首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Demonstrating 1,25(OH)2D3-stimulated calcium uptake in isolated chick intestinal epithelial cells has been complicated by simultaneous enhancement of both uptake and efflux. We now report that in intestinal cells of adult birds, or those of young birds cultured for 72 h, 1,25(OH)2D3-stimulates 45Ca uptake to greater than 140% of corresponding controls within 3 min of addition. Such cells have lost hormone-stimulated protein kinase C (PKC) activity, believed to mediate calcium efflux. To further test this hypothesis, freshly isolated cells were preincubated with calphostin C, and calcium uptake monitored in the presence or absence of steroid. Only cells treated with the PKC inhibitor demonstrated a significant increase in 45Ca uptake in response to 1,25(OH)2D3, relative to corresponding controls. In addition, phorbol ester was shown to stimulate efflux, while forskolin stimulated uptake. To further investigate the mechanisms involved in calcium uptake, we assessed the role of TRPV6 and its activation by beta-glucuronidase. beta-Glucuronidase secretion from isolated intestinal epithelial cells was significantly increased by treatment with 1,25(OH)2D3, PTH, or forskolin, but not by phorbol ester. Treatment of cells with beta-glucuronidase, in turn, stimulated 45Ca uptake. Finally, transfection of cells with siRNA to either beta-glucuronidase or TRPV6 abolished 1,25(OH)2D3-enhanced calcium uptake relative to controls transfected with scrambled siRNA. Confocal microscopy further indicated rapid redistribution of enzyme and calcium channel after steroid. 1,25(OH)2D3 and PTH increase calcium uptake by stimulating the PKA pathway to release beta-glucuronidase, which in turn activates TRPV6. 1,25(OH)2D3-enhanced calcium efflux is mediated by the PKC pathway.  相似文献   

3.
4.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] regulates the synthesis of bone gamma-carboxyglutamic acid (Gla) protein (BGP) by osteoblastic cells. In this study we examined the effect of cAMP, alone and in combination with 1,25-(OH)2D3, on the regulation of BGP mRNA levels in ROS 17/2 rat osteosarcoma cells. Elevation of intracellular cAMP levels by cAMP analogs or by isobutylmethylxanthine (IBMX), forskolin, or PTH, resulted in increased BGP mRNA levels and BGP secretion after 1 day of treatment. The effects of these agents were additive with 1,25-(OH)2D3 in stimulating BGP gene expression. After 4 days of treatment, pertussis toxin (PT) and 1,25-(OH)2D3 were synergistic in stimulating BGP mRNA, and the effect of PT could be mimicked by (Bu)2cAMP, IBMX, forskolin, cholera toxin, and to a lesser extent by PTH. The effect of 1-day treatment with cAMP alone and the synergistic effect with 1,25-(OH)2D3 on the stimulation of BGP mRNA were dependent on cell density, while basal and 1,25-(OH)2D3-stimulated synthesis were not. Cyclic AMP inhibited ROS 17/2 cell growth after 1 day of treatment, an effect that was also dependent on initial cell density. After 4 days of treatment, 1,25-(OH)2D3, cAMP, and PT all demonstrated inhibition of cell growth. When cells were treated with actinomycin D, both 1,25-(OH)2D3 and cAMP stimulation of BGP mRNA were blocked. In addition, neither agent was effective in enhancing BGP mRNA stability when prestimulated cells were exposed to actinomycin D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
WEHI-3B D- cells differentiate in response to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) but not to all-trans-retinoic acid (RA) or other inducing agents. Combinations of RA with 1,25-(OH)2D3 interact to produce synergistic differentiation of WEHI-3B D- cells. To determine factors involved in the synergistic interaction, expression of the 1,25-(OH)2D3 receptor (VDR) and retinoid receptors, RARalpha and RXRalpha, was measured. No VDR was detected in untreated WEHI-3B D- cells; however, RA and 1,25-(OH)2D3 when used as single agents caused a slight induction of the VDR and in combination produced a marked increase in the VDR. In contrast, no changes in RARalpha and RXRalpha were initiated by these compounds. An RAR-selective agonist combined with 1,25-(OH)2D3 produced synergistic differentiation of WEHI-3B D- cells, whereas an RXR-selective agonist did not. To gain information on the role of the VDR in the synergistic interaction, the VDR gene was transferred into WEHI-3B D+ cells, in which no VDR was detected and no synergism was produced. Expression of the VDR conferred differentiation responsiveness to 1,25-(OH)2D3 in WEHI-3B D+ cells. These findings suggest that (a) induction of VDR expression is a key component in the synergistic differentiation induced by 1,25-(OH)2D3 and RA and (b) RAR and not RXR must be activated for enhanced induction of the VDR and for the synergistic differentiation produced by RA and 1, 25-(OH)2D3.  相似文献   

6.
Whole cell 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) receptor (VDR) binding assays, which measure VDR in the presence of the metabolic machinery of the cell, were used in conjunction with a cytosol binding assay for VDR to determine if self-induced metabolism of 1,25-(OH)2D3 limits VDR occupancy, total VDR levels, and target cell responsiveness. Treatment of cells with 0.5 nM 1,25-(OH)2[3H]D3 for 16 h results in up-regulation of total cell VDR from 82 to 170 fmol/mg protein as measured in a cytosol binding assay. Conversely, whole cell binding assays of VDR showed a 1,25-(OH)2D3-mediated apparent down-regulation of VDR from 90 to 40 fmol/mg protein. Scatchard analysis using the cytosol binding assay demonstrated that 1,25-(OH)2D3 treatment increased total cell VDR from 93 to 154 fmol/mg protein. In contrast, Scatchard analysis with the whole cell binding assay demonstrated that 1,25-(OH)2D3 treatment resulted in reduction in total cell VDR from 100 to 64 fmol/mg protein. Initial Kd estimates with the whole cell binding assay suggested that 1,25-(OH)2D3 treatment resulted in a reduction in VDR Kd from 0.6 to 6.2 nM. This apparent reduction in the affinity of VDR for 1,25-(OH)2D3 was due to degradation of free 1,25-(OH)2[3H]D3 which occurred during whole cell saturation assay. Competitive inhibitors of 1,25-(OH)2D3 metabolism were found to reverse the apparent receptor down-regulation observed in whole cell binding assays of treated cells. In addition, the presence of competitive inhibitors amplified responses of cells to 1,25-(OH)2[3H]D3 treatment as measured by an increased occupancy of VDR by 1,25-(OH)2[3H]D3 and increased up-regulation of VDR over that observed without metabolism inhibitors. These data demonstrate that self-induced target tissue deactivation of 1,25-(OH)2D3 regulates 1,25-(OH)2D3 occupancy of VDR and ultimately the biopotency of 1,25-(OH)2D3 in target cells.  相似文献   

7.
Vitamin D3, an important seco-steroid hormone for the regulation of body calcium homeostasis, promotes immature myeloid precursor cells to differentiate into monocytes/macrophages. Vitamin D receptor (VDR) belongs to a nuclear receptor super-family that mediates the genomic actions of vitamin D3 and regulates gene expression by binding with vitamin D response elements in the promoter region of the cognate gene. Thus by regulating gene expression, VDR plays an important role in modulating cellular events such as differentiation, apoptosis, and growth. Here we report lipopolysaccharide (LPS), a bacterial toxin; decreases VDR protein levels and thus inhibits VDR functions in the human blood monocytic cell line, THP-1. The biologically active form of vitamin D3, 1alpha,25-dihydroxy vitamin D3 [1,25(OH)2D3], induced VDR in THP-1 cells after 24 h treatment, and LPS inhibited 1,25(OH)2D3-mediated VDR induction. However, LPS and 1,25(OH)2D3 both increased VDR mRNA levels in THP-1 cells 20 h after treatment, as observed by real time RT-PCR. Moreover, LPS plus 1,25(OH)2D3 action on VDR mRNA level was additive and synergistic. A time course experiment up to 60 h showed an increase in VDR mRNA that was not preceded with an increase in VDR protein levels. Although the proteasome pathway plays an important role in VDR degradation, the proteasome inhibitor lactacystin had no effect on the LPS-mediated down-regulation of 1,25(OH)2D3 induced VDR levels. Reduced VDR levels by LPS were accompanied by decreased 1,25(OH)2D3/VDR function determined by VDR responsive 24-hydroxylase (CYP24) gene expression. The above results suggest that LPS impairs 1,25(OH)2D3/VDR functions, which may negatively affect the ability of 1,25(OH)2D3 to induce myeloid differentiation into monocytes/macrophages.  相似文献   

8.
We have investigated the molecular mechanism whereby 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibits adipogenesis in vitro. 1,25(OH)2D3 blocks 3T3-L1 cell differentiation into adipocytes in a dose-dependent manner; however, the inhibition is ineffective 24-48 h after the differentiation is initiated, suggesting that 1,25(OH)2D3 inhibits only the early events of the adipogenic program. Treatment of 3T3-L1 cells with 1,25(OH)2D3 does not block the mitotic clonal expansion or C/EBPbeta induction; rather, 1,25(OH)2D3 blocks the expression of C/EBPalpha, peroxisome proliferator-activated receptor-gamma (PPARgamma), sterol regulatory element-binding protein-1, and other downstream adipocyte markers. The inhibition by 1,25(OH)2D3 is reversible, since removal of 1,25(OH)2D3 from the medium restores the adipogenic process with only a temporal delay. Interestingly, although the vitamin D receptor (VDR) protein is barely detectable in 3T3-L1 preadipocytes, its levels are dramatically increased during the early phase of adipogenesis, peaking at 4-8 h and subsiding afterward throughout the rest of the differentiation program; 1,25(OH)2D3 treatment appears to stabilize the VDR protein levels. Consistently, adenovirus-mediated overexpression of human (h) VDR in 3T3-L1 cells completely blocks the adipogenic program, confirming that VDR is inhibitory. Inhibition of adipocyte differentiation by 1,25(OH)2D3 is ameliorated by troglitazone, a specific PPARgamma antagonist; conversely, hVDR partially suppresses the transacting activity of PPARgamma but not of C/EBPbeta or C/EBPalpha. Moreover, 1,25(OH)2D3 markedly suppresses C/EBPalpha and PPARgamma mRNA levels in mouse epididymal fat tissue culture. Taken together, these data indicate that the blockade of 3T3-L1 cell differentiation by 1,25(OH)2D3 occurs at the postclonal expansion stages and involves direct suppression of C/EBPalpha and PPARgamma upregulation, antagonization of PPARgamma activity, and stabilization of the inhibitory VDR protein.  相似文献   

9.
To understand further the mechanism of action of parathyroid hormone (PTH) in the stimulation of the number of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) binding sites in UMR 106-01 cells we studied the role of cAMP and calcium. In addition to PTH other agents known to act via the cAMP signal pathway, prostaglandin E2, forskolin and dibutyryl cAMP, caused an increase in 1,25(OH)2D3 binding. Addition of the adenylate cyclase inhibitor 9-(tetrahydro-2-furyl)adenine resulted in a marked decrease of PTH-stimulated cAMP production but this was not followed by a reduction of 1,25(OH)2D3 receptor up-regulation by PTH. Increasing the intracellular calcium concentration by Bay K 8644 and A23817 independent of an activation of the cAMP signal pathway did not result in an increased 1,25(OH)2D3 binding. The calcium channel blockers nitrendipine and verapamil and chelating extracellular calcium with EGTA all reduced cAMP-mediated stimulation of 1,25(OH)2D3 binding. This reduction was not due to a reduce cAMP production as verapamil even potentiated PTH- and forskolin-stimulated cAMP production in a dose-dependent manner. The present study provides evidence for an interrelated action of calcium and cAMP in the heterologous up-regulation of the 1,25(OH)2D3 receptor. The current data show an interaction between the cAMP and calcium signal pathway at (1) the level of cAMP generation/degradation, and (2) a level located distal in the cascade leading to 1,25(OH)2D3 receptor up-regulation.  相似文献   

10.
11.
In previous works we have found a mitochondrial alkaline phosphatase (AP) activity in LLC-PK1. The aim of this work has been to study the possible involvement of mitochondrial AP activity in the synthesis of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) from the substrate 25(OH)D3. Renal phenotype LLC-PK1 cells were incubated with 25(OH)D3 as substrate and treated with or without 1,25(OH)2D3, forskolin, 12-myristate-13-acetate (PMA) and 1,25(OH)2D3 in conjunction with PMA. Incubation of LLC-PK1 cells with forskolin (adenylate cyclase activator) not only stimulated the 1-hydroxylase and inhibited the 24-hydroxylase activities but also increased the mitochondrial AP activity. The addition of 1,25(OH)2D3, the main activator of 24-hydroxylase, produced a decrease of mitochondrial AP activity, a decrease of 1,25(OH)2D3 synthesis and an increase of the 24,25(OH)2D3 synthesis. Incubation with PMA, a potent activator of protein kinase C, did not produce any changes in mitochondrial AP activity, but an inhibition of 1,25(OH)2D3 and an activation of 24,25(OH)2D3 synthesis were found. Moreover, incubation of LLC-PK1 cells with PMA in conjunction with 1,25(OH)2D3 produced an additive effect in the decrease of 1,25(OH)2D3 and an increase of 24,25(OH)2D3 synthesis remaining mitochondrial AP activity as cells treated only with 1,25(OH)2D3. Our results suggest that mitochondrial AP activity could be involved as an intracellular signal in the regulation of 25(OH)D3 metabolism to the synthesis of 1,25(OH)2D3 and 24,25(OH)2D3 in renal phenotype LLC-PK1 cells through cAMP protein kinase system.  相似文献   

12.
13.
14.
As we previously reported, 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) dose-dependently inhibited not only proliferation of undifferentiated murine erythroleukemia (MEL) cells but also activin A-induced erythroid differentiation of MEL cells. However, the effect of 1,25(OH)2D3 on MEL cell proliferation was significantly greater by one order of magnitude than that on differentiation (IC(50): 9.2 vs 0.8 nM, respectively). The response of activin A-treated mature MEL cells to 1,25(OH)2D3 in the induction of 1,25(OH)2D3-24-hydroxylase (24-OHase) activity, a rapid effect of 1,25(OH)2D3, was enhanced to the same degree as in untreated immature cells, suggesting that differences in capacity of cells to inactivate 1,25(OH)2D3 did not contribute to augmentation of 1,25(OH)2D3 effect in activin A-treated mature cells. Furthermore, neither the number nor the affinity of vitamin D receptors (VDR) differed significantly between activin A-treated cells and untreated immature cells. The intracellular cAMP level, which affects 1,25(OH)2D3-mediated induction of 24-OHase activity, was significantly less in activin A-treated mature cells than in immature MEL cells. The addition of dibutyryl cAMP (dbc AMP) to activin A-treated MEL cells dose-dependently attenuated 1,25(OH)2D3-mediated induction of 24-OHase activity, finally to a level comparable to that of the untreated cells at the final concentration of 100 nM dbcAMP, while dbcAMP itself by 100 nM did not affect MEL cell differentiation by 24 h. In summary, we have shown for the first time that 1,25(OH)2D3 exerted its effect on leukemia cells at physiological concentration and that the magnitude of this effect depended on the changes in intracellular cAMP level through stages of differentiation, suggesting that the cAMP-protein kinase A system may be useful as a target for clinical application of vitamin D analogs by improving the sensitivity of leukemic cells to 1,25(OH)2D3.  相似文献   

15.
To determine whether 1,25-dihydroxycholecalciferol [1,25(OH)2D3] affects protein kinase C (PKC) activity in kidney, as has been demonstrated in HL-60 cells we measured 1,25(OH)2D3 binding, PKC activity and PKC immunoreactivity in Madin Darby bovine kidney (MDBK) cells, a normal renal epithelial cell line derived from bovine kidney. Our data demonstrate that MDBK cells exhibit specific high affinity binding for 1,25(OH)2D3, indicating the presence of the vitamin D receptor (VDR). Treatment of MDBK cells with 1,25(OH)2D3 for 24 h increased membrane PKC activity and immunoreactivity. The effect of 1,25(OH)2D3 was dose-dependent, with a peak effect observed at 10(-7)M 1,25(OH)2D3. The 1,25(OH)2D3 induced increase in membrane PKC was paralleled by a comparable decrease in cytosolic PKC activity and amount. Although time course studies were consistent with a VDR mediated effect of 1,25(OH)2D3 on PKC protein synthesis, total PKC activity was not increased by 1,25(OH)2D3, suggesting an effect on PKC translocation or localization. These results suggest that 1,25(OH)2D3 modulates PKC mediated events in kidney, a classic target for this steroid hormone.  相似文献   

16.
The rapid, non-genomic actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] have been well described, however, the role of the nuclear vitamin D receptor (VDR) in this pathway remains unclear. To address this question, we used VDR(+/+) and VDR(-/-) osteoblasts isolated from wild-type and VDR null mice to study the increase in intracellular calcium ([Ca(2+)](i)) and activation of protein kinase C (PKC) induced by 1,25(OH)(2)D(3). Within 1 min of 1,25(OH)(2)D(3) (100 nM) treatment, an increase of 58 and 53 nM in [Ca(2+)](i) (n = 3) was detected in VDR(+/+) and VDR(-/-) cells, respectively. By 5 min, 1,25(OH)(2)D(3) caused a 2.1- and 1.9-fold increase (n = 6) in the phosphorylation of PKC substrate peptide acetylated-MBP(4-14) in VDR(+/+) and VDR(-/-) osteoblasts. The 1,25(OH)(2)D(3)-induced phosphorylation was abolished by GF109203X, a general PKC inhibitor, in both cell types, confirming that the secosteroid induced PKC activity. Moreover, 1,25(OH)(2)D(3) treatment resulted in the same degree of translocation of PKC-alpha and PKC-delta, but not of PKC-zeta, from cytosol to plasma membrane in both VDR(+/+) and VDR(-/-) cells. These experiments demonstrate that the 1,25(OH)(2)D(3)-induced rapid increases in [Ca(2+)](i) and PKC activity are neither mediated by, nor dependent upon, a functional nuclear VDR in mouse osteoblasts. Thus, VDR is not essential for these rapid actions of 1,25(OH)(2)D(3) in osteoblasts.  相似文献   

17.
Vitamin D receptor (VDR) is a nuclear protein which mediates the physiological actions of its hormone ligand, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). While it appears that the receptor-hormone complex regulates the expression of hormone-dependent genes involved in mineral homeostasis, its role in induction of differentiation of leukaemic cells is less clear. We have studied the expression of the VDR gene in several sublines of HL-60 leukaemic cells with varying responsiveness to 1,25(OH)2D3. Sublines which rapidly differentiated to monocytic forms were shown to contain elevated steady-state levels of VDR mRNA within 1 h of exposure to high concentration of 1,25(OH)2D3. This up-regulation of the expression of VDR was not apparent in sublines in which monocytic differentiation occurred after a delay of several days. Beginning at approximately 3 h after exposure to 1,25(OH)2D3 in most cases, there was a gradual decline in VDR mRNA levels. Measurement of steady-state levels of mRNA for c-myc and c-fos showed that in sublines of HL-60 cells which respond rapidly to 1,25(OH)2D3, elevation of VDR mRNA is evident prior to the changes in proto-oncogene expression. These data are consistent with the hypothesis that a change in VDR gene expression is one of the steps that promote monocytic differentiation.  相似文献   

18.
The abundance of 1,25-dihydroxyvitamin D3 receptors (VDR) in cultured cells has been shown to vary in direct relation to the rate of cell proliferation. This study examines the question of whether the growth-factor mediated up-regulation of VDR is due to direct modulation of VDR gene expression or is secondary to the stimulation of cell cycle events. Mitogenic agents, such as basic fibroblast growth factor and phorbol esters, were found to cause significant decreases in VDR abundance, while substantially stimulating proliferation of NIH-3T3 cells. Potent phorbol esters, such as phorbol myristate acetate (PMA) and phorbol-12,13-dibutyrate, whose biological actions have been shown to be mediated through the activation of protein kinase-C, down-regulated VDR in a time- and dose-dependent manner. An inactive phorbol ester, 4 alpha-phorbol-12,13-didecanoate, which does not activate protein kinase-C, did not alter VDR levels. Desensitization of protein kinase-C by prolonged exposure of cells to phorbol esters eliminated the PMA-mediated down-regulation of VDR. Staurosporine, an inhibitor of protein kinase-C, blocked the actions of PMA. Oleoyl acetyl glycerol, a synthetic diacyl glycerol, and A23187, a calcium ionophore, were both able to suppress VDR abundance alone and were additive in combination. The results suggest that activation of the protein kinase-C pathway and elevation of intracellular Ca2+ lead to significant down-regulation of VDR. The inhibitory effect of PMA appears to be exerted at the level of VDR mRNA expression. Northern blot analysis revealed significant decreases in steady state levels of VDR mRNA species that qualitatively corresponded to the decrease in VDR protein concentration seen on a Western blot.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
1alpha,25-Dihydroxyvitamin D(3)-3-bromoacetate (1, 25(OH)(2)D(3)-3-BE), an affinity labeling analog of 1alpha, 25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), displayed stronger antiproliferative activities than 1,25(OH)(2)D(3) at 10(-10)-10(-6) M dose levels in cultured human keratinocytes (CHK). Additionally, preincubation of the cells with 10(-6) M 1,25(OH)(2)D(3), followed by treatment with various doses of 1,25(OH)(2)D(3)-3-BE, resulted in a significantly stronger antiproliferative activity by the mixture than individual reagents at every dose level. To search for a mechanism of this observation, we determined that [(14)C]1, 25(OH)(2)D(3)-3-BE covalently labeled human recombinant 1alpha, 25-dihydroxyvitamin D(3) receptor (reVDR) swiftly (<1 min) with a 1:1 stoichiometry and induced conformational changes (in VDR) that are different from 1,25(OH)(2)D(3), by limited tryptic digestion. Furthermore, a protein band, corresponding to reVDR, was specifically labeled by [(14)C]1,25(OH)(2)D(3)-3-BE in CHK extract, indicating that VDR is the main target of [(14)C]1, 25(OH)(2)D(3)-3-BE. The above-mentioned observations suggest that a rapid covalent labeling of VDR in CHK might alter the interaction between the holo-VDR and 1,25(OH)(2)D(3)-controlled genes. Furthermore, we observed that 1,25(OH)(2)D(3)-3-BE significantly decreased the binding of VDR to human osteocalcin vitamin D responsive element (hOCVDRE), as well as the dissociation rate of VDR from hOCVDRE, compared with 1,25(OH)(2)D(3) in COS-1 cells, transiently transfected with a VDR construct. Additionally, 1, 25(OH)(2)D(3)-3-BE was found to be more potent in inducing 1alpha, 25-dihydroxyvitamin D(3)-24-hydroxylase (24-OHase) promoter activity and mRNA expression in keratinocytes. The accumulation of 24-OHase message was also prolonged by the analog. Collectively these results indicated that rapid covalent labeling of VDR in keratinocytes (by 1, 25(OH)(2)D(3)-3-BE) might result in the conversion of apo-VDR to a holo-form, with a conformation that is different from that of the 1, 25(OH)(2)D(3)-VDR complex. This resulted in an enhanced stability of the 1,25(OH)(2)D(3)-3-BE/VDR-VDRE complex and contributed to the amplified antiproliferative effect of 1,25(OH)(2)D(3)-3-BE in keratinocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号