首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To begin the process of forming neural circuits, new neurons first establish their polarity and extend their axon. Axon extension is guided and regulated by highly coordinated cytoskeletal dynamics. Here we demonstrate that in hippocampal neurons, the actin-binding protein caldesmon accumulates in distal axons, and its N-terminal interaction with myosin II enhances axon extension. In cortical neural progenitor cells, caldesmon knockdown suppresses axon extension and neuronal polarity. These results indicate that caldesmon is an important regulator of axon development.  相似文献   

2.
Promoting and directing axon outgrowth   总被引:6,自引:0,他引:6  
Establishment of appropriate neuronal connections during development and regeneration requires the extension of processes that must then grow in the correct direction, find and recognize their targets, and make synapses with them. During development, embryonic neurons gradually establish central and peripheral connections in an evolving cellular environment in which neurotrophic factors are provided by supporting and target cells that promote neuronal survival, differentiation, and process outgrowth. Some cells also release neurotropic factors that direct the outgrowth of neuronal processes toward their targets. Following development the neurotrophic requirements of some adult neurons change so that, although they respond to neurotrophic factors, they no longer require exogenous neurotrophins to survive or to extend processes. Within the central nervous system (CNS), the ability of neurons to extend processes is eventually lost because of a change in their cellular environment from outgrowth permissive to inhibitory. Thus, neuronal connections that are lost in the adult CNS are rarely reestablished. In contrast, the environment of the adult peripheral nervous system fosters process outgrowth and synapse formation. This article discusses the neurotrophic requirements of embryonic and adult neurons, as well as the importance of neurotropic factors in directing the outgrowth of regenerating adult axons.  相似文献   

3.
A family of proteins implicated in axon guidance and outgrowth.   总被引:18,自引:0,他引:18  
Rapid progress in the identification and characterization of axon guidance molecules and their receptors has left the field poised to explore the intracellular mechanisms by which signals are transduced into growth cone responses. The TUC (TOAD/Ulip/CRMP) family of proteins has emerged as a strong candidate for a role in growth cone signaling. The TUC family members reach their highest expression levels in all neurons during their peak periods of axonal growth and are strongly down-regulated afterward. When axonal regrowth in the adult is triggered by axotomy, TUC-4 is reexpressed during the period of regrowth. Mutations in unc-33, a homologous nematode gene, lead to severe axon guidance errors in all neurons. Furthermore, the TUC family is required for the growth cone-collapsing activity of collapsin-1. An important role for the TUC family is also suggested by its high degree of interspecies amino acid sequence identity, with the rat TUC-2 protein showing 98% identity with its chick ortholog and 89% identity with its Xenopus ortholog. Information gained from the study of the TUC family will be of key importance in understanding how growth cones find their targets.  相似文献   

4.
5.
Bülow HE  Boulin T  Hobert O 《Neuron》2004,42(3):367-374
Wiring of the nervous system requires that axons navigate to their targets and maintain their correct positions in axon fascicles after termination of axon outgrowth. We show here that the C. elegans fibroblast growth factor receptor (FGFR), EGL-15, affects both processes in fundamentally distinct manners. FGF-dependent activation of the EGL-15 tyrosine kinase and subsequently the GTPase LET-60/ras is required within epidermal cells, the substratum for most outgrowing axon, for appropriate outgrowth of specific axon classes to their target area. In contrast, genetic elimination of the FGFR isoform EGL-15(5A), defined by the inclusion of an alternative extracellular interimmunoglobulin domain, has no consequence for axon outgrowth but leads to a failure to postembryonically maintain axon position within defined axon fascicles. An engineered, secreted form of EGL-15(5A) containing only its ectodomain is sufficient for maintenance of axon position, thus providing novel insights into receptor tyrosine kinase function and the process of maintaining axon position.  相似文献   

6.
The use of modern techniques involving gene transfer and functional knock-out strategies has lead to new concepts of the way in which cytoskeletal elements interact to produce the unique morphologies of neurons. This review presents these concepts and discusses their implications for neuronal development, especially with respect to the role of microtubules, microfilaments, and neurofilaments. Received: 29 July 1997 / Accepted: 27 October 1997  相似文献   

7.
Calmodulin and profilin coregulate axon outgrowth in Drosophila   总被引:4,自引:0,他引:4  
Coordinated regulation of actin cytoskeletal dynamics is critical to growth cone movement. The intracellular molecules calmodulin and profilin actively regulate actin-based motility and participate in the signaling pathways used to steer growth cones. Here we show that in the developing Drosophila embryo, calmodulin and profilin convey complimentary information that is necessary for appropriate growth cone advance. Reducing calmodulin activity by expression of a dominant inhibitor (KA) stalls axon extension of pioneer neurons within the CNS, while a partial loss of profilin function decreases extension of motor axons in the periphery. Yet, surprisingly, when calmodulin and profilin are simultaneously reduced, the ability of both CNS pioneer axons and motor axons to extend beyond the choice points is restored. In the CNS, at the time when growth cones must decide whether to cross or not to cross the midline, a reduction in calmodulin and/or roundabout signaling causes axons to cross the midline inappropriately. These inappropriate crossings are suppressed when profilin activity is simultaneously reduced. Interestingly, the mutual suppression of calmodulin and profilin activity requires a minimal level of profilin. In KA combinations with profilin null alleles, defects in axon extension and midline guidance are synergistically enhanced rather than suppressed. Together, our data indicate that the growth cone must coordinate the activity of both calmodulin and profilin in order to advance past selected choice points, including those dictating midline crossovers.  相似文献   

8.
How scaffold proteins integrate signaling pathways with cytoskeletal components to drive axon outgrowth is not well understood. We report here that the multidomain scaffold protein Plenty of SH3s (POSH) regulates axon outgrowth. Reduction of POSH function by RNA interference (RNAi) enhances axon outgrowth in differentiating mouse primary cortical neurons and in neurons derived from mouse P19 cells, suggesting POSH negatively regulates axon outgrowth. Complementation analysis reveals a requirement for the third Src homology (SH) 3 domain of POSH, and we find that the actomyosin regulatory protein Shroom3 interacts with this domain of POSH. Inhibition of Shroom3 expression by RNAi leads to increased process lengths, as observed for POSH RNAi, suggesting that POSH and Shroom function together to inhibit process outgrowth. Complementation analysis and interference of protein function by dominant-negative approaches suggest that Shroom3 recruits Rho kinase to inhibit process outgrowth. Furthermore, inhibition of myosin II function reverses the POSH or Shroom3 RNAi phenotype, indicating a role for myosin II regulation as a target of the POSH–Shroom complex. Collectively, these results suggest that the molecular scaffold protein POSH assembles an inhibitory complex that links to the actin–myosin network to regulate neuronal process outgrowth.  相似文献   

9.
During nervous system development, neurons form synaptic contacts with distant target cells. These connections are formed by the extension of axonal processes along predetermined pathways. Axon outgrowth is directed by growth cones located at the tips of these neuronal processes. Although the behavior of growth cones has been well-characterized in vitro, it is difficult to observe growth cones in vivo. We have observed motor neuron growth cones migrating in living Caenorhabditis elegans larvae using time-lapse confocal microscopy. Specifically, we observed the VD motor neurons extend axons from the ventral to dorsal nerve cord during the L2 stage. The growth cones of these neurons are round and migrate rapidly across the epidermis if they are unobstructed. When they contact axons of the lateral nerve fascicles, growth cones stall and spread out along the fascicle to form anvil-shaped structures. After pausing for a few minutes, they extend lamellipodia beyond the fascicle and resume migration toward the dorsal nerve cord. Growth cones stall again when they contact the body wall muscles. These muscles are tightly attached to the epidermis by narrowly spaced circumferential attachment structures. Stalled growth cones extend fingers dorsally between these hypodermal attachment structures. When a single finger has projected through the body wall muscle quadrant, the growth cone located on the ventral side of the muscle collapses and a new growth cone forms at the dorsal tip of the predominating finger. Thus, we observe that complete growth cone collapse occurs in vivo and not just in culture assays. In contrast to studies indicating that collapse occurs upon contact with repulsive substrata, collapse of the VD growth cones may result from an intrinsic signal that serves to maintain growth cone primacy and conserve cellular material.  相似文献   

10.
11.
The generation of contractile force mediated by actin-myosin interactions is essential for cell motility. Myosin activity is promoted by phosphorylation of myosin light chain (MLC). MLC phosphorylation in large part is controlled by kinases that are effectors of Rho family GTPases. Accordingly, in this study we examined the effects of ROCK and Rac1 inhibition on MLC phosphorylation in astrocytoma cells. We found that low concentrations of the ROCK inhibitor Y27632 increased the phosphorylation state of the Triton X-100 soluble fraction of MLC, whereas higher concentrations of Y27632 decreased soluble phospho-MLC. These effects of Y27632 were dependent on Rac1. The soluble form of phospho-MLC comprises about 10% of total phospho-MLC in control cells. Interestingly, ROCK inhibition led to a decrease in the phosphorylation state of total MLC, whereas Rac1 inhibition had little effect. Thus, the soluble form of MLC is differentially regulated by ROCK and Rac1 compared with MLC examined in a total cell extract. We also observed that astrocytoma migration is stimulated by low concentrations of the myosin II inhibitor blebbistatin. However, higher concentrations of blebbistatin inhibit migration leading us to believe that migration has a biphasic dependence on myosin II activity. Taken together, our data show that modulation of myosin II activity is important in determining optimal astrocytoma migration. In addition, these findings suggest that there are at least two populations of MLC that are differentially regulated.  相似文献   

12.
Immunochemical studies on myosin. II. Cardiac myosin   总被引:3,自引:0,他引:3  
  相似文献   

13.
The neural retina of avian embryos was spread on a membrane filter and cut in any desired orientation. Strips cut across the retina of 4- to 7-day chick or 3- to 6-day quail embryos were explanted onto collagen gels. Vigorous neurite outgrowth was seen for about 3 days, by which time many neurites were 3 mm long. Horseradish peroxidase (HRP) labeling showed that the cells producing the neurites were large and formed a layer near the inner limiting membrane, indicating that the neurites in vitro were axons of retinal ganglion cells. The size of the neurite population and the regions from which neurites emerged vaired with the donor age, while most neurites sprouted from the side of the explant formerly closest to the optic fissure. This pattern closely resembled that of axon growth in the normal retina, as revealed by SEM, silver staining, and HRP labeling. Mitotic inhibitors (Ara-C and FUdR) did not alter the neurite outgrowth. Pretreatment of retinae with trypsin or collagenase did not disorganize axons at the time of explantation, but tended to equalize neurite emergence on each side of the retinal strips. We suggest that microenvironmental factors, especially the enzyme-labile inner limiting membrane, are important for axon guidance in the retina.  相似文献   

14.
beta-Spectrin is a major component of the membrane skeleton, a structure found at the plasma membrane of most animal cells. beta-Spectrin and the membrane skeleton have been proposed to stabilize cell membranes, generate cell polarity, or localize specific membrane proteins. We demonstrate that the Caenorhabditis elegans homologue of beta-spectrin is encoded by the unc-70 gene. unc-70 null mutants develop slowly, and the adults are paralyzed and dumpy. However, the membrane integrity is not impaired in unc-70 animals, nor is cell polarity affected. Thus, beta-spectrin is not essential for general membrane integrity or for cell polarity. However, beta-spectrin is required for a subset of processes at cell membranes. In neurons, the loss of beta-spectrin leads to abnormal axon outgrowth. In muscles, a loss of beta-spectrin leads to disorganization of the myofilament lattice, discontinuities in the dense bodies, and a reduction or loss of the sarcoplasmic reticulum. These defects are consistent with beta-spectrin function in anchoring proteins at cell membranes.  相似文献   

15.
Secreted proteins of the Wnt family affect axon guidance, asymmetric cell division, and cell fate. We show here that C. elegans Wnts acting through Frizzled receptors can shape axon and dendrite trajectories by reversing the anterior-posterior polarity of neurons. In lin-44/Wnt and lin-17/Frizzled mutants, the polarity of the PLM mechanosensory neuron is reversed along the body axis: the long PLM process, PLM growth cone, and synapses are posterior to its cell body instead of anterior. Similarly, the polarity of the ALM mechanosensory neuron is reversed in cwn-1 egl-20 Wnt double mutants, suggesting that different Wnt signals regulate neuronal polarity at different anterior-posterior positions. LIN-17 protein is asymmetrically localized to the posterior process of PLM in a lin-44-dependent manner, indicating that Wnt signaling redistributes LIN-17 in PLM. In this context, Wnts appear to function not as instructive growth cone attractants or repellents, but as organizers of neuronal polarity.  相似文献   

16.
17.
Myelin-associated glycoprotein (MAG, Siglec-4) is one of several endogenous axon regeneration inhibitors that limit recovery from central nervous system injury and disease. Molecules that block such inhibitors may enhance axon regeneration and functional recovery. MAG, a member of the Siglec family of sialic acid-binding lectins, binds to sialoglycoconjugates on axons and particularly to gangliosides GD1a and GT1b, which may mediate some of the inhibitory effects of MAG. In a prior study, we identified potent monovalent sialoside inhibitors of MAG using a novel screening platform. In the current study, the most potent of these were tested for their ability to reverse MAG-mediated inhibition of axon outgrowth from rat cerebellar granule neurons in vitro. Monovalent sialoglycans enhanced axon regeneration in proportion to their MAG binding affinities. The most potent glycoside was disialyl T antigen (NeuAcalpha2-3Galbeta1-3[NeuAcalpha2-6]GalNAc-R), followed by 3-sialyl T antigen (NeuAcalpha2-3Galbeta1-3GalNAc-R), structures expressed on O-linked glycoproteins as well as on gangliosides. Prior studies indicated that blocking gangliosides reversed MAG inhibition. In the current study, blocking O-linked glycoprotein sialylation with benzyl-alpha-GalNAc had no effect. The ability to reverse MAG inhibition with monovalent glycosides encourages further exploration of glycans and glycan mimetics as blockers of MAG-mediated axon outgrowth inhibition.  相似文献   

18.
Sprouty (Spry) proteins are negative feedback inhibitors of receptor tyrosine kinase signaling. Downregulation of Spry2 has been demonstrated to promote elongative axon growth of cultured peripheral and central neurons. Here, we analyzed Spry2 global knockout mice with respect to axon outgrowth in vitro and peripheral axon regeneration in vivo. Neurons dissociated from adult Spry2 deficient sensory ganglia revealed stronger extracellular signal‐regulated kinase activation and enhanced axon outgrowth. Prominent axon elongation was observed in heterozygous Spry2+/? neuron cultures, whereas homozygous Spry2?/? neurons predominantly exhibited a branching phenotype. Following sciatic nerve crush, Spry2+/? mice recovered faster in motor but not sensory testing paradigms (Spry2?/? mice did not tolerate anesthesia required for nerve surgery). We attribute the improvement in the rotarod test to higher numbers of myelinated fibers in the regenerating sciatic nerve, higher densities of motor endplates in hind limb muscles and increased levels of GAP‐43 mRNA, a downstream target of extracellular regulated kinase signaling. Conversely, homozygous Spry2?/? mice revealed enhanced mechanosensory function (von Frey's test) that was accompanied by an increased innervation of the epidermis, elevated numbers of nonmyelinated axons and more IB4‐positive neurons in dorsal root ganglia. The present results corroborate the functional significance of receptor tyrosine kinase signaling inhibitors for axon outgrowth during development and nerve regeneration and propose Spry2 as a novel potential target for pharmacological inhibition to accelerate long‐distance axon regeneration in injured peripheral nerves. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 217–231, 2015  相似文献   

19.
20.
During the development of the nervous system, the migration of many cells and axons is guided by extracellular molecules. These molecules bind to receptors at the tips of the growth cones of migrating axons and trigger intracellular signaling to steer the axons along the correct trajectories. We have identified a novel mutant, enu-3 (enhancer of Unc), that enhances the motor neuron axon outgrowth defects observed in strains of Caenorhabditis elegans that lack either the UNC-5 receptor or its ligand UNC-6/Netrin. Specifically, the double-mutant strains have enhanced axonal outgrowth defects mainly in DB4, DB5 and DB6 motor neurons. enu-3 single mutants have weak motor neuron axon migration defects. Both outgrowth defects of double mutants and axon migration defects of enu-3 mutants were rescued by expression of the H04D03.1 gene product. ENU-3/H04D03.1 encodes a novel predicted putative trans-membrane protein of 204 amino acids. It is a member of a family of highly homologous proteins of previously unknown function in the C. elegans genome. ENU-3 is expressed in the PVT interneuron and is weakly expressed in many cell bodies along the ventral cord, including those of the DA and DB motor neurons. We conclude that ENU-3 is a novel C. elegans protein that affects both motor axon outgrowth and guidance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号