darkness, only in the autumn and spring equinox for the Mouflon, and in the summer solstice and spring equinox for the Manchega ewes. In Mouflons, the fall of plasma PRL concentrations about the middle dark-phase in all the periods studied, coincided with high levels of melatonin. A similar relation was observed in Manchega ewes only in the winter solstice and spring equinox. The current study shows that the nocturnal rhythm of prolactin secretion exhibits seasonal variation; differences in the patterns of prolactin secretion between Mouflon and Manchega sheep are taken to represent the effects of genotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号