首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibitory effect of oligomycin was investigated in intact mitochondria through oxidative phosphorylation and uncoupler induced ATPase activity. Results show that oligomycin inhibition curves can be either sigmoidal or hyperbolic depending on experimental conditions and chiefly on the metabolic state of mitochondria with regard to the distribution of mitochondrial endogenous adenine-nucleotides. Active respiration and uncoupler-induced ATPse activity produce sigmoidal titration curves for a high initial ATP : ADP ratio and hyperbolic curves for a low ATP : ADP ratio. Time-dependent inhibitions are observed for the two reactions. The maximal inhibitory action for low concentrations of the inhibitor is delayed by the initial presence of ATP or the possibility of generating from inorganic phosphate before adding oligomycin. Results presented here show that the initial adenine-nucleotide distribution is important for oligomycin sensitivity of energy-linked reactions. Although a limited conformational change of the oligomycin-sensitivity to the inhibitor, it is more likely that a gross structural change of the inner membrane induced by adenine-nucleotides modifies membrane permeability to oligomycin.  相似文献   

2.
Cultured rat hepatocytes were treated with potassium cyanide, an inhibitor of cytochrome oxidase; valinomycin, a K+ ionophore; carbonyl cyanide m-chlorophenylhydrazone (CCCP), a protonophore; and the ATP synthetase inhibitor oligomycin. The effect of these agents on the viability of the cells was related to changes in ATP content and the deenergization of the mitochondria. The ATP content was reduced by over 90% by each inhibitor. All of the agents except oligomycin killed the cells within 4 h. With the exception of oligomycin, the mitochondrial membrane potential as measured by the distribution of [3H]triphenylmethylphosphonium collapsed with each of the agents. Monensin, a H+/Na+ ionophore, potentiated the toxicity of cyanide and CCCP, whereas the toxicity of valinomycin was reduced. The effect of cyanide and monesin on the cytoplasmic pH of cultured hepatocytes was measured with the fluorescent probe, 2',7'-biscarboxyethyl-5,6-carboxyfluorescein. Cyanide promptly acidified the cytosol, and the addition of 10 microM monensin caused a rapid alkalinization of the cytosol. A reduction of pH of the culture medium from 7.4 to 6.6 and 6.0 prevented the cell killing both by cyanide alone and by cyanide in the presence of monensin. However, neither monensin nor extracellular acidosis had any effect on the loss of mitochondrial energization in the presence of cyanide. It is concluded that ATP depletion per se is insufficient to explain the cell killing with cyanide, CCCP, and valinomycin. Rather, cell killing is better correlated with a loss of mitochondrial energization. With cyanide an intracellular acidosis interferes with the mechanism that couples collapse of the mitochondrial membrane potential to lethal cell injury.  相似文献   

3.
The effects of selected metabolic and respiratory inhibitors on the gliding motility of Flexibacter polymorphus were examined. Motility and oxygen consumption were quantitatively inhibited in a reversible manner by specific respiratory poisons, suggesting that gliding velocity was linked to electron transport activity. Arsenate had little influence on the number or rate of gliding filaments, despite a 95% decrease in the concentration of intracellular adenosine 5′-triphosphate (ATP). At concentrations of cyanide or azide that abolished gliding movement, cells possessed a level of ATP that should have been sufficient to allow motility. Proton-conducting uncouplers of oxidative phosphorylation, such as carbonylcyanide m-chlorophenylhydrazone (CCCP) and tetrachlorosalicylanilide, strongly inhibited locomotion yet did not suppress respiratory activity or intracellular ATP sufficiently to account for their effect on movement. Inhibition of motility by CCCP (but not by tetrachlorosalicylanilide) was partially reversed by sulfhydryl compounds. However, unlike CCCP, inhibition of motility by p-chloromercuribenzoate, a known sulfhydryl-blocking reagent, was associated with a corresponding reduction in respiratory activity and ATP content of cells. Protein synthesis was not blocked by concentrations of CCCP inhibitory for motility, indicating that utilization of existing ATP in this energy-requiring process was not impaired. These data suggest (but do not unequivocally prove) that ATP may not function as the sole energy donor for the gliding mechanism, but that some additional product of electron transport is required (e.g., the intermediate of oxidative phosphorylation).  相似文献   

4.
Cardiolipin (CL) is an acidic phospholipid present almost exclusively in membranes harboring respiratory chain complexes. We have previously shown that, in Saccharomyces cerevisiae, CL provides stability to respiratory chain supercomplexes and CL synthase enzyme activity is reduced in several respiratory complex assembly mutants. In the current study, we investigated the interdependence of the mitochondrial respiratory chain and CL biosynthesis. Pulse-labeling experiments showed that in vivo CL biosynthesis was reduced in respiratory complexes III (ubiquinol:cytochrome c oxidoreductase) and IV (cytochrome c oxidase) and oxidative phosphorylation complex V (ATP synthase) assembly mutants. CL synthesis was decreased in the presence of CCCP, an inhibitor of oxidative phosphorylation that reduces the pH gradient but not by valinomycin or oligomycin, both of which reduce the membrane potential and inhibit ATP synthase, respectively. The inhibitors had no effect on phosphatidylglycerol biosynthesis or CRD1 gene expression. These results are consistent with the hypothesis that in vivo CL biosynthesis is regulated at the level of CL synthase activity by the DeltapH component of the proton-motive force generated by the functional electron transport chain. This is the first report of regulation of phospholipid biosynthesis by alteration of subcellular compartment pH.  相似文献   

5.
The role of Na+ in Vibrio alginolyticus oxidative phosphorylation has been studied. It has been found that the addition of a respiratory substrate, lactate, to bacterial cells exhausted in endogenous pools of substrates and ATP has a strong stimulating effect on oxygen consumption and ATP synthesis. Phosphorylation is found to be sensitive to anaerobiosis as well as to HQNO, an agent inhibiting the Na+-motive respiratory chain of V. alginolyticus. Na+ loaded cells incubated in a K+ or Li+ medium fail to synthesize ATP in response to lactate addition. The addition of Na+ at a concentration comparable to that inside the cell is shown to abolish the inhibiting effect of the high intracellular Na+ level. Neither lactate oxidation nor delta psi generation coupled with this oxidation is increased by external Na+ in the Na+-loaded cells. It is concluded that oxidative ATP synthesis in V. alginolyticus cells is inhibited by the artificially imposed reverse delta pNa, i.e., [Na+]in greater than [Na+]out. Oxidative phosphorylation is resistant to a protonophorous uncoupler (0.1 mM CCCP) in the K+-loaded cells incubated in a high Na+ medium, i.e., when delta pNa of the proper direction [( Na+]in less than [Na+]out) is present. The addition of monensin in the presence of CCCP completely arrests the ATP synthesis. Monensin without CCCP is ineffective. Oxidative phosphorylation in the same cells incubated in a high K+ medium (delta pNa is low) is decreased by CCCP even without monensin. Artificial formation of delta pNa by adding 0.25 M NaCl to the K+-loaded cells (Na+ pulse) results in a temporary increase in the ATP level which spontaneously decreases again within a few minutes. Na+ pulse-induced ATP synthesis is completely abolished by monensin and is resistant to CCCP, valinomycin and HQNO. 0.05 M NaCl increases the ATP level only slightly. Thus, V. alginolyticus cells at alkaline pH represent the first example of an oxidative phosphorylation system which uses Na+ instead of H+ as the coupling ion.  相似文献   

6.
The relationship is investigated between mitochondrial membrane potential (Delta Psi(M)), respiration and cytochrome c (cyt c) release in single neural bcl-2 transfected cells (GT1-7bcl-2) or GT1-7puro cells during apoptosis induced by staurosporine (STS). Bcl-2 inhibited the mitochondrial release of cyt c and apoptosis. Three different cell responses to STS were identified in GT1-7puro cells: (i) neither Delta Psi(M) nor cyt c were significantly affected; (ii) a decrease in Delta Psi(M) was accompanied by a complete release of cyt c; or (iii) cyt c release occurred independently of a loss of Delta Psi(M). The endogenous inner membrane proton leak of the in situ mitochondria, monitored by respiration in the presence of oligomycin, was increased by STS by 92% in puro cells, but by only 23% in bcl-2 cells. STS decreased respiratory capacity, in the presence of protonophore, by 31% in puro cells and by 20% in bcl-2 cells. In the absence of STS, oligomycin hyperpolarized mitochondria within both puro and bcl-2-transfected cells, indicating that the organelles were net generators of ATP. However after 15 h exposure to STS oligomycin rapidly collapsed residual mitochondrial polarization in the puro cells, indicating that Delta Psi(M) had been maintained by ATP synthase reversal. bcl-2 cells in contrast, maintained Delta Psi(M) until protonophore was added. These results indicate that the maintenance of Delta Psi(M) following release of cyt c may be a consequence of ATP synthase reversal and cytoplasmic ATP hydrolysis in STS-treated GT1-7 cells.  相似文献   

7.
The relationship between the O2 input rate into a suspension of Rhizobium leguminosarum bacteroids, the cellular ATP and ADP pools, and the whole-cell nitrogenase activity during L-malate oxidation has been studied. It was observed that inhibition of nitrogenase by excess O2 coincided with an increase of the cellular ATP/ADP ratio. When under this condition the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) was added, the cellular ATP/ADP ratio was lowered while nitrogenase regained activity. To explain these observations, the effects of nitrogenase activity and CCCP on the O2 consumption rate of R. leguminosarum bacteroids were determined. From 100 to 5 microM O2, a decline in the O2 consumption rate was observed to 50 to 70% of the maximal O2 consumption rate. A determination of the redox state of the cytochromes during an O2 consumption experiment indicated that at O2 concentrations above 5 microM, electron transport to the cytochromes was rate-limiting oxidation and not the reaction of reduced cytochromes with oxygen. The kinetic properties of the respiratory chain were determined from the deoxygenation of oxyglobins. In intact cells the maximal deoxygenation activity was stimulated by nitrogenase activity or CCCP. In isolated cytoplasmic membranes NADH oxidation was inhibited by respiratory control. The dehydrogenase activities of the respiratory chain were rate-limiting oxidation at O2 concentrations (if >300 nM. Below 300 nM the terminal oxidase system followed Michaelis-Menten kinetics (Km of 45 +/- 8 nM). We conclude that (i) respiration in R. leguminosarum bacteroids takes place via a respiratory chain terminating at a high-affinity oxidase system, (ii) the activity of the respiratory chain is inhibited by the proton motive force, and (iii) ATP hydrolysis by nitrogenase can partly relieve the inhibition of respiration by the proton motive force and thus stimulate respiration at nanomolar concentrations of O2.  相似文献   

8.
The effects of ATP/ADP-antiporter inhibitors on the uncoupling of oxidative phosphorylation by palmitic acid, detergents and protonophore FCCP in liver mitochondria were studied. The uncoupling activity of these compounds was estimated by their stimulating effect on succinate oxidation and H+ conductivity of the inner mitochondrial membrane in the presence of oligomycin. Carboxyatractylate and pyridoxal 5-phosphate suppressed the uncoupling effects of palmitic acid and anionic detergents but had no effect on the uncoupling action of the nonionic detergent Triton X-100, the cationic detergent CTAB and FCCP. The data obtained are discussed in terms of the putative role of the ATP/ADP-antiporter in the electrophoretic transport of hydrophobic anions from the mitochondria.  相似文献   

9.
The purpose of study was to comparatively characterize the oxidative phosphorylation (OXPHOS) and function of respiratory chain in mitochondria in human gastric corpus mucosa undergoing transition from normal to cancer states and in human gastric cancer cell lines, MKN28 and MKN45. The tissue samples taken by endobiopsy and the cells were permeabilized by saponin treatment to assess mitochondrial function in situ by high-resolution oxygraphy. Compared to the control group of endobiopsy samples, the maximal capacity of OXPHOS in the cancer group was almost twice lower. The respiratory chain complex I-dependent respiration, normalized to complex II-dependent respiration, was reduced that suggests deficiency of complex I, but the respiratory control by ADP in the presence of succinate was increased. Similar changes were observed also in mucosa adjacent to cancer tissue. The respiratory capacity of MKN45 cells was higher than that of MKN28 cells, but both types of cells exhibited a deficiency of complex I of the respiratory chain which appears to be an intrinsic property of the cancer cells. In conclusion, human gastric cancer is associated with decreased respiratory capacity, deficiency of the respiratory complex I of mitochondria, and improved coupling of succinate oxidation to phosphorylation in tumor tissue and adjacent atrophic mucosa. Detection of these changes in endobiopsy samples may be of diagnostic value.  相似文献   

10.
Abstract: The ability of mitochondrial Ca2+ transport to limit the elevation in free cytoplasmic Ca2+ concentration in neurones following an imposed Ca2+ load is reexamined. Cultured cerebellar granule cells were monitored by digital fura-2 imaging. Following KCI depolarization, addition of the protonophore carbonylcyanide m -chlorophenylhydrazone (CCCP) to depolarize mitochondria released a pool of Ca2+ into the cytoplasm in both somata and neurites. No CCCP-releasable pool was found in nondepolarized cells. Although the KCI-evoked somatic and neurite Ca2+ concentration elevations were enhanced when CCCP was present during KCI depolarization, this was associated with a collapsed ATP/ADP ratio. In the presence of the ATP synthase inhibitor oligomycin, glycolysis maintained high ATP/ADP ratios for at least 10 min. The further addition of the mitochondrial complex I inhibitor rotenone led to a collapse of the mitochondrial membrane potential, monitored by rhodamine-123, but had no effect on ATP/ADP ratios. In the presence of rotenone/oligomycin, no CCCP-releasable pool was found subsequent to KCI depolarization, consistent with the abolition of mitochondrial Ca2+ transport; however, paradoxically the KCI-evoked Ca2+ elevation is decreased. It is concluded that the CCCP-induced increase in cytoplasmic Ca2+ response to KCI is due to inhibition of nonmitochondrial ATP-dependent transport and that mitochondrial Ca2+ transport enhances entry of Ca2+, perhaps by removing the cation from cytoplasmic sites responsible for feedback inhibition of voltage-activated Ca2+ channel activity.  相似文献   

11.
The role of Na+ in Vibrio alginolyticus oxidative phosphorylation has been studied. It has been found that the addition of a respiratory substrate, lactate, to bacterial cells exhausted in endogenous pools of substrates and ATP has a strong stimulating effect on oxygen consumption and ATP synthesis. Phosphorylation is found to be sensitive to anaerobiosis as well as to HQNO, an agent inhibiting the Na+-motive respiratory chain of V. alginolyticus. Na+ loaded cells incubated in a K+ or Li+ medium fail to synthesize ATP in response to lactate addition. The addition of Na+ at a concentration comparable to that inside the cell is shown to abolish the inhibiting effect of the high intracellular Na+ level. Neither lactate oxidation nor Δω generation coupled with this oxidation is increased by external Na+ in the Na+-loaded cells. It is concluded that oxidative ATP synthesis in V. alginolyticus cells is inhibited by the artificially imposed reverse ΔPNa, i.e., [Na+]in > [Na+]out. Oxidative phosphorylation is resistant to a protonophorous uncoupler (0.1 mM CCCP) in the K+-loaded cells incubated in a high Na+ medium, i.e., when ΔpNa of the proper direction ([Na+]in < [Na+]out) is present. The addition of monensin in the presence of CCCP completely arrests the ATP synthesis. Monensin without CCCP is ineffective. Oxidative phosphorylation in the same cells incubated in a high K+ medium (ΔpNa is low) is decreased by CCCP even without monensin. Artificial formation of ΔpNa by adding 0.25 M NaCl to the K+-loaded cells (Na+ pulse) results in a temporary increase in the ATP level which spontaneously decreases again within a few minutes. Na+ pulse-induced ATP synthesis is completely abolished by monensin and is resistant to CCCP, valinomycin and HQNO. 0.05 M NaCl increases the ATP level only slightly. Thus, V. alginolyticus cells at alkaline pH represent the first example of an oxidative phosphorylation system which uses Na+ instead of H+ as the coupling ion.  相似文献   

12.
A series of uncouplers and inhibitors of oxidative phosphorylation have been studied with regard to their effect on the hydrolytic activity of the reduced and oxidized forms of isolated or membrane-bound mitochondrial ATPase. Uncouplers (2,4-dinitrophenol, dicoumarol), which are also activators of the hydrolytic activity of ATPase, were more potent activators on the oxidized form of the enzyme. Inhibitors of oxidative phosphorylation (oligomycin, azide and amytal) had a more potent inhibitory effect on the hydrolytic activity of ATPase in its reduced form. Purified F1-ATPase, oligomycin insensitive in the oxidized form of the enzyme, became sensitive to oligomycin in the reduced form. An interpretation of the results suggests the presence of a mechanism that unifies the action of these different compounds on the synthesis and hydrolysis of ATP catalyzed by mitochondrial ATPase.  相似文献   

13.
We present evidence that the potent chloride channel blocker NPPB has protonophoric activity in the mitochondria and across the plasma membrane of phagocytic cells. The resting O2 consumption of murine peritoneal macrophages was stimulated up to 2.5-fold in the presence of NPPB, with a K0.5 of 15 microM. The stimulatory effect of NPPB on O2 consumption, like that of the classical protonophore CCCP, was prevented by the mitochondrial respiratory chain inhibitors antimycin A, rotenone or cyanide. NPPB also mediated rheogenic proton transport across the plasma membrane of human neutrophils and macrophages in the direction dictated by the electrochemical proton gradient. As a consequence of its protonophoric activity, NPPB uncoupled mitochondrial ATP synthesis, resulting in partial depletion of cellular ATP. These observations indicate that, at the concentrations frequently used for blockade of anion channels, NPPB acts as an effective protonophore, potentially disturbing cytosolic pH and mitochondrial ATP synthesis.  相似文献   

14.
Non-induced HL-60 cells (N-IND) and HL-60 cells induced to differentiate with 2 microM retinoic acid (IND) were electropermeabilized with electrical discharges, and the intracellular Ca2+ stores were measured in each type of cell. Both N-IND and IND cells accumulate Ca2+ in the presence of ATP after electropermeabilization. The Ca2+ is stored in at least two different compartments; accumulation in one of the compartments is inhibited by oligomycin and CCCP, and it is not releasable by Ins(1,4,5)P3. The maximal accumulation of Ca2+ by the Ins(1,4,5)P3 sensitive pool is about 0.3 nmol/10(6) cells and 0.9 nmol/10(6) cells for the N-IND and for the IND cells, respectively, and the half-maximal value occurs at a free Ca2+ concentration of 0.23 microM and 0.63 microM, respectively. The oligomycin + CCCP sensitive pool hardly accumulates any Ca2+ at this level of free Ca2+, but at higher free [Ca2+] (greater than microM) its maximal capacity is 80-100-fold higher than the Ins(1,4,5)P3-sensitive pool (about 17-18 nmol/10(6) cells). It is concluded that at physiological free Ca2+ concentrations, the non-mitochondrial Ca2+ pool is regulating the intracellular free Ca2+ in N-IND and IND HL-60 cells, and that this Ca2+ pool can be mobilized by Ins(1,4,5)P3. Furthermore, the capacity of this pool increases about 3-fold when the cells are induced to differentiate with retinoic acid.  相似文献   

15.
Accumulation of Ca2+ (+ phosphate) by respiring mitochondria from Ehrlich ascites or AS30-D hepatoma tumor cells inhibits subsequent phosphorylating respiration in response to ADP. The respiratory chain is still functional since a proton-conducting uncoupler produces a normal stimulation of electron transport. The inhibition of phosphorylating respiration is caused by intramitochondrial Ca2+ (+ phosphate). ATP + Mg2+ together, but not singly, prevents the inhibitory action of Ca2+. Neither AMP, GTP, GDP, nor any other nucleoside 5'-triphosphate or 5'-diphosphate could replace ATP in this effect. Phosphorylating respiration on NAD(NADP)-linked substrates was much more susceptible to the inhibitory effect of intramitochondrial Ca2+ than succinate-linked respiration. Significant inhibition of oxidative phosphorylation is given by the endogenous Ca2+ present in freshly isolated tumor mitochondria. The phosphorylating respiration of permeabilized Ehrlich ascites tumor cells is also inhibited by Ca2+ accumulated by the mitochondria in situ. Possible causes of the Ca2+-induced inhibition of oxidative phosphorylation are considered.  相似文献   

16.
In eggs of the echiuroid Urechis unicinctus the respiration rate, which is not altered by fertilization, is inhibited by rotenone, antimycin A and cyanide. The respiration in echiuroid eggs is probably mediated by the mitochondrial respiratory chain. In fertilized eggs, the respiration was inhibited by oligomycin and stimulated by the uncouplers of oxidative phosphorylation 2,4-dinitrophenol and carbonylcyanide p-trifluoromethoxyphenylhydrazone, whereas respiration in unfertilized eggs was insensitive to these compounds. Insemination increased the respiratory rate in eggs in the presence of uncouplers and reduced it in the presence of oligomycin. These findings suggest that the capacity of electron transport in mitochondira is elevated by fertilization but becomes latent on fertilization-induced coupling of respiration with oxidative phosphorylation. Strong stimulation of the respiration in unfertilized eggs was induced by dichlorophenol indophenol, phenazine methosulfate and tetramethyl p-phenylenediamine, suggesting possible sites at which electron transport is regulated in unfertilized eggs. The resulting stimulation of respiration in unfertilized eggs was insensitive to uncouplers and oligomycin, but became sensitive to them after fertilization simultaneously with considerable decrease in its rate. Fertilization-induced coupling of the respiration seemed to reduce the respiratory rate enhanced artificially by these redox compounds.  相似文献   

17.
The parameters of energy coupling of mitochondria isolated from the livers of hibernating and awakening gophers were studied. The ATP/ADP-antiporter inhibitor carboxyatractylate slowed down the respiration rate, increased delta psi and decreased the ionic conductivity of the inner mitochondrial membrane as measured by the rate of the delta psi decline after addition of cyanide (in the presence of oligomycin and EGTA). A similar effect was produced by BSA, carboxyatractylate being fairly ineffective in the presence of BSA. In hibernating gophers the maximal rate of the uncoupled respiration and the ionic conductivity of the inner mitochondrial membrane were markedly decreased as compared with awakening gophers. The data obtained suggest that in awakening animals fatty acids induce the uncoupling of oxidative phosphorylation by the ATP/ADP-antiporter, this process being simultaneous with the activation of the respiratory chain.  相似文献   

18.
We studied the regulation of arachidonic acid (AA) release by guanosine 5'-O-(3-thiotriphosphate (GTP gamma S) and Ca2+ in electropermeabilized HL60 granulocytes. Stimulation of AA release by GTP gamma S and Ca2+ was mediated by phospholipase A2 (PLA2) and required the presence of MgATP (EC50: 100-250 microM). The nucleotide effects were Ca(2+)-dependent (maximal effects detected at 1 microM free cation). UTP and ATP gamma S, which stimulate AA release in intact HL60 granulocytes with potencies and efficacies similar to those of ATP, were ineffective in supporting the effects of GTP gamma S in electropermeabilized cells. Pretreatment with pertussis toxin affected stimulation of AA release by ATP in intact cell, without altering the nucleotide effects in permeabilized cells. We observed the protein kinase C-dependent phosphorylation of PLA2 in permeabilized HL60 granulocytes, together with a correlation between the effects of phorbol esters and staurosporine on this reaction and on AA release. ATP-independent activation of PLA2 by GTP gamma S and/or Ca2+ was measured in subcellular fractions prepared from HL60 granulocytes. These data appear consistent with a model in which PLA2 activity in resting HL60 granulocytes is subjected to an inhibitory constraint that prevents its activation by Ca2+ and G-proteins. Removal of this constraint, either by the protein kinase C-dependent phosphorylation of the enzyme in vivo or physical disruption of the regulatory assembly (e.g. by N2 cavitation), allows its activation by Ca2+ and G-proteins.  相似文献   

19.
It has been proposed that hexokinase bound to mitochondria occupies a preferred site to which ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740-749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or any combination of these, suggesting a source of ATP in addition to oxidative phosPhorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentrations, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher initial rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

20.
Mitochondria in plant cells undergo fusion and fission frequently. Although the mechanisms and proteins of mitochondrial fusion are well known in yeast and mammalian cells, they remain poorly understood in plant cells. To clarify the physiological requirements for plant mitochondrial fusion, we investigated the fusion frequency of mitochondria in tobacco cultured cells using the photoconvertible fluorescent protein Kaede and some physiological inhibitors. The latter included two uncouplers, 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of mitochondrial ATP synthase, oligomycin, and an actin polymerization inhibitor, latrunculin B (Lat B). The frequency of mitochondrial fusion was clearly reduced by DNP, CCCP and oligomycin, but not by Lat B, although Lat B severely inhibited mitochondrial movement. Moreover, DNP, CCCP and oligomycin evidently lowered the cellular ATP levels. These results indicate that plant mitochondrial fusion depends on the cellular ATP level, but not on actin polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号