首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycoproteins released from carrot cells into culture media were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and visualized by staining with Coomassie brilliant blue or with the periodic-acid Schiff procedure. The appearance or disappearance of two glycoproteins of Mr 65,000 (GP65) and Mr 57,000 (GP57) was closely related to the formation of somatic embroys. GP65 was released specifically from embryogenic cells cultured in a medium without 2,4-dichlorophenoxyacetic acid, in which they can form somatic embryos. GP57 was released from the same embryogenic cells, if they were cultured in a medium with 2,4-dichlorophenoxyacetic acid, in which they cannot form somatic embryos. Nonembryogenic cells which cannot form somatic embryos, released only GP57.  相似文献   

2.
Co-cultures of embryos with somatic cells, usually in the form of monolayers, or conditioned medium from these somatic cells, results in development past the early stage blocks and the formation of hatched blastocysts. Optimum rates of development are not achieved, however, and the task is to investigate components of the oviduct that are obligatory or facilitative for embryo development. Glycine and alanine are amino acids present in much higher concentrations in oviduct fluid than in serum or culture media. Glycoproteins specifically produced by the oviduct around oestrus bind to embryos and aid development but are absent from most culture media. These glycoproteins are induced by oestrogen in vivo but not in vitro. It is our contention that co-cultures of mammalian embryos should include appropriate concentrations of amino acids and a source of embryotrophic glycoproteins as an additive or by including stromal cells in addition to epithelial cells.  相似文献   

3.
Cells in a plant differentiate according to their positions and use cell-cell communication to assess these positions. Similarly, single cells in suspension cultures can develop into somatic embryos, and cell-cell communication is thought to control this process. The monoclonal antibody JIM8 labels an epitope on cells in specific positions in plants. JIM8 also labels certain cells in carrot embryogenic suspension cultures. We have used JIM8 and secondary antibodies coupled to paramagnetic beads to label and immunomagnetically sort single cells in a carrot embryogenic suspension culture into pure populations. Cells in the JIM8(+) population develop into somatic embryos, whereas cells in the JIM8(-) population do not form somatic embryos. However, certain cells in JIM8(+) cultures (state B cells) undergo asymmetric divisions, resulting in daughter cells (state C cells) that do not label with JIM8 and that sort to JIM8(-) cultures. State C cells are competent to form somatic embryos, and we show here that a conditioned growth medium from a culture of JIM8(+) cells allows state C cells in a JIM8(-) culture to go on and develop into somatic embryos. JIM8 labels cells in suspension cultures at the cell wall. Therefore, a cell with a role in cell-cell communication and early cell fate selection can be identified by an epitope in its cell wall.  相似文献   

4.
Vegetatively propagated material offers many advantages over seed material in forest tree breeding research and in reforestation programmes. Evidence is accumulating to suggest that using somatic embryos in forestry is a viable option. However, before somatic embryos can be used optimally in forestry, basic research aimed at increasing the number of responsive genotypes as well as the age of the primary explant is needed. This in turn requires the establishment of a basic understanding of the physiological and molecular processes that underlie the development of somatic embryos. The functions of genes and their developmental and tissue specific regulation are studied using transient and stable transformation techniques.The process of somatic embryogenesis can be divided into different steps: (1) initiation of somatic embryos from the primary explant, (2) proliferation of somatic embryos, (3) maturation of somatic embryos and (4) plant regeneration. Cortical cells in the primary explant are stimulated to go through repeated divisions so that dense nodules are formed from which somatic embryos differentiate. The first formed somatic embryos continue to proliferate and give rise to embryogenic cell lines. Embryogenic cell lines of Picea abies can be divided into two main groups A and B, based on morphology, growth pattern and secretion of proteins. Our results suggest that extracellular proteins play a crucial role in embryogenesis of Picea abies. Somatic embryos from group A can be stimulated to go through a maturation process when treated with abscisic acid. Mature somatic embryos can develop into plants.Abbreviations ABA abscisic acid - BA N6-benzyladenine - 2,4-D dichlorophenoxy acetic acid  相似文献   

5.
Somatic embryogenesis is a powerful tool for plant regeneration and also provides a suitable material for investigating the molecular events that control the induction and development of somatic embryos. This study focuses on expression analysis of the QrCPE gene (which encodes a glycine-rich protein) during the initiation of oak somatic embryos from leaf explants and also during the histodifferentiation of somatic embryos. Northern blot and in situ hybridization were used to determine the specific localisation of QrCPE mRNA. The results showed that the QrCPE gene is developmentally regulated during the histodifferentiation of somatic embryos and that its expression is tissue- and genotype-dependent. QrCPE was strongly expressed in embryogenic cell aggregates and in embryogenic nodular structures originated in leaf explants as well as in the protodermis of somatic embryos from which new embryos are generated by secondary embryogenesis. This suggests a role for the gene during the induction of somatic embryos and in the maintenance of embryogenic competence. The QrCPE gene was highly expressed in actively dividing cells during embryo development, suggesting that it participates in embryo histodifferentiation. The localised expression in the root cap initial cells of cotyledonary somatic embryos and in the root cap of somatic seedlings also suggests that the gene may be involved in the fate of root cap cells.  相似文献   

6.
The relationship between cell expansion and cell cycling during somatic embryogenesis was studied in cultured bent-cotyledon-stage zygotic embryos of a transgenic stock of Arabidopsis thaliana harboring a cyclin 1 At:β-glucuronidase (GUS) reporter gene construct. In embryos cultured in a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D), following a brief period of growth by cell expansion, divisions were initiated in the procambial cells facing the adaxial side at the base of the cotyledons. Cell division activity later spread to almost the entire length of the cotyledons to form a callus on which globular and heart-shaped embryos appeared in about 10 d after culture. Anatomical and morphogenetic changes observed in cultured embryos were correlated with patterns of cell cycling by histochemical detection of GUS-expressing cells. Although early-stage somatic embryos did not develop further during their continued growth in the auxin-containing medium, maturation of embryos ensued upon their transfer to an auxin-free medium. In a small number of cultured zygotic embryos the shoot apical meristem was found to differentiate a leaf, a green tubular structure, or a somatic embryo. Contrary to the results from previous investigations, which have assigned a major role for the shoot apical meristem and cells in the axils of cotyledons in the development of somatic embryos on cultured zygotic embryos of A. thaliana, the present work shows that somatic embryos originate almost exclusively on the callus formed on the cotyledons. Other observations such as the induction of somatic embryos on cultured cotyledons and the inability of the embryo axis (consisting of the root, hypocotyl, and shoot apical meristem without the cotyledons) to form somatic embryos, reaffirm the important role of the cotyledons in somatic embryogenesis in this plant.  相似文献   

7.
The morphology of somatic embryos of Norway spruce ( Picea abies ) varies among different cell lines, from less developed somatic embryos with small embryonic regions (group B) to well developed embryos with large embryonic regions (group A). Only well developed somatic embryos will undergo a maturation process after a treatment with ABA and develop into mature somatic embryos, which is required for plant regeneration. We have previously shown that the presence of specific extracellular proteins can be correlated with the morphology of the somatic embryos. In the present study we show that extracellular proteins concentrated from group A cell lines can stimulate group B embryos to develop further and that seed extract can stably convert B embryos into A embryos. The arabinogalactan protein (AGP) fraction of the extracellular proteins and of the seed extract was shown to be an active component for stimulating B embryos to develop further. Furthermore, the amount and type of extracellular AGPs, as detected with β-glucosyl Yariv reagent and monoclonal antibodies, varied among different types of tissues and cell lines. The data show that development of somatic embryos in Norway spruce is associated with particular extracellular AGPs, which have a regulatory function.  相似文献   

8.
Summary The possibilities for in vitro regeneration of cocoa plants have been limited. Somatic embryos can differentiate from cotyledonary cells, but their conversion into plants has remained largely unsolved. In the present study, we attempted micrografting of somatic embryos to seedling rootstocks. Different conditions were analyzed for the rootstocks and embryos, and it was found that complete plant regeneration eeeded about 10 mo. The best results were obtained using a simple culture medium, 3-wk-old rootstocks, and somatic embryos without cotyledons. Histologic events associated with the graft union were also analyzed. Cells, mainly from the rootstock, initiate cellular division in different patterns, producing a callus at the graft junction. Within this region some cells differentiated into zylem and phloem, establishing vascular connection in the graft. Afterward, micrografted plants start to grow and differentiate new leaves and roots allowing for transfer to soil.  相似文献   

9.
Somatic embryogenesis is an obvious experimental evidence of totipotency, and is used as a model system for studying the mechanisms of de-differentiation and re-differentiation of plant cells. Although Arabidopsis is widely used as a model plant for genetic and molecular biological studies, there is no available tissue culture system for inducing somatic embryogenesis from somatic cells in this plant. We established a new tissue culture system using stress treatment to induce somatic embryogenesis in Arabidopsis. In this system, stress treatment induced formation of somatic embryos from shoot-apical-tip and floral-bud explants. The somatic embryos grew into young plantlets with normal morphology, including cotyledons, hypocotyls, and roots, and some embryo-specific genes (ABI3 and FUS3) were expressed in these embryos. Several stresses (osmotic, heavy metal ion, and dehydration stress) induced somatic embryogenesis, but the optimum stress treatment differed between different stressors. When we used mannitol to cause osmotic stress, the optimal conditions for somatic embryogenesis were 6-9 h of culture on solid B5 medium containing 0.7 m mannitol, after which the explants were transferred to B5 medium containing 2,4-dichlorophenoxyacetic acid (2,4-D, 4.5 microm), but no mannitol. Using this tissue culture system, we induced somatic embryogenesis in three major ecotypes of Arabidopsis thaliana-Ws, Col, and Ler.  相似文献   

10.
In Theobroma cacao L., declined embryogenic potential was observed in regenerated somatic embryos from long-term secondary somatic embryogenesis (SE). In order to explore the relationship between DNA methylation and the long-term secondary SE, the embryogenic potential and global DNA methylation levels in young (12 months-old), aged (36 months-old) and extra somatic embryogenesis (39 months-old) subjected to different 5-Azacytidine (5-azaC) treatments were comparatively assessed. Global DNA methylation levels increased in aged somatic embryos with long-term in vitro culture, but 5-azaC-supplemented treatments resulted in unaltered levels. In addition, DNA methylation pattern during SE was not affected by 5-azaC. DNA methylation increased during SE expression. Interestingly, the extra SE induction showed that aged somatic embryos can recovery the embryogenic potential in treatment supplemented with 5-azaC at specific concentration. The outcome of this study suggested that the long-term SE in cacao induced the decline on embryogenic potential, which can be reversible trough 5-azaC supplementation. Besides, increased DNA methylation levels might be a response to the stress conditions that plant cells were exposed to during SE.  相似文献   

11.
Summary A fluorescently labeled phenylalkylamine, DM-Bodipy PAA, was used as a probe for the in vivo detection of ion channels in embryonic and nonembryonic tissues of sunflower. Zygotic embryos, somatic embryos, callus, leaves, roots, and shoots were analysed. Fluorescence intensity in the tissues was determined with cytofluorometry and confocal microscopy. DM-Bodipy PAA intensively labeled the protoderm and epidermis cells in both zygotic and somatic embryos. Callus cultures exhibited labeling on sites where somatic embryos developed. Labeling was, however, very weak in leaves, shoots, and roots, except in the root cap and in the epidermis of the root. Considering that the location of phenylalkylamine binding sites is related to the distribution of ion channels in both animal and plant cells, the high intensity of labeling observed in the protoderm and epidermis of zygotic and somatic embryos as well as in protoderm, epidermis, and caps of root tips, is consistent with the role these tissues may play in ion exchange with the environment.  相似文献   

12.
A number of media constituents including sucrose, ammonium nitrate and plant growth regulators were evaluated in an attempt to improve somatic embryo production in zonal geranium (Pelargonium ×hortorum) cv. Scarlet Orbit Improved. Somatic embryo production was characterized by the quantity and type of somatic embryo induced by the treatments. Sucrose at 4% supported the highest number of total somatic embryos while improving the proportion of the morphologically normal cotyledon-stage somatic embryos. Addition of ammonium nitrate also improved embryo production. With 1.89 mM ammonium nitrate, normal cotyledon-stage embryo development was increased by 53%; the proportion of normal cotyledon-stage embryos decreased and abnormal embryos with leaves or serrated margins in cotyledons (fringed-shoot type) increased with higher ammonium nitrate concentrations. The effect of plant growth regulators on somatic embryogenesis indicated that exogenous supply of indole-3-acetic acid (IAA) at a range of 0.25 to 4 µM failed to promote somatic embryogenesis. In contrast, benzyladenine (BA) up to 2.0 µM increased the total embryo number and the proportion of desirable cotyledon-stage embryos. There was no interaction between IAA and BA. Our research has demonstrated that improvement in both quantity and quality of somatic embryos can be achieved in zonal geranium.  相似文献   

13.
A number of media constituents including sucrose, ammonium nitrate and plant growth regulators were evaluated in an attempt to improve somatic embryo production in zonal geranium (Pelargonium ×hortorum) cv. Scarlet Orbit Improved. Somatic embryo production was characterized by the quantity and type of somatic embryo induced by the treatments. Sucrose at 4% supported the highest number of total somatic embryos while improving the proportion of the morphologically normal cotyledon-stage somatic embryos. Addition of ammonium nitrate also improved embryo production. With 1.89 mM ammonium nitrate, normal cotyledon-stage embryo development was increased by 53%; the proportion of normal cotyledon-stage embryos decreased and abnormal embryos with leaves or serrated margins in cotyledons (fringed-shoot type) increased with higher ammonium nitrate concentrations. The effect of plant growth regulators on somatic embryogenesis indicated that exogenous supply of indole-3-acetic acid (IAA) at a range of 0.25 to 4 μM failed to promote somatic embryogenesis. In contrast, benzyladenine (BA) up to 2.0 μM increased the total embryo number and the proportion of desirable cotyledon-stage embryos. There was no interaction between IAA and BA. Our research has demonstrated that improvement in both quantity and quality of somatic embryos can be achieved in zonal geranium.  相似文献   

14.
Regeneration of Acacia mangium through somatic embryogenesis   总被引:2,自引:0,他引:2  
 Somatic embryogenesis and whole plant regeneration were achieved in callus cultures derived from immature zygotic embryos of Acacia mangium. Embryogenic callus was induced on MS medium containing combinations of TDZ (1–2 mg/l), IAA (0.25–2 mg/l) and a mixture of amino acids. Globular embryos developed on embryogenic callus cultured on the induction medium. Nearly 42% of embryogenic cultures with globular embryos produced torpedo- and cotyledonary-stage embryos by a two-step maturation phase. The first stage occurred on 1/2-strength MS basal medium containing 30 g/l sucrose and 5 mg/l GA3 followed by the second stage on 1/2-strength MS basal medium containing 50 g/l sucrose. Of the cotyledonary-stage somatic embryos, 11% germinated into seedlings that could be successfully transferred to pots. Light- and scanning electron microscopy showed that the somatic embryos originated from single cells of the embryogenic callus. Further, a single cell layer could be detected beneath the developing somatic embryos that appeared to be a demarcation layer isolating the somatic proembryonic structure from the rest of the maternal callus. A suspensor-like structure connected the globular embryos to the demarcation layer. This is the first successful report of plant regeneration through somatic embryogenesis for this economically important tropical forest species. Received: 20 January 2000 / Revision received: 28 September 2000 / Accepted: 29 September  相似文献   

15.
Summary Somatic embryos of grapevine (Vitis vinifera L.) ‘Chardonnay’ were produced from liquid suspension cultures. Mature somatic embryos were blot dried briefly in the laminar flow hood and germinated directly in Magenta GA-7 Vessels containing one of the following potting media: (1) sand, (2) commercial potting mixture (CPM), or (3) CPM overlaid with sand. Each vessel containing 20 ml of distilled water and the potting medium was sterilized by autoclaving for 30 min and cooled overnight before inoculating the somatic embryos. Five somatic embryos were placed in each vessel under aseptic conditions. The vessels were closed and incubated at 26±2°C, 16 h photoperiod at 75 μmol s−1 m−2 light intensity. Results revealed that CPM overlaid with sand was best for plant development. There was more contamination of somatic embryos on pure CPM. Since direct seeding bypasses at least two subcultures in agar medium, it has implications for use of somatic embryos as ‘synthetic seeds’ for clonal plant production. This study shows that somatic embryos of grapevine can be handled with some of the convenience of seeds, emphasizing the feasibility for further automating in vitro plant production, which might be especially useful for new varieties where propagation material is limited.  相似文献   

16.
以欧石楠茎段为外植体,研究其体细胞胚胎发生和植株再生。对影响茎段不定芽分化及胚性愈伤组织诱导的主导因子进行比较分析,并研究其体胚萌发、生根及移栽;同时,采用树脂切片法对茎段脱分化产生胚性愈伤组织及体胚发育过程进行组织细胞学观察。结果表明,接种在1/2WPM基本培养基上的茎段,胚性愈伤组织诱导率为88.7%,显著高于其他处理,不定芽诱导率可达90.6%,平均分化倍数为3.6个,平均分化苗高3.82cm;体细胞经过成熟培养后。在添加1.0mg·L-1 ZT和0.3mg·L-1 IBA的1/2WPM培养基上萌发,萌发的体胚在I/2WPM附加0.2mg·L-1 NAA和0.3mg·L-1 IBA的培养基上形成完整的体胚苗植株,体胚苗生根率达到87.4%,经炼苗后移栽到蛭石:珍珠岩=3:1(V/V)的栽培基质中,成活率可达63.7%。在显微镜下可观察到球形胚、心形胚、鱼雷形胚和子叶形胚;体细胞胚以间接方式发生,表现为愈伤组织外层细胞直接发生和愈伤组织组织内部细胞发生。  相似文献   

17.
Embryogenic callus was induced from leaf explants of Eleutherococcus sessiliflorus cultured on Murashige and Skoog (MS) basal medium supplemented with 1 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D), while no plant growth regulators were needed for embryo maturation. The addition of 1 mg l(-1) 2,4-D was needed to maintain the embryogenic culture by preventing embryo maturation. Optimal embryo germination and plantlet development was achieved on MS medium with 4 mg l(-1) gibberellic acid (GA(3)). Low-strength MS medium (1/2 and 1/3 strength) was more effective than full-strength MS for the production of normal plantlets with well-developed shoots and roots. The plants were successfully transferred to soil. Embryogenic callus was used to establish a suspension culture for subsequent production of somatic embryos in bioreactor. By inoculating 10 g of embryogenic cells (fresh weight) into a 3l balloon type bubble bioreactor (BTBB) containing 2l MS medium without plant growth regulators, 121.8 g mature somatic embryos at different developmental stages were harvested and could be separated by filtration. Cotyledonary somatic embryos were germinated, and these converted into plantlets following transfer to a 3l BTBB containing 2l MS medium with 4 mg l(-1) GA3. HPLC analysis revealed that the total eleutherosides were significantly higher in leaves of field grown plants as compared to different stages of somatic embryo. However, the content of eleutheroside B was highest in germinated embryos. Germinated embryos also had higher contents of eleutheroside E and eleutheroside E1 as compared to other developmental stages. This result indicates that an efficient protocol for the mass production of E. sessiliflorus biomass can be achieved by bioreactor culture of somatic embryos and can be used as a source of medicinal raw materials.  相似文献   

18.
A genetic transformation method via secondary somatic embryogenesis was developed for alfalfa (Medicago sativa L.). Mature somatic embryos of alfalfa were infected by Agrobacterium strain GV3101 containing the binary vector pCAMBIA2301. pCAMBIA2301 harbors the uidA Gus reporter gene and npt II acts as the selectable marker gene. Infected primary embryos were placed on SH2K medium containing plant growth regulators to induce cell dedifferentiation and embryogenesis under 75 mg/L kanamycin selection. The induced calli were transferred to plant medium free of plant growth regulators for embryo formation while maintaining selection. Somatic embryos germinated normally upon transfer to a germination medium. Plants were recovered and grown in a tissue culture room before transfer to a greenhouse. Histochemical analysis showed high levels of GUS activity in secondary somatic embryos and in different organs of plants recovered from secondary somatic embryos. The presence and stable integration of transgenes in recovered plants were confirmed by polymerase chain reaction using transgene-specific primers and Southern blot hybridization using the npt II gene probe. The average transformation efficiency achieved via secondary somatic embryogenesis was 15.2%. The selection for transformation throughout the cell dedifferentiation and embryogenic callus induction phases was very effective, and no regenerated plants escaped the selection procedure. Alfalfa transformation is usually achieved through somatic embryogenesis using different organs of developed plants. Use of somatic embryos as explants for transformation can avoid the plant development phase, providing a faster procedure for introduction of new traits and facilitates further engineering of previously transformed lines.  相似文献   

19.
The use of somatic embryogenesis for plant propagation in cassava   总被引:2,自引:0,他引:2  
In cassava, somatic embryogenesis starts with the culture of leaf explants on solid Murashige and Skoog-based medium supplemented with auxins. Mature somatic embryos are formed within 6 wk. The cotyledons of the primary somatic embryos are used as explants for a new cycle of somatic embryogenesis. The cotyledons undergo secondary somatic embryogenesis on both liquid and solid Murashige and Skoog-based medium supplemented with auxins. Depending on the auxin, new somatic embryos are formed after 14–30 d after which they can be used for a new cycle of somatic embryogenesis. In liquid medium, more than 20 secondary somatic embryos are formed per initial cultured embryo. In both primary and secondary somatic embryogenesis, the somatic embryos originate directly from the explants. Transfer of clumps of somatic embryos to a Greshoff and Doy-based medium supplemented with auxins results in indirect somatic embryogenesis. The direct form of somatic embryogenesis has a high potential for use in plant propagation, whereas the indirect has a high potential for use in genetic modification of cassava. Mature somatic embryos germinate into plants after desiccation and culture on a Murashige and Skoog-based medium supplemented with benzylaminopurine (BA). Depending on the used BA concentration, plants can either be transferred either directly to the greenhouse or after using standard multiplication protocols.  相似文献   

20.
Efficient regeneration via somatic embryogenesis (SE) would be a valuable system for the micropropagation and genetic transformation of sugar beet. This study evaluated the effects of basic culture media (MS and PGo), plant growth regulators, sugars and the starting plant material on somatic embryogenesis in nine sugar beet breeding lines. Somatic embryos were induced from seedlings of several genotypes via an intervening callus phase on PGo medium containing N6-benzylaminopurine (BAP). Calli were mainly induced from cotyledons. Maltose was more effective for the induction of somatic embryogenesis than was sucrose. There were significant differences between genotypes. HB 526 and SDM 3, which produced embryogenic calli at frequencies of 25–50%, performed better than SDM 2, 8, 9 and 11. The embryogenic calli and embryos produced by this method were multiplied by repeated subculture. Histological analysis of embryogenic callus cultures indicated that somatic embryos were derived from single- or a small number of cells. 2,4-dichlorophenoxyacetic acid (2,4-D) was ineffective for the induction of somatic embryogenesis from seedlings but induced direct somatic embryogenesis from immature zygotic embryos (IEs). Somatic embryos were mainly initiated from hypocotyls derived from the cultured IEs in line HB 526. Rapid and efficient regeneration of plants via somatic embryogenesis may provide a system for studying the molecular mechanism of SE and a route for the genetic transformation of sugar beet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号