首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Dengue is a disease which is now endemic in more than 100 countries of Africa, America, Asia and the Western Pacific. It is transmitted to the man by mosquitoes (Aedes) and exists in two forms: Dengue Fever and Dengue Haemorrhagic Fever. The disease can be contracted by one of the four different viruses. Moreover, immunity is acquired only to the serotype contracted and a contact with a second serotype becomes more dangerous.  相似文献   

2.
3.
Flaviviruses include many significant human pathogens, comprising dengue, West Nile, Yellow fever, Japanese encephalitis, Zika and tick-borne encephalitis viruses and many others, affecting millions of people in the world. These viruses have produced important epidemics in the past, they continue to do it and they will undoubtedly continue to do so in the future. Flaviviruses enter into the cells via receptor-mediated endocytosis by fusing its membrane with the endosomal membrane in a pH-dependent manner with the help of the envelope E protein, a prototypical class II membrane fusion protein. The envelope E protein has a conserved fusion peptide at its distal end, which is responsible in the first instance of inserting the protein into the host membrane. Since the participation of other segments of the E protein in the fusion process should not be ruled out, we have used atomistic molecular dynamics to study the binding of the distal end of domain II of the envelope E protein from Dengue virus (DENV) with a complex membrane similar to the late-endosome one. Our work shows that not only the fusion peptide participates directly in the fusion, but also two other sequences of the protein, next to the fusion peptide it in the three-dimensional structure, are jointly wrapped in the fusion process. Overall, these three sequences represent a new target that would make it possible to obtain effective antivirals against DENV in particular and Flaviviruses in general.  相似文献   

4.
Dengue is becoming recognized as one of the most important vector-borne human diseases. It is predominant in tropical and subtropical zones but its geographical distribution is progressively expanding, making it an escalating global health problem of today. Dengue presents with spectrum of clinical manifestations, ranging from asymptomatic, undifferentiated mild fever, dengue fever (DF), to dengue hemorrhagic fever (DHF) with or without shock (DSS), a life-threatening illness characterized by plasma leakage due to increased vascular permeability. Currently, there are no antiviral modalities or vaccines available to treat and prevent dengue. Supportive care with close monitoring is the standard clinical practice. The mechanisms leading to DHF/DSS remains poorly understood. Multiple factors have been attributed to the pathological mechanism, but only a couple of these hypotheses are popular in scientific circles. The current discussion focuses on underappreciated factors, temperature, natural IgM, and endotoxin, which may be critical components playing roles in dengue pathogenesis.  相似文献   

5.
Improved technology for reconstructing cryo-electron microscopy (cryo-EM) images has now made it possible to determine secondary structural features of membrane proteins in enveloped viruses. The structure of mature dengue virus particles was determined to a resolution of 9.5 A by cryo-EM and image reconstruction techniques, establishing the secondary structural disposition of the 180 envelope (E) and 180 membrane (M) proteins in the lipid envelope. The alpha-helical 'stem' regions of the E molecules, as well as part of the N-terminal section of the M proteins, are buried in the outer leaflet of the viral membrane. The 'anchor' regions of E and the M proteins each form antiparallel E-E and M-M transmembrane alpha-helices, leaving their C termini on the exterior of the viral membrane, consistent with the predicted topology of the unprocessed polyprotein. This is one of only a few determinations of the disposition of transmembrane proteins in situ and shows that the nucleocapsid core and envelope proteins do not have a direct interaction in the mature virus.  相似文献   

6.
7.

Background

The World health Organization (WHO) declares dengue and dengue hemorrhagic fever to be endemic in South Asia. Despite the magnitude of problem, no documented evidence exists in Pakistan which reveals the awareness and practices of the country''s adult population regarding dengue fever, its spread, symptoms, treatment and prevention. This study was conducted to assess the level of knowledge, attitudes and practices regarding dengue fever in people visiting tertiary care hospitals in Karachi, Pakistan.

Methods

A cross-sectional pilot study was conducted among people visiting tertiary care hospitals in Karachi. Through convenience sampling, a pre-tested and structured questionnaire was administered through a face-to-face unprompted interview with 447 visitors. Knowledge was recorded on a scale of 1–3.

Results

About 89.9% of individuals interviewed had heard of dengue fever. Sufficient knowledge about dengue was found to be in 38.5% of the sample, with 66% of these in Aga Khan University Hospital and 33% in Civil Hospital Karachi. Literate individuals were relatively more well-informed about dengue fever as compared to the illiterate people (p<0.001). Knowledge based upon preventive measures was found to be predominantly focused towards prevention of mosquito bites (78.3%) rather than eradication of mosquito population (17.3%). Use of anti- mosquito spray was the most prevalent (48.1%) preventive measure. Television was considered as the most important and useful source of information on the disease.

Conclusion

Adult population of Karachi has adequate knowledge related to the disease ‘dengue’ on isolated aspects, but the overall prevalence of ‘sufficient knowledge’ based on our criteria is poor. We demonstrated adequate prevalence of preventive practices against the disease. Further studies correlating the association between knowledge and its effectiveness against dengue will be helpful in demonstrating the implications of awareness campaigns.  相似文献   

8.
Dengue virus (DENV) is a mosquito-borne virus belonging to the Flaviviridae family. There are 4 serotypes of DENV that cause human disease through transmission by mosquito vectors. DENV infection results in a broad spectrum of clinical symptoms, ranging from mild fever to dengue hemorrhagic fever (DHF), the latter of which can progress to dengue shock syndrome (DSS) and death. Researchers have made unremitting efforts over the last half-century to understand DHF pathogenesis. DHF is probably caused by multiple factors, such as virus-specific antibodies, viral antigens and host immune responses. This review summarizes the current progress of studies on DHF pathogenesis, which may provide important information for achieving effective control of dengue in the future.
  相似文献   

9.
Advances in free radical research show that reactive oxygen and nitrogen oxide species, for example superoxide, nitric oxide (NO) and peroxynitrite, play an important role in the pathogenesis of different viral infections, including dengue virus. The pathogenic mechanism of dengue haemorrhagic fever (DHF) is complicated and is not clearly understood. The hallmarks of the dengue disease, the antibody-dependent enhancement, the shift from T-helper type 1 (Th1) to Th2 cytokine response and the cytokine tsunami resulting in vascular leakage can now be explained much better with the knowledge gained about NO and peroxynitrite. This paper makes an effort to present a synthesis of the current opinions to explain the pathogenesis of DHF/shock syndrome with NO on centre stage.  相似文献   

10.
According to recent statistics, 96 million apparent dengue infections were estimated worldwide in 2010. This figure is by far greater than the WHO prediction which indicates the rapid spread of this disease posing a growing threat to the economy and a major challenge to clinicians and health care services across the globe particularly in the affected areas.This article aims at bringing to light the current epidemiological and clinical status of the dengue fever. The relationship between genetic mutations, single nucleotide polymorphism (SNP) and the pathophysiology of disease progression will be put into perspective. It will also highlight the recent advances in dengue vaccine development.Thus far, a significant progress has been made in unraveling the risk factors and understanding the molecular pathogenesis associated with the disease. However, further insights in molecular features of the disease and the development of animal models will enormously help improving the therapeutic interventions and potentially contribute to finding new preventive measures for population at risk.  相似文献   

11.
12.
The relationship of this country with dengue has been long and intense. The first recorded epidemic of clinically dengue-like illness occurred at Madras in 1780 and the dengue virus was isolated for the first time almost simultaneously in Japan and Calcutta in 1943–1944. After the first virologically proved epidemic of dengue fever along the East Coast of India in 1963–1964, it spread to allover the country. The first full-blown epidemic of the severe form of the illness, the dengue haemorrhagic fever/dengue shock syndrome occurred in North India in 1996. Aedes aegypti is the vector for transmission of the disease. Vaccines or antiviral drugs are not available for dengue viruses; the only effective way to prevent epidemic degure fever/dengue haemorrhagic fever (DF/DHF) is to control the mosquito vector, Aedes aegypti and prevent its bite. This country has few virus laboratories and some of them have done excellent work in the area of molecular epidemiology, immunopathology and vaccine development. Selected work done in this country on the problems of dengue is presented here.  相似文献   

13.
Dengue virus (DENV) non-structural (NS) 4A is a membrane protein essential for viral replication. The N-terminal region of NS4A contains several helices interacting with the cell membrane and the C-terminal region consists of three potential transmembrane regions. The secondary structure of the intact NS4A is not known as the previous structural studies were carried out on its fragments. In this study, we purified the full-length NS4A of DENV serotype 4 into dodecylphosphocholine (DPC) micelles. Solution NMR studies reveal that NS4A contains six helices in DPC micelles. The N-terminal three helices are amphipathic and interact with the membrane. The C-terminal three helices are embedded in micelles. Our results suggest that NS4A contains three transmembrane helices. Our studies provide for the first time structural information of the intact NS4A of DENV and will be useful for further understanding its role in viral replication.  相似文献   

14.
The haemophagocytic syndrome is characterised by systemic proliferation of non-neoplastic histiocytes showing haemophagocytosis resulting in blood cytopenia. It has been described in relation to several viruses earlier. We present three patients with haemophagocytic syndrome (HFS) secondary to dengue haemorrhagic fever (DHF) confirmed by standard laboratory tests. The patients were hospitalized at the University Hospital (Hospital Universitario Ramón González Valencia-HURGV) in Bucaramanga, Colombia, during the past two years. They were all school-aged patients who presented DHF with intense abdominal pain, prolonged fever, hypotension and painful hepatomegaly. Laboratory tests showed thrombocytopenia, anaemia and leukopenia. A calculous cholecystitis was observed in the abdominal ultrasonography, and all bone marrow aspirations showed that platelets, red and white blood cells were phagocyted by histiocytes. According to the International Society of Histiocytosis, SHF is defined and classified in three major categories; the reported cases corresponded to histiocytosis class II, specifically to secondary SHF. Diverse associations of this syndrome correspond to viral infections and some other non-infectious diseases. A difference has been established between primary SHF and secondary SHF. Finally, we emphasize that these three patients had an atypical evolution of FHD, being prolonged fever and persistent abdominal pain the most important symptoms. The authors recommend that a bone marrow aspiration should be carried out as part of the differential diagnosis study in prolonged fever associated with dengue, as there is a possibility that this complication could be secondary SHF.  相似文献   

15.
16.
17.
Dengue virus (DV) is a positive sense RNA virus replicating in the cytoplasm in membranous compartments that are induced by viral infection. The non-structural protein (NS) 4A is one of the least characterized DV proteins. It is highly hydrophobic with its C-terminal region (designated 2K fragment) serving as a signal sequence for the translocation of the adjacent NS4B into the endoplasmic reticulum (ER) lumen. In this report, we demonstrate that NS4A associates with membranes via 4 internal hydrophobic regions, which are all able to mediate membrane targeting of a cytosolic reporter protein. We also developed a model for the membrane topology of NS4A in which the N-terminal third of NS4A localizes to the cytoplasm, while the remaining part contains three transmembrane segments, with the C-terminal end localized in the ER lumen. Subcellular localization experiments in DV-infected cells revealed that NS4A resides primarily in ER-derived cytoplasmic dot-like structures that also contain dsRNA and other DV proteins, suggesting that NS4A is a component of the membrane-bound viral replication complex (RC). Interestingly, the individual expression of DV NS4A lacking the 2K fragment resulted in the induction of cytoplasmic membrane alterations resembling virus-induced structures, whereas expression of full-length NS4A does not induce comparable membrane alterations. Thus, proteolytic removal of the 2K peptide appears to be important for induction of membrane alterations that may harbor the viral RC. These results shed new light on the role of NS4A in the DV replication cycle and provide a model of how this protein induces membrane rearrangements and how this property may be regulated.  相似文献   

18.
Dengue virus presents a growing threat to public health in the developing world. Four major serotypes of dengue virus have been characterized, and epidemiological evidence shows that dengue hemorrhagic fever (DHF), the more serious manifestation of the disease, occurs more frequently upon reinfection with a second serotype. We have studied dengue virus-specific T-cell responses in Thai children. During acute infection, few dengue-responsive CD8+ T cells were recovered; most of those present showed an activated phenotype and were undergoing programmed cell death. Many dengue-specific T cells were of low affinity for the infecting virus and showed higher affinity for other, probably previously encountered strains. Profound T-cell activation and death may contribute to the systemic disturbances leading to DHF, and original antigenic sin in the T-cell responses may suppress or delay viral elimination, leading to higher viral loads and increased immunopathology.  相似文献   

19.
在自然界存在两种登革热传播模式:人-伊蚊-人循环,蚊媒是埃及伊蚊与白纹伊蚊。猴-伊蚊-猴循环,蚊媒是白纹伊蚊与白雪伊蚊群。我国学者首先于1975年从无输入性病例的我国西南边疆山林地区的白纹伊蚊体内分离到登革热病毒4型,白纹伊蚊承担两种传播模式的中介。本研究介绍了埃及伊蚊与白纹伊蚊的生态习性与全球及在中国的分布。认为在我国厦门地区迄今为止还未曾发现过埃及伊蚊的存在,也简介了沃尔巴克体新技术防控蚊媒研究的进展。  相似文献   

20.
Little is known of the role of human leucocyte antigen (HLA) alleles or non-HLA alleles in determining resistance, susceptibility or the severity of acute viral infections. Dengue fever (DF) and dengue haemorrhagic fever (DHF) are suitable models for immunogenetic studies, yet only superficial efforts have been made to study dengue disease to date. DF and DHF can be caused by both primary and secondary infection by any of the four serotypes of the dengue virus. Differences in host susceptibility to infectious disease and disease severity cannot be attributed solely to the virus virulence. Variations in immune response, often associated with polymorphism in the human genome, can now be detected. Data on the influence of human genes in DF and DHF are discussed here in relation to (1) associations between HLA polymorphism and dengue disease susceptibility or resistance, (2) protective alleles influencing progression to severe disease, (3) alleles restricting CD4(+) and CD8(+) T lymphocytes, and (4) non-HLA genetic factors that may contribute to DHF evolution. Recent discoveries regarding genetic associations in other viral infections may provide clues to understanding the development of end-stage complications in dengue disease. The scanty positive data presented here indicate a need for detailed genetic studies in different ethnic groups in different countries during the acute phase of DF and DHF on a larger number of patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号