首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Salvinia showed capacity to accumulate and hence remove more than one heavy metal from multi-metal solutions, though efficiency for heavy metal uptake varied for each metal present in different combinations. The pattern of heavy metal accumulation was confirmed by energy-dispersive X-ray fluorescence (EDXRF) analysis. There was a gradual decrease in heavy metal content in the wastewater samples when fresh biomass was replenished at definite time intervals of treatment. Zn, Cu, Ni and Cr removal to the extent of 84.8%, 73.8%, 56.8%, and 41.4%, respectively, was noted after four samplings of fresh biomass replenishment. Salvinia therefore can be recommended as a species for cleaning water contaminated with heavy metals.  相似文献   

2.
Aquatic Ecology - More has yet to be indicated on the ability of microphyte plants for the removal of heavy metals from contaminated environments. In the present research, the ability of the...  相似文献   

3.
Heavy metal removal in a biosorption column by immobilized M. rouxii biomass   总被引:10,自引:0,他引:10  
Mucor rouxii biomass was immobilized in a polysulfone matrix. The spherical immobilized biomass beads were packed in a column. The biosorption column was able to remove metal ions such as Pb, Cd, Ni and Zn not only from single-component metal solutions but also from multi-component metal solutions. Column kinetics for metal removal were described by the Thomas model. For single-component metal solutions, the metal removal capacities of the beads for Pb, Cd, Ni and Zn were 4.06, 3.76, 0.36 and 1.36 mg/g, respectively. For a multi-component metal solution containing Cd, Ni and Zn, the capacities were 0.36, 0.31 and 0.40 mg/g for Cd, Ni and Zn, respectively. The adsorbed metal ions were easily desorbed from the beads with 0.05N HNO3 solution. After acid desorption and regeneration with deionized water, the beads could be reused to adsorb metal ions at a comparable capacity.  相似文献   

4.
In this study, potentials of oven dried biomass of Eichhornia crassipes, Valisneria spiralis and Pistia stratiotes, were examined in terms of their heavy metal (Cd, Ni, Zn, Cu, Cr and Pb) sorption capacity, from individual-metal and multi-metal aqueous solutions at pH 6.0+/-0.1 (a popular pH of industrial effluent). V. spiralis was the most and E. crassipes was the least efficient for removal of all the metals. Cd, Pb and Zn were efficiently removed by all the three biomass. Cd was removed up to 98% by V. spiralis. Sorption data for Cr, Ni and Cd fitted better to Langmuir isotherm equation, while, the sorption data for Pb, Zn and Cu fitted better to Freundlich isotherm equation. In general, the presence of other metal ions did not influence significantly the targeted metal sorption capacity of the test plant biomasses. Ion exchange was proven the main mechanism involved in bio-sorption and there was a strong ionic balance between adsorbed (H(+) and M(2+)) to the released ions (Na(+) and K(+)) to and from the biomass. No significant difference was observed in the metal exchanged amount, by doubling of metal concentration (15-30 mg/l) in the solution and employing individual-metal and multi-metal solutions.  相似文献   

5.
Growth-decoupled cells of Desulfovibrio vulgaris NCIMB 8303 can be used to reduce Pd(II) to cell-bound Pd(0) (Bio-Pd(0)), a bioinorganic catalyst capable of reducing hexavalent chromium to less toxic Cr(III), using formate as the electron donor. Magnetic resonance imaging showed that Bio-Pd(0), immobilized in chitosan and agar beads, is distinguishable from the surrounding gel and is evenly dispersed within the immobilization matrix. Agar-immobilized Bio-Pd(0) and 'chemical Pd(0)' were packed into continuous-flow reactors, and challenged with a solution containing 100 microM Cr(VI) (pH 7) at a flow rate of 2.4 ml h(-1). Agar-immobilized chemical Pd(0) columns lost Cr(VI) reducing ability by 160 h, whereas columns containing immobilized Bio-Pd(0) maintained 90% reduction until 680 h, after which reduction efficiency was gradually lost.  相似文献   

6.
Can MY  Kaya Y  Algur OF 《Bioresource technology》2006,97(14):1761-1765
Response surface methodology was applied to optimize the removal efficiency of Ni(II). Pinus sylvestris ovulate cones were used in this study. A 2(3) full-factorial central composite design was employed for experimental design and analysis of the results. The initial Ni(II) concentration (10-30 mg/l), pH (2.5-6.5) and biomass concentration (5-25 g/l) were the critical components of the removal optimized. The optimum pH, m (biomass concentration) and C0 (initial Ni(II) concentration) were found to be 6.17, 18.8 g/l and 11.175 mg/l, respectively. Under these conditions, removal efficiency of Ni(II) was 99.91%.  相似文献   

7.
Biosorption of mercury from aqueous solution by Ulva lactuca biomass   总被引:4,自引:0,他引:4  
The mercury biosorption onto non-living protonated biomass of Ulva lactuca, as an alternative method for mercury removal from aqueous solutions, was investigated. Batch equilibrium tests showed that at pH 3.5, 5.5 and 7 the maxima of mercury uptake values, according to Langmuir adsorption isotherm, were 27.24, 84.74 and 149.25 mg/g, respectively. The ability of Ulva lactuca biomass to adsorb mercury in fixed-bed column, was investigated as well. The influence of column bed height, flow rate and effluent initial concentration of metal was studied. The adsorbed metal ions were easily desorbed from the algal biomass with 0.3 N H2SO4 solution. After acid desorption and regeneration with distilled water, the biomass could be reused for other biosorption assays with similar performances.  相似文献   

8.
The removal by crab shell of mixed heavy metal ions in aqueous solution   总被引:12,自引:0,他引:12  
In order to examine the inhibition effect of other heavy metal ions on the removal by crab shell of heavy metal ions in aqueous solutions, three ions (Pb(2+), Cd(2+), Cr(3+)) were used in single, binary and ternary systems. In single heavy metal ion systems, the removals of Cr(3+) and Pb(2+) were much higher than that of Cd(2+). In binary heavy metal ions systems, Cd(2+) did not affect Pb(2+) removal while Cr(3+) had a severe inhibition effect on the removal of Pb(2+). Cd(2+) removal was slightly affected by the presence of Pb(2+); however, it was severely affected by the presence of Cr(3+). The inhibitory effect of Cd(2+) on Cr(3+) was relatively lower than that of Pb(2+).  相似文献   

9.
A preliminary study on the removal of cadmium by nonmetabolizing live biomass of Rhizopus oligosporus from aqueous solution is presented. The equilibrium of the process was in all cases well described by the Langmuir sorption isotherm, suggesting that the process was a chemical, equilibrated and saturable mechanism which reflected the predominantly site-specific mechanism on the cell surface. A curve of Scatchard transformation plots reflected the covalent nature of Cd2+ adsorption by the cells. The maximum cadmium uptake capacities were 34.25 mg/g for immobilized cells and 17.09 mg/g for free cells. Some factorial experiments in shake flasks were performed in order to investigate the effect of different initial cadmium concentrations and biomass concentrations on the equilibrium. Experimental results showed a reverse trend of the influence of the immobilized and free biomass concentration on the cadmium specific uptake capacity. The immobilized cells had a higher specific cadmium uptake capacity with increasing biomass concentrations compared to free cells. In a bioreactor, the cadmium uptake capacity of immobilized cells (qmax = 30.1–37.5 mg/g) was similar to that observed in shake flask experiments (qmax = 34.25 mg/g) whereas with free cells the bioreactor qmax of 4.8–13.0 mg/g; was much lower than in shake flasks (qmax = 17.09 mg/g), suggesting that cadmium biosorption by immobilized cells of R. oligosporus might be further improved in bigger reactors. EDAX and transmission electron microscopic experiments on the fungal biomass indicated that the presence of Cd2+ sequestrated to the cell wall was due to bioadsorption.  相似文献   

10.
Dye removal from aqueous solution by adsorption on treated sawdust   总被引:20,自引:0,他引:20  
Formaldehyde treated and sulphuric acid treated saw dusts were used to adsorb malachite green at varying dye concentration, adsorbent dose, pH and agitation time. Similar experiments were conducted with laboratory grade activated carbon to compare the results. The adsorption efficiency of sulphuric acid treated sawdust (SD) was higher than formaldehyde treated SD. The adsorption followed first order rate expression and Lagergren equation. An initial pH in the range of 6-9 was favorable for the dye removal by both the adsorbents. Dilute solutions were effectively decolorized by the adsorbents. It is proposed that in batch or stirred tank reactors, both adsorbents can be an attractive option for dye adsorption.  相似文献   

11.
Biosorption of cadmium and chromium (III) ions by means of selected yeast species has been estimated. Kinetics and equilibrium measurements have shown the reliable efficiency of both metals removal for Candida tropicalis. The influence of pH and ionic strength on biosorption process has been examined as well. For both metals the adsorption isotherms have been presented. The equilibrium of chromium (III) sorption has appeared compatible to Langmiur model and the maximum sorption capacity has been determined.  相似文献   

12.
Humin extracted from Sphagnum peat moss was immobilized in a silica matrix and column experiments were performed in order to evaluate the removal and recovery of metal ions from aqueous solution under flow conditions. These experiments also allowed testing the recycling capacity of the column. Single-element solutions of Cu(II) and Pb(II), and a multi-metal solution containing Cd(II), Cu(II), Pb(II), Ni(II), and Cr(III) were passed through the columns at a flow rate of 2 ml/min. A 0.5 M sodium citrate solution was used as the stripping agent in the metal-ion recovery process. Humin immobilized in the silica matrix exhibited a similar, and in some cases, even a higher capacity than other biosorbents for the removal of metal ions from aqueous solutions under flow conditions. The sodium citrate was effective in removing Cu(II), Pb(II), Cd(II), and Ni(II) from the metal saturated column. The selectivity of the immobilized biomass was as follows: Cr(III)>Pb(II)>Cu(II)>Cd(II)>Ni(II). This investigation provides a new, environmentally friendly and cost-effective possibility to clean up heavy-metal contaminated wastewaters by using the new silica-immobilized humin material.  相似文献   

13.
Biosorption of phenol from an aqueous solution by Aspergillus niger biomass   总被引:6,自引:0,他引:6  
Intra-particle diffusion of sulfuric acid into sugarcane bagasse, corn stover, rice straw and yellow poplar was investigated to determine the effective diffusivity of sulfuric acid within the porous biomass structure. Diffusion experiments were conducted over 25-75 degrees C for two different biomass sizes using dynamic diffusion test cells. Diffusivities of sulfuric acid in agricultural residues were significantly higher than those of hard wood. Diffusivity data for each biomass were fitted into the Arrhenius equation for extrapolation to higher temperatures. The diffusivity data were subsequently incorporated into a theoretical model to determine acid profile within the biomass matrix. The modeling results indicate that intra-particle diffusion of acid influences the rate of dilute-acid pretreatment if unground biomass feedstock is used under normal pretreatment conditions. A criterion was set up to determine the critical biomass size at which the intra-particle acid diffusion becomes a rate-influencing factor for a given pretreatment condition.  相似文献   

14.
Growth-decoupled cells of Desulfovibrio vulgaris NCIMB 8303 can be used to reduce Pd(II) to cell-bound Pd(0) (Bio-Pd0), a bioinorganic catalyst capable of reducing hexavalent chromium to less toxic Cr(III), using formate as the electron donor. Magnetic resonance imaging showed that Bio-Pd0, immobilized in chitosan and agar beads, is distinguishable from the surrounding gel and is evenly dispersed within the immobilization matrix. Agar-immobilized Bio-Pd0 and `chemical Pd0' were packed into continuous-flow reactors, and challenged with a solution containing 100 m Cr(VI) (pH 7) at a flow rate of 2.4 ml h–1. Agar-immobilized chemical Pd0 columns lost Cr(VI) reducing ability by 160 h, whereas columns containing immobilized Bio-Pd0 maintained 90% reduction until 680 h, after which reduction efficiency was gradually lost.  相似文献   

15.
The studies on adsorption of hexavalent chromium were conducted by varying various parameters such as contact time, pH, amount of adsorbent, concentration of adsorbate and temperature. The kinetics of adsorption of Cr(VI) ion followed pseudo second order. Langmuir adsorption isotherm was employed in order to evaluate the optimum adsorption capacity of the adsorbent. The adsorption capacity was found to be pH dependant. Sawdust was found to be very effective and reached equilibrium in 3 h (adsorbate concentration 30 mg l−1). The rate constant has been calculated at 303, 308, 313 and 318 K and the activation energy (Ea) was calculated using the Arrhenius equation. Thermodynamic parameters such as standard Gibbs energy (ΔG°) and heat of adsorption (ΔHr) were calculated. The ΔG° and ΔHr values for Cr(VI) adsorption on the sawdust showed the process to be exothermic in nature. The percentage of adsorption increased with decrease in pH and showed maximum removal of Cr(VI) in the pH range 4.5–6.5 for an initial concentration of 5 mg l−1.  相似文献   

16.
After extensive analysis, Ulva lactuca dried algae, collected from the Monastir coastal zone, was proven to be successful as an adsorbent for the removal of certain inorganic pollutants. The main objective of this study was the nonlinear modeling of heavy metal removal from an aqueous solution, using a freely available and well analyzed biomaterial, as well as the evaluation of its efficacy on various metal ion sorptions. Although relatively low specific surface area, compared to more conventional adsorbents, the selected biomaterial displays very interesting retention capacities when used with aqueous inorganic pollutants. The pseudo, first and second-order kinetic models were used to investigate the kinetic retention mechanism. Assuming the nonlinear form, the results indicate that the retention mechanism is diffusion controlled. Concerning the heavy metal uptake capacity, it was found that the selected biomaterial has a retention capacity of 67 mg g−1 of Ni(II), 112 mg g−1 of Cu(II), 127 mg g−1of Cd(II) and 230 mg g−1 of Pb(II).  相似文献   

17.
《Process Biochemistry》2004,39(11):1643-1651
The iron biosorption capacity of a Streptomyces rimosus biomass treated with NaOH was studied in batch mode. After pretreatment of biomass at the ambient temperature, optimum conditions of biosorption were found to be: a biomass particle size between 50 and 160 μm, an average saturation contact time of 4 h, a biomass concentration of 3 g/l and a stirring speed of 250 rpm. The equilibrium data could be fitted by Langmuir isotherm equation. Under these optimal conditions, 122 mg Fe/gbiomass were fixed.  相似文献   

18.

Metal species released into the environment by technological activities tend to persist indefinitely, circulating and eventually accumulating throughout the food chain, thus becoming a serious threat to the environment. Environment pollution by toxic metals occurs globally through military, industrial, and agricultural processes and waste disposal. Bioremediation processes are the target of recent research and are considered low-cost, ecofriendly methods to alleviate the current problems of water decontamination, particularly for remote and rural areas. The present piece of work reports the unexploited sorption properties of the powdered seed of the plant Moringa oleifera (SMOS) for the removal of Arsenic [As(III) and As(V)] from aqueous solutions. Sorption studies, using standard practices, result in the standardization of optimum conditions such as biomass dosages (2.0 g), metal concentrations (25 ppm), contact time (60 min) and volume of the test solutions (200 ml) at pH 7.5, for As(III) and pH 2.5 for As(V). Maximum sorption for As(III) and As(V) species is 60.21 and 85.6%, respectively. Protein/Amino acid–Arsenic interactions are found to play an important role in the biosorption process using plant biomass SMOS.

  相似文献   

19.
Metal species released into the environment by technological activities tend to persist indefinitely, circulating and eventually accumulating throughout the food chain, thus becoming a serious threat to the environment. Environment pollution by toxic metals occurs globally through military, industrial, and agricultural processes and waste disposal. Bioremediation processes are the target of recent research and are considered low-cost, ecofriendly methods to alleviate the current problems of water decontamination, particularly for remote and rural areas. The present piece of work reports the unexploited sorption properties of the powdered seed of the plant Moringa oleifera (SMOS) for the removal of Arsenic [As(III) and As(V)] from aqueous solutions. Sorption studies, using standard practices, result in the standardization of optimum conditions such as biomass dosages (2.0 g), metal concentrations (25 ppm), contact time (60 min) and volume of the test solutions (200 ml) at pH 7.5, for As(III) and pH 2.5 for As(V). Maximum sorption for As(III) and As(V) species is 60.21 and 85.6%, respectively. Protein/Amino acid-Arsenic interactions are found to play an important role in the biosorption process using plant biomass SMOS.  相似文献   

20.
This work describes the preparation of new chelating materials derived from sugarcane bagasse for adsorption of heavy metal ions in aqueous solution. The first part of this report deals with the chemical modification of sugarcane bagasse with succinic anhydride. The carboxylic acid functions introduced into the material were used to anchor polyamines, which resulted in two yet unpublished modified sugarcane bagasse materials. The obtained materials were characterized by elemental analysis and infrared spectroscopy (IR). The second part of this reports features the comparative evaluation of the adsorption capacity of the modified sugarcane bagasse materials for Cu(2+), Cd(2+), and Pb(2+) ions in aqueous single metal solution by classical titration. Adsorption isotherms were studied by the Freundlich and Langmuir models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号