首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of genes that are upregulated during mammary epithelial cell morphogenesis may reveal novel regulators of tumorigenesis. We have demonstrated that gene expression programs in mammary epithelial cells grown in monolayer cultures differ significantly from those in three-dimensional (3D) cultures. We identify a protein tyrosine phosphate, PTPRO, that was upregulated in mature MCF-10A mammary epithelial 3D structures but had low to undetectable levels in monolayer cultures. Downregulation of PTPRO by RNA interference inhibited proliferation arrest during morphogenesis. Low levels of PTPRO expression correlated with reduced survival for breast cancer patients, suggesting a tumor suppressor function. Furthermore, we showed that the receptor tyrosine kinase ErbB2/HER2 is a direct substrate of PTPRO and that loss of PTPRO increased ErbB2-induced cell proliferation and transformation, together with tyrosine phosphorylation of ErbB2. Moreover, in patients with ErbB2-positive breast tumors, low PTPRO expression correlated with poor clinical prognosis compared to ErbB2-positive patients with high levels of PTPRO. Thus, PTPRO is a novel regulator of ErbB2 signaling, a potential tumor suppressor, and a novel prognostic marker for patients with ErbB2-positive breast cancers. We have identified the protein tyrosine phosphatase PTPRO as a regulator of three-dimensional epithelial morphogenesis of mammary epithelial cells and as a regulator of ErbB2-mediated transformation. In addition, we demonstrated that ErbB2 is a direct substrate of PTPRO and that decreased expression of PTPRO predicts poor prognosis for ErbB2-positive breast cancer patients. Thus, our results identify PTPRO as a novel regulator of mammary epithelial transformation, a potential tumor suppressor, and a predictive biomarker for breast cancer.  相似文献   

2.
Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching morphogenesis and epithelial to mesenchymal transition in the mammary gland.  相似文献   

3.
This study investigated the effect of sex steroids and tamoxifen on primate mammary epithelial proliferation and steroid receptor gene expression. Ovariectomized rhesus monkeys were treated with placebo, 17beta estradiol (E2) alone or in combination with progesterone (E2/P) or testosterone (E2/T), or tamoxifen for 3 days. E2 alone increased mammary epithelial proliferation by approximately sixfold (P:<0.0001) and increased mammary epithelial estrogen receptor (ERalpha) mRNA expression by approximately 50% (P:<0.0001; ERbeta mRNA was not detected in the primate mammary gland). Progesterone did not alter E2's proliferative effects, but testosterone reduced E2-induced proliferation by approximately 40% (P:<0.002) and entirely abolished E2-induced augmentation of ERalpha expression. Tamoxifen had a significant agonist effect in the ovariectomized monkey, producing a approximately threefold increase in mammary epithelial proliferation (P:<0.01), but tamoxifen also reduced ERalpha expression below placebo level. Androgen receptor (AR) mRNA was detected in mammary epithelium by in situ hybridization. AR mRNA levels were not altered by E2 alone but were significantly reduced by E2/T and tamoxifen treatment. Because combined E2/T and tamoxifen had similar effects on mammary epithelium, we investigated the regulation of known sex steroid-responsive mRNAs in the primate mammary epithelium. E2 alone had no effect on apolipoprotein D (ApoD) or IGF binding protein 5 (IGFBP5) expression, but E2/T and tamoxifen treatment groups both demonstrated identical alterations in these mRNAs (ApoD was decreased and IGFBP5 was increased). These observations showing androgen-induced down-regulation of mammary epithelial proliferation and ER expression suggest that combined estrogen/androgen hormone replacement therapy might reduce the risk of breast cancer associated with estrogen replacement. In addition, these novel findings on tamoxifen's androgen-like effects on primate mammary epithelial sex steroid receptor expression suggest that tamoxifen's protective action on mammary gland may involve androgenic effects.  相似文献   

4.
5.
6.
During development, patterning and morphogenesis of tissues are intimately coordinated through control of cellular proliferation and differentiation. We describe a mechanism by which vertebrate Msx homeobox genes inhibit cellular differentiation by regulation of the cell cycle. We show that misexpression of Msx1 via retroviral gene transfer inhibits differentiation of multiple mesenchymal and epithelial progenitor cell types in culture. This activity of Msx1 is associated with its ability to upregulate cyclin D1 expression and Cdk4 activity, while Msx1 has minimal effects on cellular proliferation. Transgenic mice that express Msx1 under the control of the mouse mammary tumor virus long terminal repeat (MMTV LTR) display impaired differentiation of the mammary epithelium during pregnancy, which is accompanied by elevated levels of cyclin D1 expression. We propose that Msx1 gene expression maintains cyclin D1 expression and prevents exit from the cell cycle, thereby inhibiting terminal differentiation of progenitor cells. Our model provides a framework for reconciling the mutant phenotypes of Msx and other homeobox genes with their functions as regulators of cellular proliferation and differentiation during embryogenesis.  相似文献   

7.
Epithelial cell differentiation frequently occurs in situ in conjunction with supporting mesenchyme or connective tissue. In embryonic development the importance of the supporting mesenchyme for cytodifferentiation and morphogenesis has been demonstrated in several epithelial tissues, but the importance of epithelial-connective tissue interactions is less well studied in adult epithelial organs. We have investigated the interaction of adult mammary epithelial cells with adipocytes, which compose the normal supporting connective tissue in the mammary gland. Mammary epithelial cells from mice in various physiological states were cultured on cellular substrates of adipocytes formed from cells of the 3T3-L1 preadipocyte cell line. We found that there were two distinct phases to the interaction of epithelial cells with adipocytes. Cytodifferentiation of the epithelial cells and milk protein production were dependent on lactogenic hormones (insulin, hydrocortisone, and prolactin), whereas ductal morphogenesis was lactogenic hormone independent. When cultured on preadipocytes or adipocytes, mammary epithelial cells from never pregnant, pregnant, lactating, and involuting mice responded to lactogenic hormones rapidly by producing and secreting large amounts of alpha-, beta-, and gamma-casein and alpha-lactalbumin. This response was seen in individual as well as in clusters of epithelial cells, but was not seen if the same cells were cultured on tissue culture dishes without adipocytes, on fibroblasts (human newborn foreskin fibroblasts) or in the presence of adipocytes but in the absence of lactogenic hormones. Continued incubation of mammary epithelial cells on adipocytes in the presence or absence of lactogenic hormones resulted in the formation of a branching ductal system. Mammary epithelial cells in ducts that formed in the absence of lactogenic hormones produced no casein, but rapidly synthesized casein when subsequently exposed to these hormones. Ultrastructural studies revealed that the formation of a basement membrane occurs only in co-cultures of mammary epithelium with adipocytes or preadipocytes. Ultrastructural changes associated with secretion occurred only in the presence of lactogenic hormones. We propose that growth and formation of a ductal system in vitro can occur in the absence of lactogenic hormones, but that certain environment-associated events must occur if the epithelium is to become responsive to lactogenic hormones and undergo the cytodifferentiation associated with lactation.  相似文献   

8.
The use of cell culture models is a principal and fundamental technology used in understanding how mammalian cells work. However, for some cell types such as mammary epithelia, the lines selected for extended culture are often transformed or have chromosomal abnormalities, while primary cultures have such a curtailed lifespan that their use is restricted. For example, mammary luminal epithelial cells (MECs) are used to study mechanisms of breast cancer, but the proliferation of primary cell cultures is highly limited. Here we describe the establishment of a new culture system to allow extended analysis of cultures of primary mouse MECs. In 2D monolayer culture, primary MECs showed a burst of proliferation 2-3 days post isolation, after which cell cycle decreased substantially. Addition of mammary epithelial growth factors, such as Epidermal Growth Factor, Fibroblast Growth Factor-2, Hepatocyte Growth Factor, and Receptor Activator for Nuclear Factor κB Ligand, or extracellular matrix proteins did not maintain their proliferation potential, neither did replating the cells to increase the mitogenic response. However, culturing MECs directly after tissue extraction in a 3D microenvironment consisting of basement membrane proteins, extended the time in culture in which the cells could proliferate. Our data reveal that the cellular microenvironment has profound effects on the proliferative properties of the mammary epithelia and is dominant over growth factors. Moreover, manipulating the cellular environment using this novel method can maintain the proliferative potential of primary MECs, thus enabling cell cycle to be studied as an endpoint after gene transfer or gene deletion experiments.  相似文献   

9.
In the mouse mammary gland, homeobox gene expression patterns suggest roles in development and neoplasia. In the human breast, we now identify a family of Iroquois-class (IRX) homeobox genes. One gene, IRX-2, is expressed in discrete epithelial cell lineages being found in ductal and lobular epithelium, but not in myoepithelium. Expression is absent from associated mesenchymal adipose stroma. During gland development, expression is concentrated in terminal end buds and terminal lobules and is reduced in a subset of epithelial cells during lactation. In contrast to observations for many homeobox genes in the mouse mammary gland in which homeobox gene expression is lost on neoplastic progression, IRX-2 expression is maintained in human mammary neoplasias. Data suggest IRX-2 functions in epithelial cell differentiation and demonstrate regulated expression during ductal and lobular proliferation as well as lactation.  相似文献   

10.
11.
The epithelial-derived, type II transmembrane serine protease matriptase, the mouse homologue of which is epithin, has been shown to be involved in epidermal differentiation, hair formation, and thymus function. We show in this study that epithin/matriptase (Epi/MTP) plays a significant role in mammary epithelial cell growth and morphogenesis. Epi/MTP is expressed at low level in the mouse mammary epithelium of young animals and it accumulates at the terminal end-bud of the growing ducts. The level of Epi/MTP is elevated in the mammary glands at stages when epithelial proliferation and modeling occur. It is primarily present in the luminal epithelial cells of mouse mammary ducts and lobules. Using an ex vivo three-dimensional culture system for mammary epithelial functional assays, we show that mammary epithelial growth and morphogenesis in the presence of the latent form hepatocyte growth factor (pro-HGF) are blocked either by an inhibitor of the Epi/MTP protease activity or by siRNA knockdown of the Epi/MTP expression. These studies demonstrate that Epi/MTP participates in mammary epithelial growth and modeling through activation of pro-HGF. Our findings reveal an important pathway in normal mammary epithelial morphogenesis which may participate in breast cancer progression.  相似文献   

12.
The docking protein Gab2 is a proto-oncogene product that is overexpressed in primary breast cancers. To determine the functional consequences of Gab2 overexpression, we utilized the immortalized human mammary epithelial cell line MCF-10A. In monolayer culture, expression of Gab2 at levels comparable with those detected in human breast cancer cells accelerated epidermal growth factor (EGF)-induced cell cycle progression and was associated with increased basal Stat5 tyrosine phosphorylation and enhanced and/or more sustained EGF-induced Erk and Akt activation. Three-dimensional Matrigel culture of MCF-10A cells resulted in the formation of polarized, growth-arrested acini with hollow lumina. Under these conditions, Gab2 increased cell proliferation during morphogenesis, leading to significantly larger acini, an effect dependent on Gab2 binding to Grb2 and Shp2 and enhanced by recruitment of the p85 subunit of phosphatidylinositol 3-kinase. Pharmacological inhibition of MEK revealed that, in addition to direct activation of phosphatidylinositol 3-kinase, increased Erk signaling also contributed to Gab2-mediated enhancement of acinar size. In addition, Gab2 overcame the proliferative suppression that normally occurs in late stage cultures and conferred independence of the morphogenetic program from exogenous EGF. Finally, higher levels of Gab2 expression led to the formation of large disorganized structures with defective luminal clearance. These findings support a role for Gab2 in mammary tumorigenesis.  相似文献   

13.
14.

Background

Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium–associated RING Chromosome 1), a novel gene encoding a member of the TRIM (tripartite motif) subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer.

Methods and Findings

Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH) in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS), an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD) were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D) basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs) recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue microarray from a cohort of 123 young female breast cancer patients with a 20-year follow-up indicated that in early-onset breast cancer, DEAR1 expression serves as an independent predictor of local recurrence-free survival and correlates significantly with strong family history of breast cancer and the triple-negative phenotype (ER, PR, HER-2) of breast cancers with poor prognosis.

Conclusions

Our data provide compelling evidence for the genetic alteration and loss of expression of DEAR1 in breast cancer, for the functional role of DEAR1 in the dominant regulation of acinar morphogenesis in 3D culture, and for the potential utility of an immunohistochemical assay for DEAR1 expression as an independent prognostic marker for stratification of early-onset disease.  相似文献   

15.
Eph receptor tyrosine kinases, including EphA2, are expressed in the mammary gland. However, their role in mammary gland development remains poorly understood. Using EphA2-deficient animals, we demonstrate for the first time that EphA2 receptor function is required for mammary epithelial growth and branching morphogenesis. Loss of EphA2 decreased penetration of mammary epithelium into fat pad, reduced epithelial proliferation, and inhibited epithelial branching. These defects appear to be intrinsic to loss of EphA2 in epithelium, as transplantation of EphA2-deficient mammary tissue into wild-type recipient stroma recapitulated these defects. In addition, HGF-induced mammary epithelial branching morphogenesis was significantly reduced in EphA2-deficient cells relative to wild-type cells, which correlated with elevated basal RhoA activity. Moreover, inhibition of ROCK kinase activity in EphA2-deficient mammary epithelium rescued branching defects in primary three-dimensional cultures. These results suggest that EphA2 receptor acts as a positive regulator in mammary gland development, functioning downstream of HGF to regulate branching through inhibition of RhoA. Together, these data demonstrate a positive role for EphA2 during normal mammary epithelial proliferation and branching morphogenesis.  相似文献   

16.
The matrix metalloproteinase (MMP) stromelysin-3 (ST3) was originally discovered as a gene whose expression was associated with human breast cancer carcinomas and with apoptosis during organogenesis and tissue remodeling. It has been shown previously, in our studies as well as those by others, that ST3 mRNA is highly upregulated during apoptotic tissue remodeling during Xenopus laevis metamorphosis. Using a function-blocking antibody against the catalytic domain of Xenopus ST3, we demonstrate here that ST3 protein is specifically expressed in the cells adjacent to the remodeling extracellular matrix (ECM) that lies beneath the apoptotic larval intestinal epithelium in X. laevis in vivo, and during thyroid hormone-induced intestinal remodeling in organ cultures. More importantly, addition of this antibody, but not the preimmune antiserum or unrelated antibodies, to the medium of intestinal organ cultures leads to an inhibition of thyroid hormone-induced ECM remodeling, apoptosis of the larval epithelium, and the invasion of the adult intestinal primodia into the connective tissue, a process critical for adult epithelial morphogenesis. On the other hand, the antibody has little effect on adult epithelial cell proliferation. Furthermore, a known MMP inhibitor can also inhibit epithelial transformation in vitro. These results indicate that ST3 is required for cell fate determination and cell migration during morphogenesis, most likely through ECM remodeling.  相似文献   

17.
The importance of systemic reproductive hormones in mammary gland development and breast cancer has been known for more than a century. In fact, the first targeted therapy for cancer was the development of tamoxifen, as an estrogen receptor (ER) antagonist. Based on studies performed primarily in a few breast cancer cell lines, the textbook concept of steroid hormone action at present is that on ligand binding, steroid receptors translocate into the nucleus and stimulate proliferation, and that this effect is mediated by specific coregulators. More recently, as nicely discussed by Brisken and O’Malley (2011), the concepts of specific receptor-positive sensor cells for systemic hormones, and paracrine mediators regulating the development and proliferation of proximal cells has been elegantly shown by the use of genetically engineered mice and chimeric transplantation experiments. One key question raised by these studies is, “How is the patterning of hormone receptor-positive sensor cells established during normal development?” As described by Visvader and Smith (2011), mammary stem cells lack the estrogen and progesterone receptors, and these receptors are first expressed at a still-undefined stage of the mammary cell hierarchy following the appearance of ductal and alveolar progenitors. So how is this process regulated appropriately to provide the correct temporal and spatial expression of the receptor-positive ductal and alveolar cells needed for normal ductal morphogenesis and alveolargenesis? Furthermore, what happens when this process is inappropriately regulated during early breast cancer progression when there may be a switch from paracrine to autocrine signaling mechanisms?Until recently, it was not possible to study these processes in primary mammary epithelial cells, because when these cells are grown under conventional cell culture conditions they rapidly lose the expression of steroid receptors. However, some recent success in culturing both primary mouse and human mammary cells in embedded 3D Matrigel cultures have provided at least a surrogate system to help dissect some of these paracrine mechanisms (Novaro et al. 2003; Graham et al. 2009). Still, it has not been possible to precisely mimic the patterning of receptor-positive cells observed in vivo in these surrogate in vitro models. So how can we specifically target steroid receptor-positive sensor cells to perform gain- and loss-of-function experiments in vivo? Recent advances using genetically engineered mouse models (Jeong et al. 2010; Mukherjee et al. 2010) may provide the key. In these models, Lydon, Demayo, and colleagues (Jeong et al. 2010) have inserted the Cre recombinase into the progesterone receptor gene allowing specific gene deletion only in that subset of mammary epithelial cells. Because the majority of ER positive cells are also progesterone receptor positive, this should facilitate loss-of-function studies of paracrine mediators for both steroid hormone receptors. Conversely, using a clever bigenic system for doxycycline-inducible expression, these same investigators have expressed one of the identified paracrine mediators, RANKL, in the mammary epithelium of progesterone receptor knockout mice exclusively in ER positive cells. Thus, this gain-of-function approach should help define the critical paracrine mediators of progesterone action and perhaps even the role of specific coregulators in this subset of cells.Downstream from the nuclear receptors, hormonal signaling is regulated by different chromatin contexts and differential recruitment of coactivators as well as corepressors (Brisken and O’Malley 2011). Numerous posttranslational modifications also play key roles in modulating the effects of coregulators, but these have been studied primarily in the HeLa, and to a lesser extent in MCF7, cell lines. Thus, we still know very little about these coregulators and their modifications in normal mammary epithelial cells. Because cell context and architecture are critical, studies, therefore, should be performed in primary mammary epithelial cells to provide a better understanding of how these coregulators and their posttranslational modifications affect normal mammary gland development. No doubt, coregulators may differentially influence hormone receptor-positive cells as compared to the receptor-negative adjacent cells, because most coregulators can also affect cells lacking steroid hormone receptors. Clearly, we are only at the tip of the iceberg when it comes to understanding the precise molecular mechanisms of hormone action in the normal mammary gland, and this will be critical for identifying alterations which occur during breast cancer progression.  相似文献   

18.
Steroid receptors and proliferation in the human breast   总被引:5,自引:0,他引:5  
Clarke RB 《Steroids》2003,68(10-13):789-794
Despite recent gains in our knowledge of the hormonal control of proliferation and differentiation in the rodent mammary gland, the factors regulating these processes in the human are poorly understood. We have developed a model in which intact normal human breast tissue is grafted subcutaneously into adult female athymic nude mice and treated with oestrogen (E) and/or progesterone (P) at human physiological serum levels. We have shown that (i) E and not P is the major epithelial cell mitogen in the adult non-pregnant, non-lactating breast, (ii) E induces progesterone receptor (PR) expression and (iii) PR expression is maximally induced at low E concentrations while a higher amount of E is required to stimulate proliferation. These data raised the question of whether one cell type demonstrated two different responses to the two different E concentrations or whether PR expression and proliferation occurred in separate cell populations. Using dual label immunofluorescence, we showed that steroid receptor expression and proliferation (Ki67 antigen) are detected in separate cell populations in normal human breast epithelium, and that cells expressing the oestrogen receptor-alpha (ERalpha) invariably contained the PR. We also reported that this separation between steroid receptor expression and proliferation observed in the normal human epithelium is disrupted at an early stage in breast tumourigenesis. One interpretation supported by our recent findings is that some ERalpha/PR-positive epithelial cells are quiescent breast stem cells that act as "steroid hormone sensors". Such hormone sensor cells might secrete positive or negative paracrine/juxtacrine factors dependent on the prevailing E or P concentration to influence the proliferative activity of adjacent ERalpha/PR-negative epithelial cells.  相似文献   

19.
Agr2 is a putative protein disulfide isomerase (PDI) initially identified as an estrogen-responsive gene in breast cancer cell lines. While Agr2 expression in breast cancer is positively correlated with estrogen receptor (ER) expression, it is upregulated in both hormone dependent and independent carcinomas. Several in vitro and xenograft studies have implicated Agr2 in different oncogenic features of breast cancer; however, the physiological role of Agr2 in normal mammary gland development remains to be defined. Agr2 expression is developmentally regulated in the mammary gland, with maximum expression during late pregnancy and lactation. Using a mammary gland specific knockout mouse model, we show that Agr2 facilitates normal lobuloalveolar development by regulating mammary epithelial cell proliferation; we found no effects on apoptosis in Agr2(-/-) mammary epithelial cells. Consequently, mammary glands of Agr2(-/-) females exhibit reduced expression of milk proteins, and by two weeks post-partum their pups are smaller in size. Utilizing a conditional mouse model, we show that Agr2 constitutive expression drives precocious lobuloalveolar development and increased milk protein expression in the virgin mammary gland. In vitro studies using knock down and overexpression strategies in estrogen receptor positive and negative mammary epithelial cell lines demonstrate a role for Agr2 in estradiol-induced cell proliferation. In conclusion, the estrogen-responsive Agr2, a candidate breast cancer oncogene, regulates epithelial cell proliferation and lobuloalveolar development in the mammary gland. The pro-proliferative effects of Agr2 may explain its actions in early tumorigenesis.  相似文献   

20.
We have previously described pluripotent, parity-induced mammary epithelial cells (PI-MEC) marked by Rosa26-lacZ expression in the mammary glands of parous females. PI-MEC act as lobule-limited epithelial stem/progenitor cells. To determine whether parity is necessary to generate PI-MEC, we incubated mammary explant cultures from virgin mice in vitro with insulin alone (I), hydrocortisone alone (H), prolactin alone (Prl), or a combination of these lactogenic hormones (IHPrl). Insulin alone activated the WAP-Cre gene. Hydrocortisone and prolactin alone did not. Any combination of hormones that included insulin was effective. Only I, H and Prl together were able to induce secretory differentiation and milk protein synthesis. In addition, EGF, IGF-2 and IGF-1 added individually produced activated (lacZ(+)) PI-MEC in explant cultures. Neither estrogen nor progesterone induced WAP-Cre expression in the explants. None of these positive initiators of WAP-Cre expression in PI-MEC were effective in mammospheres or two-dimensional cultures of mammary epithelium, indicating the indispensability of epithelial-stromal interaction in PI-MEC activation. Like PI-MEC, lacZ(+) cells from virgin explants proliferated and contributed progeny to mammospheres in vitro and to epithelial outgrowths in vivo after transplantation. LacZ(+) cells induced in virgin mouse mammary explants were multipotent (like PI-MEC) in impregnated hosts producing lacZ(+) mammary alveolar structures comprised of both myoepithelial and luminal progeny. These data demonstrate PI-MEC, a mammary epithelial sub-population of lobule-limited progenitor cells, are present in nulliparous female mice before parity and, like the PI-MEC observed following parity, are capable of proliferation, self-renewal and the capacity to produce progeny of diverse epithelial cell fates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号