首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies from our group have shown that the expression levels of Orc6 were highly elevated in colorectal cancer patient specimens and the induction of Orc6 was associated with 5-fluorouracil (5-FU) treatment. The goal of this study was to investigate the molecular and cellular impact of Orc6 in colon cancer. In this study, we use HCT116 (wt-p53) and HCT116 (null-p53) colon cancer cell lines as a model system to investigate the impact of Orc6 on cell proliferation, chemosensitivity and pathways involved with Orc6. We demonstrated that the down regulation of Orc6 sensitizes colon cancer cells to both 5-FU and cisplatin (cis-pt) treatment. Decreased Orc6 expression in HCT-116 (wt-p53) cells by RNA interference triggered cell cycle arrest at G1 phase. Prolonged inhibition of Orc6 expression resulted in multinucleated cells in HCT-116 (wt-p53) cell line. Western immunoblot analysis showed that down regulation of Orc6 induced p21 expression in HCT-116 (wt-p53) cells. The induction of p21 was mediated by increased level of phosphorylated p53 at ser-15. By contrast, there is no elevated expression of p21 in HCT-116 (null-p53) cells. Orc6 down regulation also increased the expression of DNA damaging repair protein GADD45β and reduced the expression level of JNK1. Orc6 may be a potential novel target for future anti cancer therapeutic development in colon cancer.  相似文献   

2.
miR-126在多种恶性肿瘤中存在表达下调并显示抑癌基因的功能,然而其在肿瘤敏感性中的作用仍不明确.为了探讨miR-126在非小细胞肺癌细胞A549对顺式铂氨(cis-diammine dichloroplatoum, cisplatin, CDDP)敏感性中的作用及可能机制,本研究用MTS法检测非小细胞肺癌细胞A549及其衍生的CDDP耐受细胞A549/DDP对CDDP的敏感性.结果表明,A549/DDP细胞对CDDP的耐受性是A549细胞的4.05倍(P=0.0078)|用qRT-PCR检测发现,相比于A549细胞,A549/DDP细胞中miR-126的表达下调了8.45倍(P=0.0063),而survivin和Bcl-2的表达明显上调|通过MTS、qRT-PCR及Western印迹实验发现,miR-126 mimics使A549/DDP细胞中miR-126的表达上调了12.63倍(P=0.0013),并明显增加A549/DDP细胞对CDDP的敏感性及下调survivin和Bcl-2的表达;相反,miR-126 inhibitor能明显增加A549细胞对CDDP的耐受性及增加survivin和Bcl-2的表达.本研究结果提示,miR-126在非小细胞肺癌CDDP耐受细胞中的表达下调,上调miR-126的表达能增加耐药细胞对CDDP的敏感性. miR-126是逆转肺癌CDDP耐受的可能潜在靶标.  相似文献   

3.
There is considerable current interest in developing antimicrobial and anticancer agents with a new mode of action. The antimicrobial peptides are regarded as a potential solution for treating cancer cells. The antimicrobial effect of 6 synthetic peptides against 7 bacterial species was evaluated. The result showed that IsCT, BmKn2 and BMAP-28 exhibited broad range of action against Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6538, methicillin resistant S. aureus DMST 20651, Staphylococcus epidermidis ATCC 12228, Acinetobacter baumanii ATCC 19066, Escherichia coli ATCC 25922 and Salmonella typhi DMST 562 at minimal inhibitory concentrations (MIC) of 2.97–24.28 μM. Neither AMP induced significant hemolysis, or showed cytotoxic on dental pulp stem cells and smooth muscle cells at their MICs. In addition, BmKn2 inhibited growth of human oral squamous carcinoma HSC4 cells and human colon cancer SW620 cells with IC50 of 17.26 and 40 µM, respectively. Taken together, BmKn2 peptide from scorpion venom may offer a novel therapeutic strategy for development of cationic antimicrobial and anticancer peptides as potential new therapeutic agents.  相似文献   

4.
5.
Development of resistance to TRAIL, an apoptosis-inducing cytokine, is one of the major problems in its development for cancer treatment. Thus, pharmacological agents that are safe and can sensitize the tumor cells to TRAIL are urgently needed. We investigated whether gossypol, a BH3 mimetic that is currently in the clinic, can potentiate TRAIL-induced apoptosis. Intracellular esterase activity, sub-G1 cell cycle arrest, and caspase-8, -9, and -3 activity assays revealed that gossypol potentiated TRAIL-induced apoptosis in human colon cancer cells. Gossypol also down-regulated cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, and cFLIP) and dramatically up-regulated TRAIL death receptor (DR)-5 expression but had no effect on DR4 and decoy receptors. Gossypol-induced receptor induction was not cell type-specific, as DR5 induction was observed in other cell types. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by TRAIL and gossypol. Gossypol induction of the death receptor required the induction of CHOP, and thus, gene silencing of CHOP abolished gossypol-induced DR5 expression and associated potentiation of apoptosis. ERK1/2 (but not p38 MAPK or JNK) activation was also required for gossypol-induced TRAIL receptor induction; gene silencing of ERK abolished both DR5 induction and potentiation of apoptosis by TRAIL. We also found that reactive oxygen species produced by gossypol treatment was critical for TRAIL receptor induction and apoptosis potentiation. Overall, our results show that gossypol enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and the up-regulation of TRAIL death receptors through the ROS-ERK-CHOP-DR5 pathway.  相似文献   

6.
目的:探讨NDRG1对体外培养的人肠癌细胞系失巣凋亡的影响。方法:采用慢病毒系统将NDRG1表达单元转入人肠癌细胞系SW620、HCT8中,建立相应的过表达稳定细胞系;通过siRNA的方法干扰HCT116和LOVO细胞系中NDRG1的表达,分别在非贴壁培养的情况下培养48小时,采用流式细胞术和TUNEL染色检测细胞的凋亡情况。结果:在贴壁培养条件下,NDRG1过表达并没有显著影响肠癌细胞的生长及增殖,而NDRG1特异性siRNA干扰HCT116细胞中NDRG1的表达后,其凋亡率无明显变化(P0.05)。在悬浮培养条件下,NDRG1过表达的肠癌细胞的失巢凋亡率显著低于正常对照组(P0.05),而用三种不同的siRNA干扰HCT116及LOVO细胞中NDRG1的表达后,其失巢凋亡率均显著高于正常对照组(P0.05)。结论:NDRG1在体外可抑制人肠癌细胞的失巢凋亡。  相似文献   

7.
Autophagy modulation is now recognized as a potential therapeutic approach for cancer (including colorectal cancer), yet the molecular mechanisms regulating autophagy in response to cellular stress are still not well understood. MicroRNAs (miRNAs) have been found to play important roles in controlling many cellular functions, including growth, metabolism and stress response. The physiological importance of the miRNA-autophagy interconnection is only beginning to be elucidated. MiRNA microarray technology facilitates analysis of global miRNA expression in certain situations. In this study, we explored the expression profile of miRNAs during the response of human colon cancer cells (HT29s) to 5-FU treatment and nutrient starvation using miRNA microarray analysis. The alteration of miRNA expression showed the same pattern under both conditions was further testified by qRT-PCR in three human colon cancer cell lines. In addition, bioinformatic prediction of target genes, pathway analysis and gene network analysis were performed to better understand the roles of these miRNAs in the regulation of autophagy. We identified and selected four downregulated miRNAs including hsa-miR-302a-3p and 27 upregulated miRNAs under these two conditions as having the potential to target genes involved in the regulation of autophagy in human colon cancer cells. They have the potential to modulate autophagy in 5-FU-based chemotherapy in colorectal cancer.  相似文献   

8.
9.
Several types of genetic and epigenetic regulation have been implicated in the development of drug resistance, one significant challenge for cancer therapy. Although changes in the expression of non-coding RNA are also responsible for drug resistance, the specific identities and roles of them remain to be elucidated. Long non-coding RNAs (lncRNAs) are a type of ncRNA (> 200 nt) that influence the regulation of gene expression in various ways. In this study, we aimed to identify differentially expressed lncRNAs in 5-fluorouracil-resistant colon cancer cells. Using two pairs of 5-FU-resistant cells derived from the human colon cancer cell lines SNU-C4 and SNU-C5, we analyzed the expression of 90 lncRNAs by qPCR-based profiling and found that 19 and 23 lncRNAs were differentially expressed in SNU-C4R and SNU-C5R cells, respectively. We confirmed that snaR and BACE1AS were downregulated in resistant cells. To further investigate the effects of snaR on cell growth, cell viability and cell cycle were analyzed after transfection of siRNAs targeting snaR. Down-regulation of snaR decreased cell death after 5-FU treatment, which indicates that snaR loss decreases in vitro sensitivity to 5-FU. Our results provide an important insight into the involvement of lncRNAs in 5-FU resistance in colon cancer cells.  相似文献   

10.
目的:研究TRAF4影响结直肠癌细胞增殖的分子机制。方法:MTS和软琼脂集落形成实验检测基因沉默TRAF4后对结直肠癌细胞生长及相关信号通路的影响,检测TRAF4表达下调后结直肠癌细胞的糖酵解变化及己糖激酶II的表达和结直肠细胞对5-Fu的敏感性。结果:基因沉默TRAF4抑制结直肠癌细胞的停泊依赖和停泊非依赖增殖,抑制EGF诱导的Akt活化,下调结直肠癌细胞糖酵解,抑制己糖激酶II的表达,增加结直肠癌细胞对5-Fu的敏感性。结论:TRAF4通过调控糖代谢影响结直肠癌细胞增殖。  相似文献   

11.
Recent studies have shown that arsenic trioxide (ATO) is an effective anti-cancer drug for treatment of acute promyelocytic leukemia and other types of human cancer. However, we have found that lung cancer cells constantly develop a high level of resistance to ATO. In this study, we have explored a possibility of combination of dihydroartemisinin (DHA) and ATO treatments to reduce ATO resistance of lung cancer cells. We determined the combinatory effects of DHA and ATO on cytotoxicity of human lung adenocarcinoma (A549) cells. We showed that co-exposure to DHA and ATO of A549 cells synergistically increased the cytotoxicity and apoptotic cell death in the cells. We found that the synergistic effect of DHA and ATO in promoting apoptosis mainly resulted from increased cellular level of reactive oxygen species (ROS) and DNA damage. ATO alone only exerted moderate growth inhibitory effects on A549 cells. The results indicate that DHA can significantly sensitize ATO-induced cytotoxicity of A549 lung cancer cells through apoptosis mediated by ROS-induced DNA damage. Interestingly, we found that the combinatory treatment of DHA and ATO did not result in significant adverse effects in normal human bronchial epithelial (HBE) cells. Our results further provide evidence for the potential application of combinatory effects of DHA and ATO as a safe therapy for human lung cancer.  相似文献   

12.
The NFκB family is composed by five subunits (p65/RelA, c-Rel, RelB, p105-p50/NFκB1, p100-p52/NF-κB2) and controls the expression of many genes that participate in cell cycle, apoptosis, and other key cellular processes. In a canonical pathway, NF-κB activation depends on the IKK complex activity, which is formed by three subunits (IKKα and IKKβ and IKKγ/NEMO). There is an alternative NFκB activation pathway that does not require IKKβ or IKKγ/NEMO, in which RelB is a major player. We report in a panel of human breast cancer cells that the IKK/NFκB system is generally overexpressed in breast cancer cells and there is heterogeneity in expression levels of individual members between different cell lines. Doxorubicin, an anticancer agent used in patients with breast cancer, activated NFκB and appeared to be less effective in cells expressing predominantly members of the canonical IKK/NFκB. Two NFκB inhibitors, bortezomib and NEMO-Binding Domain Inhibitory Peptide, prevented doxorubicin-induced NFκB activation and increased doxorubicin antitumor effects in BT-474 cells. Transient downregulation of members of the canonical pathway (p65, p52, c-Rel and IKKγ/NEMO) by siRNA in HeLa cells increased doxorubicin cytotoxicity. In contrast, silencing of RelB, a key subunit of the alternative pathway, had no evident effects on doxorubicin cytotoxicity. To conclude, NFκB inhibition sensitized cells to doxorubicin, implying directly p65, p52, c-Rel and IKKγ/NEMO subunits in chemoresistance, but not RelB. These findings suggest that selective inhibition of the canonical NFκB pathway is sufficient to improve doxorubicin antitumor effects.  相似文献   

13.
PR-104 is a dinitrobenzamide mustard pre-prodrug that is activated by reduction to a cytotoxic hydroxylamine metabolite in hypoxic tumour cells; it has recently commenced Phase I clinical trial. Here, we report two validated methods for the determination of PR-104 and its alcohol hydrolysis product, PR-104A in plasma and tissues across species. A high pH LC/MS/MS method was optimised for rapid and sensitive analysis of both analytes in rat, dog and human plasma. This assay was linear over the concentration range 0.005-2.5 microg/ml for PR-104 and 0.05-25 microg/ml for PR-104A (0.005-2.5 microg/ml for rat). A second method, using a low pH LC separation, was designed to provide higher chromatographic resolution, facilitating identification of metabolites. Both methods were successfully applied to the plasma pharmacokinetics of PR-104 and PR-104A in rats. In addition, cytotoxic reduced metabolites of PR-104A were identified in human tumour xenografts by the higher chromatographic resolution method.  相似文献   

14.

Background

The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted.

Methodology

The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured.

Conclusions/Significance

In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner.  相似文献   

15.
16.
Hedgehog(Hh)信号通路在机体发育和肿瘤发生中发挥着重要作用。在该研究中,Western blot检测三株结肠癌细胞Hedgehog信号通路组分的表达,结果表明三株结肠癌细胞中HT-29细胞Hedgehog信号通路组分较完整。采用MTT和BrdU法检测Hedgehog信号通路膜受体Smo特异性抑制剂环杷明和末端转录因子Gli1/2的特异性抑制剂GANT61对HT-29细胞的影响,提示这两种抑制剂均显著抑制HT-29细胞生存率和细胞增殖率,且GANT61比环杷明更敏感。表达谱芯片检测阻断Hedgehog信号通路后HT-29细胞基因谱的变化,结合生物信息学分析,揭示HT-29细胞经环杷明和GANT61处理后基因表达呈现抑制特征,其差异基因表达主要以下调为主,其中环杷明主要影响细胞内源刺激等,而GANT61主要影响代谢和类固醇合成,并与MAPK信号通路有关联,两者均能影响细胞免疫及凋亡相关通路。这些结果提示,Hh信号通路有可能作为结肠癌的治疗靶点。  相似文献   

17.
In conducting an in vitro screening of ethanol extracts from various natural foods using a human colon cancer cell line (CoLoTC cells), an extract of buckwheat sprouts (ExtBS) was found to express significant anti-inflammatory activity. The anti-inflammatory activity of ExtBS was confirmed by oral administration of lipopolysaccharide (LPS) to mice. Inflammatory cytokines (interleukin 6 and tumor necrosis factor alpha) were markedly up-regulated in the spleen and liver from LPS-administrated mice, and combinatory treatment with LPS and ExtBS decreased up-regulation of them in both cytokines. Both serum cytokine levels corresponded to their gene expressions in tissues, but no anti-inflammatry effect in mice was observed when ExtBS was treated intraperitoneally. ExtBS oral administration also showed protective activity as to hepatic injury induced by galactosamine/LPS treatment. Based on these data, we suggest that ExtBS contains anti-inflammatory compounds.  相似文献   

18.
The apoptotic effects of plant sphingoid bases prepared from wheat-flour cerebroside on human colorectal cancer DLD-1 cells were examined. The viability of DLD-1 cells treated with such plant sphingoid bases was reduced in a dose-dependent manner and was similar to that of cells treated with sphingosine. Morphological changes such as condensed chromatin fragments were found, so those sphingoid bases reduced cell viability through causing apoptosis in these cells.  相似文献   

19.
20.
Geranylated 4-phenylcoumarins, DMDP-1 & -2 isolated from Mesua elegans were investigated for anticancer potential against human prostate cancer cells. Treatment with DMDP-1 & -2 resulted in cell death in a time and dose dependent manner in an MTT assay on all cancer cell lines tested with the exception of lung adenocarcinoma cells. DMDP-1 showed highest cytotoxic efficacy in PC-3 cells while DMDP-2 was most potent in DU 145 cells. Flow cytometry indicated that both coumarins were successful to induce programmed cell death after 24 h treatment. Elucidation on the mode-of-action via protein arrays and western blotting demonstrated death induced without any significant expressions of caspases, Bcl-2 family proteins and cleaved PARP, thus suggesting the involvement of caspase-independent pathways. In identifying autophagy, analysis of GFP-LC3 showed increased punctate in PC-3 cells pre-treated with CQ and treated with DMDP-1. In these cells decreased expression of autophagosome protein, p62 and cathepsin B further confirmed autophagy. In contrary, the DU 145 cells pre-treated with CQ and treated with DMDP-2 has reduced GFP-LC3 punctate although the number of cells with obvious GFP-LC3 puncta was significantly increased in the inhibitor-treated cells. The increase level of p62 suggested leakage of cathepsin B into the cytosol to trigger potential downstream death mediators. This correlated with increased expression of cathepsin B and reduced expression after treatment with its inhibitor, CA074. Also auto-degradation of calpain-2 upon treatment with DMDP-1 &-2 and its inhibitor alone, calpeptin compared with the combination treatment, further confirmed involvement of calpain-2 in PC-3 and DU 145 cells. Treatment with DMDP-1 & -2 also showed up-regulation of total and phosphorylated p53 levels in a time dependent manner. Hence, DMDP-1 & -2 showed ability to activate multiple death pathways involving autophagy, lysosomal and endoplasmic reticulum death proteins which could potentially be manipulated to develop anti-cancer therapy in apoptosis resistant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号