首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Malaria is caused by four species of apicomplexan protozoa belonging to the genus Plasmodium. These parasites possess a specialized collection of secretory organelles called rhoptries, micronemes and dense granules (DGs) that in part facilitate invasion of host cells. The mechanism by which the parasite traffics proteins to these organelles as well as regulates their secretion has important implications for understanding the invasion process and may lead to development of novel intervention strategies. In this review, we focus on emerging data about trafficking signals, mechanisms of biogenesis and secretion. At least some of these are conserved in higher eukaryotes, suggesting that rhoptries, micronemes and DGs are related to organelles such as secretory lysosomes that are well known to mainstream cell biologists.  相似文献   

2.
Malaria is caused by four species of apicomplexan protozoa belonging to the genus Plasmodium. These parasites possess a specialized collection of secretory organelles called rhoptries, micronemes and dense granules (DGs) that in part facilitate invasion of host cells. The mechanism by which the parasite traffics proteins to these organelles as well as regulates their secretion has important implications for understanding the invasion process and may lead to development of novel intervention strategies. In this review, we focus on emerging data about trafficking signals, mechanisms of biogenesis and secretion. At least some of these are conserved in higher eukaryotes, suggesting that rhoptries, micronemes and DGs are related to organelles such as secretory lysosomes that are well known to mainstream cell biologists.  相似文献   

3.
The basic organisation of the endomembrane system is conserved in all eukaryotes and comparative genome analyses provides compelling evidence that the endomembrane system of the last common eukaryotic ancestor (LCEA) is complex with many genes required for regulated traffic being present. Although apicomplexan parasites, causative agents of severe human and animal diseases, appear to have only a basic set of trafficking factors such as Rab-GTPases, they evolved unique secretory organelles (micronemes, rhoptries and dense granules) that are sequentially secreted during invasion of the host cell. In order to define the secretory pathway of apicomplexans, we performed an overexpression screen of Rabs in Toxoplasma gondii and identified Rab5A and Rab5C as important regulators of traffic to micronemes and rhoptries. Intriguingly, we found that not all microneme proteins traffic depends on functional Rab5A and Rab5C, indicating the existence of redundant microneme targeting pathways. Using two-colour super-resolution stimulated emission depletion (STED) we verified distinct localisations of independent microneme proteins and demonstrate that micronemal organelles are organised in distinct subsets or subcompartments. Our results suggest that apicomplexan parasites modify classical regulators of the endocytic system to carryout essential parasite-specific roles in the biogenesis of their unique secretory organelles.  相似文献   

4.
Apicomplexan parasites harbour unique secretory organelles (dense granules, rhoptries and micronemes) that play essential functions in host infection. Toxoplasma gondii parasites seem to possess an atypical endosome‐like compartment, which contains an assortment of proteins that appear to be involved in vesicular sorting and trafficking towards secretory organelles. Recent studies highlighted the essential roles of many regulators such as Rab5A, Rab5C, sortilin‐like receptor and syntaxin‐6 in secretory organelle biogenesis. However, little is known about the protein complexes that recruit Rab‐GTPases and SNAREs for membrane tethering in Apicomplexa. In mammals and yeast, transport, tethering and fusion of vesicles from early endosomes to lysosomes and the vacuole, respectively, are mediated by CORVET and HOPS complexes, both built on the same Vps‐C core that includes Vps11 protein. Here, we show that a T. gondii Vps11 orthologue is essential for the biogenesis or proper subcellular localization of secretory organelle proteins. TgVps11 is a dynamic protein that associates with Golgi endosomal‐related compartments, the vacuole and immature apical secretory organelles. Conditional knock‐down of TgVps11 disrupts biogenesis of dense granules, rhoptries and micronemes. As a consequence, parasite motility, invasion, egress and intracellular growth are affected. This phenotype was confirmed with additional knock‐down mutants of the HOPS complex. In conclusion, we show that apicomplexan parasites use canonical regulators of the endolysosome system to accomplish essential parasite‐specific functions in the biogenesis of their unique secretory organelles.  相似文献   

5.
Plasmodium parasites have three sets of specialised secretory organelles at the apical end of their invasive forms--rhoptries, micronemes and dense granules. The contents of these organelles are responsible for or contribute to host cell invasion and modification, and at least four apical proteins are leading vaccine candidates. Given the unusual nature of Plasmodium invasion, it is not surprising that unique proteins are involved in this process. Nowhere is this more evident than in rhoptries. We have collated data from several recent studies to compile a rhoptry proteome. Discussion is focussed here on rhoptry content and function.  相似文献   

6.
The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.  相似文献   

7.
Apicomplexan parasites including Toxoplasma gondii and Plasmodium spp. manufacture a complex arsenal of secreted proteins used to interact with and manipulate their host environment. These proteins are organised into three principle exocytotic compartment types according to their functions: micronemes for extracellular attachment and motility, rhoptries for host cell penetration, and dense granules for subsequent manipulation of the host intracellular environment. The order and timing of these events during the parasite's invasion cycle dictates when exocytosis from each compartment occurs. Tight control of compartment secretion is, therefore, an integral part of apicomplexan biology. Control of microneme exocytosis is best understood, where cytosolic intermediate molecular messengers cGMP and Ca2+ act as positive signals. The mechanisms for controlling secretion from rhoptries and dense granules, however, are virtually unknown. Here, we present evidence that dense granule exocytosis is negatively regulated by cytosolic Ca2+, and we show that this Ca2+‐mediated response is contingent on the function of calcium‐dependent protein kinases TgCDPK1 and TgCDPK3. Reciprocal control of micronemes and dense granules provides an elegant solution to the mutually exclusive functions of these exocytotic compartments in parasite invasion cycles and further demonstrates the central role that Ca2+ signalling plays in the invasion biology of apicomplexan parasites.  相似文献   

8.
Host cell invasion is an essential step during infection by Toxoplasma gondii, an intracellular protozoan that causes the severe opportunistic disease toxoplasmosis in humans. Recent evidence strongly suggests that proteins discharged from Toxoplasma apical secretory organelles (micronemes, dense granules, and rhoptries) play key roles in host cell invasion and survival during infection. However, to date, only a limited number of secretory proteins have been discovered, and the full spectrum of effector molecules involved in parasite invasion and survival remains unknown. To address these issues, we analyzed a large cohort of freely released Toxoplasma secretory proteins by using two complementary methodologies, two-dimensional electrophoresis/mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry (MudPIT, shotgun proteomics). Visualization of Toxoplasma secretory products by two-dimensional electrophoresis revealed approximately 100 spots, most of which were successfully identified by protein microsequencing or matrix-assisted laser desorption ionization-mass spectrometry analysis. Many proteins were present in multiple species suggesting they are subjected to substantial post-translational modification. Shotgun proteomic analysis of the secretory fraction revealed several additional products, including novel putative adhesive proteins, proteases, and hypothetical secretory proteins similar to products expressed by other related parasites including Plasmodium, the etiologic agent of malaria. A subset of novel proteins were re-expressed as fusions to yellow fluorescent protein, and this initial screen revealed shared and distinct localizations within secretory compartments of T. gondii tachyzoites. These findings provided a uniquely broad view of Toxoplasma secretory proteins that participate in parasite survival and pathogenesis during infection.  相似文献   

9.
Apicomplexans are obligate intracellular parasites that invade the host cell in an active process that relies on unique secretory organelles (micronemes, rhoptries and dense granules) localized at the apical tip of these highly polarized eukaryotes. In order for the contents of these specialized organelles to reach their final destination, these proteins are sorted post‐Golgi and it has been speculated that they pass through endosomal‐like compartments (ELCs), where they undergo maturation. Here, we characterize a Toxoplasma gondii homologue of Syntaxin 6 (TgStx6), a well‐established marker for the early endosomes and trans Golgi network (TGN) in diverse eukaryotes. Indeed, TgStx6 appears to have a role in the retrograde transport between ELCs, the TGN and the Golgi, because overexpression of TgStx6 results in the development of abnormally shaped parasites with expanded ELCs, a fragmented Golgi and a defect in inner membrane complex maturation. Interestingly, other organelles such as the micronemes, rhoptries and the apicoplast are not affected, establishing the TGN as a major sorting compartment where several transport pathways intersect. It therefore appears that Toxoplasma has retained a plant‐like secretory pathway .  相似文献   

10.
Sporozoites of the apicomplexan parasite Cryptosporidium parvum were subjected to cell disruption and subcellular fractionation using a sucrose density step gradient. With this procedure, highly enriched preparations of the parasite membrane, the micronemes, dense granules and amylopectin granules were produced. No separate fraction containing rhoptries was obtained, however this organelle was found in defined fractions of the gradient, still associated with the apical tip of the sporozoites. Using negative staining, the internal structure of the micronemes was revealed by transmission electron microscopy. Micronemes and dense granules showed characteristic protein compositions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The micronemes contained three major proteins of approximately 30, 120 and 200 kDa and the dense granules contain five major proteins in the 120-180 kDa range.  相似文献   

11.
The Apicomplexan parasites Toxoplasma gondii and Plasmodium species are obligate intracellular parasites that rely upon unique secretory organelles for invasion and other specialized functions. Data is emerging that proteases are critical for the biogenesis of micronemes and rhoptries, regulated secretory organelles reminiscent of dense core granules and secretory lysosomes of higher eukaryotes. Proteases targeted to the Plasmodium food vacuole, a unique organelle dedicated to hemoglobin degradation, are also critical to parasite survival. Thus study of the targeting and function of the proteases of the Apicomplexa provides a fascinating model system to understand regulated secretion and secretory organelle biogenesis.  相似文献   

12.
Toxoplasma gondii is a protozoan parasite that infects a wide variety of warm-blooded animals and humans, in which it causes opportunistic disease. As an obligate intracellular parasite, T. gondii must invade a host cell to survive and replicate during infection. Recent studies suggest that T. gondii secretes a variety of proteins that appear to function during invasion or intracellular replication. These proteins originate from three distinct regulated secretory organelles called micronemes, rhoptries and dense granules. By discharging the contents of its secretory organelles at precise steps in invasion, T. gondii appears to timely deploy secretory proteins to their correct target destinations. Based on the timing of secretion and the characteristics of secretory proteins, an emerging theme is that T. gondii compartmentalizes its secretory proteins according to general function. Thus, it appears that micronemal proteins may function during parasite attachment to host cells, rhoptry proteins may facilitate parasite vacuole formation and host organellar association, and dense granule proteins likely promote intracellular replication, possibly by transporting and processing nutrients from the host cell. However, as more T. gondii secretory proteins are identified and characterized, it is likely that additional functions will be ascribed to each class of proteins secreted- by this fascinating invasive parasite.  相似文献   

13.
Toxoplasma gondii is an intracellular parasite that does not differentiate among hosts and is capable of infecting nearly all warm-blooded vertebrates. Although about 30% of the human population is thought to be infected with T. gondii, it is one of the most common opportunistic infections that does not cause serious symptoms when the immune system is functioning normally. In this review, we focus on anti-T. gondii infection by host innate immunity, acquired immunity, and type II interferon-mediated cell-autonomous immunity. T. gondii has three types of secretory structures, rhoptries, dense granules, and micronemes, among which molecules released from T. gondii via rhoptries and dense granules act to inhibit host responses to eliminate. T. gondii. The molecules released by T. gondii through rhoptries and dense granules not only act to suppress host immunity, but also to control gene expression in infected cells, thereby favouring the spread of infection. T. gondii has survived to this day, and may continue to evolve by skilfully applying its own factors to the infected host.  相似文献   

14.
The accurate targeting of proteins to their final destination is an essential process in all living cells. Apicomplexans are obligate intracellular protozoan parasites that possess a compartmental organization similar to that of free-living eukaryotes but can be viewed as professional secretory cells. Establishment of parasitism involves the sequential secretion from highly specialized secretory organelles, including micronemes, rhoptries and dense granules. Additionally, apicomplexans harbor a tubular mitochondrion, a nonphotosynthetic plastid organelle termed the apicoplast, acidocalcisomes and an elaborated inner membrane complex composed of flattened membrane cisternae that are derived from the secretory pathway. Given the multitude of destinations both inside and outside the parasite, the endoplasmic reticulum/Golgi of the apicomplexans constitutes one of the most busy roads intersections in eukaryotic traffic.  相似文献   

15.
Micronemes, rhoptries and dense granules are secretory organelles of Toxoplasma gondii crucial for host cell invasion and formation of the parasitophorous vacuole (PV). We examined whether their relative volumes change during the intracellular cycle. Stereological analysis of random ultrathin sections taken at 5min of interaction, 7 and 24h post-infection demonstrated that the relative volume of each type of organelle decreases just after the respective peak of secretion. Micronemes are radially arranged below the polar ring, while rhoptries converge to but only a few reach the inside of the conoid. In contrast to the apical and polarized organelles, dense granules were found scattered throughout the cytoplasm, with no preferential location in the parasite cell body. Extensive observation of random sections indicated that each organelle probably secretes in a different region. Micronemes secrete just below the posterior ring and probably require that the conoid is extruded. The rhoptries passing through the conoid secrete at a porosome-like point at the most apical region. Dense granules secrete laterally, probably at fenestrations in the inner membrane complex. Immunocytochemistry showed that there are no subpopulations of rhoptries or dense granules, as a single organelle can contain more than one kind of its specific proteins. The vacuolar-like profiles observed at the apical portion of parasites just after invasion were confirmed to be empty rhoptries, as they were positively labeled for rhoptry proteins. These findings contribute for a better understanding of the essential behavior of secretory organelles.  相似文献   

16.
Although accumulating evidence supports an active role for host cells during Cryptosporidium parvum invasion of epithelia, our knowledge of the underlying parasite-specific processes triggering such events is limited. In an effort to better understand the invasion strategy of C. parvum, we characterized the presence and distribution of the apical organelles (micronemes, dense granules, and rhoptry) through the stages of attachment to, and internalization by, human biliary epithelia, using serial-section electron microscopy. Novel findings include an apparent organized rearrangement of micronemes upon host cell attachment. The apically segregated micronemes were apposed to a central microtubule-like filamentous structure, and the more distal micronemes localized to the periphery and apical region of the parasite during internalization, coinciding with the formation of the anterior vacuole. The morphological observations presented here extend our understanding of parasite-specific processes that occur during attachment to, and internalization by, host epithelial cells.  相似文献   

17.
Proteomic analysis of calcium-dependent secretion in Toxoplasma gondii   总被引:3,自引:0,他引:3  
Kawase O  Nishikawa Y  Bannai H  Zhang H  Zhang G  Jin S  Lee EG  Xuan X 《Proteomics》2007,7(20):3718-3725
Toxoplasma gondii is an intracellular protozoan parasite that invades a wide range of nucleated cells. In the course of intracellular parasitism, the parasite releases a large variety of proteins from three secretory organelles, namely, micronemes, rhoptries and dense granules. Elevation of intracellular Ca(2+) in the parasite causes microneme discharge, and microneme secretion is essential for the invasion. In this study, we performed a proteomic analysis of the Ca(2+)-dependent secretion to evaluate the protein repertoire. We found that Ca(2+)-mobilising agents, such as thapsigargin, NH(4)Cl, ethanol and a Ca(2+) ionophore, A23187, promoted the secretion of the parasite proteins. The proteins, artificially secreted by A23187, were used in a comparative proteomic analysis by 2-DE followed by PMF analysis and/or N-terminal sequencing. Major known microneme proteins (MICs), such as MIC2, MIC4, MIC6 and MIC10 and apical membrane antigen 1 (AMA1), were identified, indicating that the proteomic analysis worked accurately. Interestingly, new members of secretory proteins, namely rhoptry protein 9 (ROP9) and Toxoplasma SPATR (TgSPATR), which was a homologue of a Plasmodium secreted protein with an altered thrombospondin repeat (SPATR), were detected in Ca(2+)-dependent secretion. Thus, we succeeded in detecting Ca(2+)-dependent secretory proteins in T. gondii, which contained novel secretory proteins.  相似文献   

18.
The inner membrane complex and the apical secretory organelles are defining features of apicomplexan parasites. Despite their critical roles, the mechanisms behind the biogenesis of these structures in the malaria parasite Plasmodium falciparum are still poorly defined. We here show that decreasing expression of the P. falciparum homologue of the conserved endolysomal escorter Sortilin‐VPS10 prevents the formation of the inner membrane complex and abrogates the generation of new merozoites. Moreover, protein trafficking to the rhoptries, the micronemes, and the dense granules is disrupted, which leads to the accumulation of apical complex proteins in the endoplasmic reticulum and the parasitophorous vacuole. We further show that protein export to the erythrocyte and transport through the constitutive secretory pathway are functional. Taken together, our results suggest that the malaria parasite P. falciparum Sortilin has potentially broader functions than most of its other eukaryotic counterparts.  相似文献   

19.
Merozoites of the parasitic protozoon Sarcocystis muris (Apicomplexa) possess three types of characteristic organelles with electron dense contents named rhoptries, micronemes, and dense granules, which are supposed to be involved in the parasite-host cell interactions during and after invasion. Dense granules were purified from a merozoite homogenate by centrifugation on a sucrose density gradient. It was shown by SDS polyacrylamide gel electrophoresis that they contain a major protein of 21 kDa. Polyclonal antibodies raised against this protein were applied to ultrathin frozen and Lowicryl-K4M-embedded sections of the parasite before and after host cell invasion. Dense granules were distinctly labeled by immunogold before and after invasion. After host cell invasion the parasite is enclosed in a secondary parasitophorous vacuole which contains an electron-dense material. This deposition was heavily labeled by anti 21 kDa antibodies which clearly demonstrated that the dense granule contents is released into the secondary parasitophorous vacuole.  相似文献   

20.
Chen Z  Harb OS  Roos DS 《PloS one》2008,3(10):e3611
Apicomplexan parasites, including the human pathogens Toxoplasma gondii and Plasmodium falciparum, employ specialized secretory organelles (micronemes, rhoptries, dense granules) to invade and survive within host cells. Because molecules secreted from these organelles function at the host/parasite interface, their identification is important for understanding invasion mechanisms, and central to the development of therapeutic strategies. Using a computational approach based on predicted functional domains, we have identified more than 600 candidate secretory organelle proteins in twelve apicomplexan parasites. Expression in transgenic T. gondii of eight proteins identified in silico confirms that all enter into the secretory pathway, and seven target to apical organelles associated with invasion. An in silico approach intended to identify possible host interacting proteins yields a dataset enriched in secretory/transmembrane proteins, including most of the antigens known to be engaged by apicomplexan parasites during infection. These domain pattern and projected interactome approaches significantly expand the repertoire of proteins that may be involved in host parasite interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号