首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferredoxin-NADP+ oxidoreductase associates with thylakoid membranes into two pools of different binding strength that are experimentally distinguished on the basis of resistance to removal by washes in low ionic strength media. The nondenaturing zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid is uniquely able to remove the more tightly bound pool of enzyme, without solubilization of major membrane proteins. The reconstitution of reductase onto depleted thylakoid membranes requires available membrane binding sites and cations, in order of effectiveness trivalent greater than divalent greater than monovalent. The hetero/bifunctional 125I-iodinated Denny-Jaffe cross-linking reagent yields a 54-kDa, covalently cross-linked adduct between ferredoxin-NADP+ oxidoreductase and a component of the thylakoid membrane. Our results show that the more tightly bound pool of enzyme is associated with the 17.5-kDa reductase-binding protein (Vallejos, R. H., Ceccarelli, E., and Chan, R. (1984) J. Biol. Chem. 259, 8048-8051).  相似文献   

2.
The gene for 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-controlling enzyme of cholesterol biosynthesis, is transcribed at a relatively high level when cellular sterols are depleted and is repressed when sterols accumulate. We have previously reported that the regulatory region of the hamster reductase gene contains eight different sequences that bind nuclear proteins as determined by DNase I footprinting assays. We here report the purification of a single activity that accounts for six of these footprints. This activity was found in a doublet of proteins (designated reductase promoter factor 1, RPF-1) that have apparent molecular weights of 33,000 and 35,000. They were isolated by DNA affinity chromatography using oligonucleotides corresponding to either of two footprinted sequences. The 33- and 35-kDa species were present as monomers, as indicated by gel filtration and gradient ultracentrifugation. Oligonucleotides corresponding to any one of the six footprinted sequences prevented the binding of RPF-1 to all of the other sequences, indicating that all six bind to a single site in RPF-1. The only sequence shared by all six footprinted sequences is the trinucleotide, TGG, both of whose guanosines made contact with RPF-1, as determined by methylation interference assays. The footprinted sequence that binds RPF-1 with highest affinity contains the palindrome, TGG(N7)CCA, which conforms to the consensus sequence for binding NF-1, a nuclear protein that stimulates replication of adeno-virus-2. Purified RPF-1 was shown to bind to the adenovirus NF-1 binding site with high affinity. Although the apparent molecular weight of the RPF-1 doublet was lower than the molecular weight range for NF-1 proteins (52,000-66,000), it is likely that the 33-35-kDa doublet is derived from a larger NF-1-like protein as a result of proteolysis. We conclude that RPF-1 belongs to a group of TGG-binding proteins that includes NF-1 and other proteins previously described as CCAAT binding proteins. This protein binds to six sites in the promoter region for hamster 3-hydroxy-3-methylglutaryl CoA reductase, where its function remains to be determined.  相似文献   

3.
The large form of ferredoxin-NADP reductase (FNR-L) was prepared by reassociating the small form of the enzyme (FNR-S) and connectein isolated from spinach leaves. The re-formed FNR-L could be rebound to depleted thylakoids from which most of the "built-in" FNR-L had been extracted. This rebinding of FNR-L brought about good restoration of the diminished NADP photoreducing activity of depleted thylakoids. Although rebinding of FNR-S to the depleted thylakoids took place with or without connectein, restoration of the NADP photoreducing activity required involvement of connectein. It becomes clear that involvement of connectein in the binding of FNR to thylakoids is indispensable for giving the physiological function of NADP photoreducing activity to the flavin enzyme on the surface of thylakoid membranes. It is most likely that FNR-L is the functional entity at the final step of the photosynthetic electron transport system in chloroplasts.  相似文献   

4.
Monospecific rabbit antibodies against the ferredoxin-NADP+ reductase binding protein of spinach thylakoids were obtained and characterized. The immunoglobulin G (IgG) fraction gave single precipitation arcs with the purified antigen or with Triton X-100 extracts of thylakoids or the reductase binding protein complex. Antibodies against the flavoprotein behave similarly. Both antibodies agglutinated thylakoids and precipitated the diaphorase activity of a Triton X-100 extract of these membranes. Isolated Fab fragments of the IgG anti-binding protein inhibited NADP+ photoreduction in a time- and Fab concentration-dependent manner. The presence of ferredoxin diminished the rate of inhibition. In the light, the inactivation rate was higher than in dark and this effect was abolished in the presence of uncouplers. These results suggest that the binding protein is protruding from the thylakoids and could be sensing the proton gradient.  相似文献   

5.
Eosin isothiocyanate was covalently bound to isolated ferredoxin-NADP+ reductase under protection of the NADP-binding domain. The bound label did not impair the functional reconstitution of the enzyme into depleted thylakoid membranes. Laser spectrophotometric experiments were carried out on thylakoids which were reconstituted with labeled ferredoxin-NADP+ reductase. Bound eosin isothiocyanate was used as a spectroscopic probe for conformational changes of ferredoxin-NADP+ reductase in either of two ways: We studied the rotational diffusion of labeled ferredoxin-NADP+ reductase in the membrane by the photoselection technique, and we studied the triplet lifetime of bound eosin, which measures polypeptide chain flexibility (via access of oxygen) around the binding site. The latter technique was complemented by measurements of the librational motion of bound dye. We observed: (1) When ferredoxin is absent, ferredoxin-NADP+ reductase undergoes very rapid rotational diffusion in the thylakoid membrane (correlation time less than 1 μs at 10°C). This is drastically slowed down (40 μs) upon addition of water-soluble ferredoxin. We propose that ferredoxin mediates the formation of a ternary complex with ferredoxin-NADP+ reductase and the Photosystem I complex. According to our data, this complex would live longer than required for the photoreduction of ferredoxin-NADP+ reductase by Photosystem I via ferredoxin. (2) Under the given incubation conditions, the binding sites for eosin isothiocyanate were located in the FAD domain of ferredoxin-NADP+ reductase. We found increased chain flexibility in this domain upon addition of NADP. This suggests induced fit for the binding of NADP and allosteric control of the FAD domain by the remote NADP domain. (3) Acidification of the internal phase of thylakoids decreased the chain flexibility in the FAD domain. This is of particular interest, since ferredoxin-NADP+ reductase is a peripheral external membrane protein. It suggests the existence of a binding protein for the oxidoreductase which spans the membrane and senses the internal pH  相似文献   

6.
Bovine erythrocyte green heme binding protein and bovine erythrocyte flavin reductase have been isolated in highly purified forms and subjected to amino acid analysis and N-terminal amino acid sequence analysis. The two proteins possess similar amino acid compositions and identical N-terminal amino acid sequences. Moreover, the two proteins are immunochemically cross-reactive and are indistinguishable when compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by double diffusion technique. This study provides evidence that the protein components of bovine erythrocyte green heme binding protein and flavin reductase are identical.  相似文献   

7.
The frdB gene, encoding the iron-sulphur protein subunit of fumarate reductase, has been located and its complete nucleotide sequence determined. The identity of the gene was confirmed by protein chemical studies and determination of the NH2-terminal sequence of the FrdB protein. The frdB gene is situated distal to and partially overlapped by frdA which codes for the flavoprotein subunit of the reductase. Its reading frame contains 244 codons and predicts a protein of Mr 27092. In composition, the FrdB protein is strikingly similar to the corresponding subunit of the related flavoenzyme, succinate dehydrogenase. Analysis of the protein's primary structure revealed several features characteristic of iron-sulphur proteins.  相似文献   

8.
Protein conformational changes related to transport into chloroplasts have been studied. Two chimaeric proteins carrying the transit peptide of either ferredoxin or plastocyanin linked to the mouse cytosolic enzyme dihydrofolate reductase (EC 1.5.1.3.) were employed. In contrast to observations in mitochondria, we found in chloroplasts that transport of a purified ferredoxin-dihydrofolate reductase fusion protein is not blocked by the presence of methotrexate, a folate analogue that stabilizes the structural conformation of dihydrofolate reductase. It is shown that transport competence of this protein in the presence of methotrexate is not a consequence of alteration of the folding characteristics or methotrexate binding properties of dihydrofolate reductase by fusion to the ferredoxin transit peptide. Binding of dihydrofolate reductase fusion proteins to chloroplast envelopes is not inhibited by low temperature and it is only partially diminished by methotrexate. It is demonstrated that the dihydrofolate reductase fusion proteins unfold, despite the presence of methotrexate, on binding to the chloroplast envelopes. We propose the existence of a strong protein unfolding activity associated to the chloroplast envelopes.  相似文献   

9.
The binding of endogenous manganese (Mn) to proteins released from spinach grana-thylakoid membranes by 2% cholate detergent or by osmotic shock is investigated. A mixture of 15-20 proteins is released by cholate and has been separated by isoelectric focusing in a sucrose gradient or by chromatofocusing. Mn coelutes with several proteins, but is lost upon dialysis. A dramatic redistribution of this Mn occurs in proteins released by osmotic shock in the presence of hydrophobic and hydrophilic oxidants. Maintaining an oxidizing solution potential during extraction apparently precludes reduction of the higher oxidation states of Mn to the labile Mn(II) state by reducing agents released from the membranes during lysing. This allows proteins to be separated which bind non-labile Mn ions. Under these extraction conditions, a protein is isolated which has an apparent molecular weight (Mr) of 65000 or 56000 on SDS-polyacrylamide gel electrophoresis depending on the sample buffer system used. The nondissociated protein occurs as a monomer of 58 kDa (90%) and an apparent dimer of 112 kDa (10%) by gel filtration. This protein binds little Mn if extracted by cholate and separated by isoelectric focusing. However, extraction by osmotic shock in the presence of oxidants and separation by chromatofocusing results in the retention of 1.9 +/- 0.3 Mn ions per monomer. This protein is identical to that reported by Spector and Winget (Spector, M., and Winget, G.D. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 957-959). Contrary to their result, this protein does not reconstitute O2 evolution when added to depleted membranes. Rabbit antibody to this purified protein inhibits O2 evolution by 20% when incubated with intact grana-thylakoid membranes or 10-20% with partially inverted, French-pressed thylakoids. This inhibition is completely removed by 10(-3)M NH3Cl as an uncoupler of photophosphorylation. These results support a role in Phosphorylation and a location on the outer surface of the thylakoids. This antibody also selectively binds purified coupling factor, CF1, the multisubunit phosphorylation enzyme which is located on the outer thylakoid surface and which is known to bind two Mn ions tightly (Hochman, Y. and Carmeli, C. (1981) Biochemistry 20, 6293-6297). Thus the beta-subunit of CF1, which has a molecular weight of 56 kDa, can be identified as the locus of Mn binding in CF1 and as the Mn protein isolated by Spector and Winget. This protein plays no role on O2 evolution.  相似文献   

10.
The assembly of the multi-subunit membrane-protein Photosystem I (PS I) complex involves incorporation of peripheral proteins into the complex. Here we studied assembly of the PsaD subunit of the cyanobacterial and plant PS I into the thylakoid membranes. We generated partial and chimeric psaD genes from which labeled proteins were synthesized in vitro. Assembly of these proteins into the cyanobacterial or plant thylakoids was assayed. The deletion of leader sequence and N-terminal extension of spinach prePsaD did not inhibit its assembly into spinach or cyanobacterial thylakoids. Addition of these sequences to the cyanobacterial PsaD did not enable it to assemble into plant thylakoids. Moreover, these additions significantly decreased the ability of the chimeric proteins to assemble into cyanobacterial thylakoids. In contrast, when the carboxyl-terminal half of cyanobacterial PsaD was replaced by the corresponding region of the spinach PsaD, the chimeric protein could assemble into both spinach and cyanobacterial thylakoids. Therefore, information in the carboxyl-terminal region of spinach PsaD is crucial for its assembly into plant thylakoids.Abbreviation prePsaD precursor of the PsaD subunit of PS I  相似文献   

11.
Kinetic studies of protein dephosphorylation in photosynthetic thylakoid membranes revealed specifically accelerated dephosphorylation of photosystem II (PSII) core proteins at elevated temperatures. Raising the temperature from 22 degrees C to 42 degrees C resulted in a more than 10-fold increase in the dephosphorylation rates of the PSII reaction center proteins D1 and D2 and of the chlorophyll a binding protein CP43 in isolated spinach (Spinacia oleracea) thylakoids. In contrast the dephosphorylation rates of the light harvesting protein complex and the 9-kD protein of the PSII (PsbH) were accelerated only 2- to 3-fold. The use of a phospho-threonine antibody to measure in vivo phosphorylation levels in spinach leaves revealed a more than 20-fold acceleration in D1, D2, and CP43 dephosphorylation induced by abrupt elevation of temperature, but no increase in light harvesting protein complex dephosphorylation. This rapid dephosphorylation is catalyzed by a PSII-specific, intrinsic membrane protein phosphatase. Phosphatase assays, using intact thylakoids, solubilized membranes, and the isolated enzyme, revealed that the temperature-induced lateral migration of PSII to the stroma-exposed thylakoids only partially contributed to the rapid increase in the dephosphorylation rate. Significant activation of the phosphatase coincided with the temperature-induced release of TLP40 from the membrane into thylakoid lumen. TLP40 is a peptidyl-prolyl cis-trans isomerase, which acts as a regulatory subunit of the membrane phosphatase. Thus dissociation of TLP40 caused by an abrupt elevation in temperature and activation of the membrane protein phosphatase are suggested to trigger accelerated repair of photodamaged PSII and to operate as possible early signals initiating other heat shock responses in chloroplasts.  相似文献   

12.
Chloroplasts contain thylakoid-bound and free ribosomes and polysomes. Whether binding of polysomes plays an immediate role in the regulation of chloroplast protein synthesis is not yet clear. In the present work, variations of protein synthesis and of mRNA content were measured not in greening, but in fully differentiated chloroplasts during the cell cycle of synchronized cultures of Chlamydomonas reinhardii. At different times of the vegetative cell cycle, the RNA was extracted from free and thylakoid-bound chloroplast polysomes and the partition of mRNAs between stroma and thylakoids was measured for two proteins, i.e. the 32-kDa herbicide-binding membrane protein and the soluble large subunit of the ribulose-1,5-bisphosphate carboxylase. At the same time the rates of synthesis of these two proteins were also determined. At 2 h after the onset of light, the content of both mRNAs in chloroplasts had doubled and 75-90% of each of these mRNAs were found to be bound to the thylakoids. The rate of protein synthesis, however, increased 10-fold, but reached its maximum only after about 6 h in the light. The differences in the time courses, in the stimulation of the rate of protein synthesis, and in the mRNA-binding to thylakoids point to a translational regulation of protein synthesis. Furthermore, since a very high proportion of polysomes were bound to thylakoids, containing mRNA for both a membrane and a soluble protein, this light-induced binding of polysomes to thylakoids seems to be an essential, but not the only, prerequisite for protein synthesis in chloroplasts.  相似文献   

13.
An improved procedure for the preparation of chloroplast coupling factor 1 (CF1) lacking the delta subunit is described. In addition, CF1 deficient in the epsilon subunit was isolated by a new method and CF1 lacking both of the smaller subunits was prepared. The ability of the subunit-deficient forms and of CF1, either heated or incubated with dithiothreitol to activate its ATPase activity, to bind to thylakoids from which CF1 had been removed was studied. All CF1 preparations bound in a cation-dependent manner to similar extents. CF1 lacking the delta subunit required higher cation concentrations for maximal binding. All preparations competed similarly with control CF1 for binding sites on the depleted membranes. The alpha subunit of all forms of CF1 in solution was rapidly cleaved by trypsin. After reconstitution, however, the alpha subunit of CF1, as well as of the subunit-deficient and the activated forms, was resistant to attack by trypsin. Moreover, treatment of the membranes with either trypsin or N,N'-dicyclohexylcarbodiimide inhibited the binding of all CF1 forms. These results suggest that the binding of the subunit-deficient and activated forms of CF1 is specific. CF1 lacking the epsilon subunit restored neither proton uptake nor ATP synthesis to the depleted membranes. In contrast to our previous results, CF1 lacking the delta subunit was partially effective. Previously, we used a suboptimal Mg2+ concentration for binding the delta-deficient enzyme which we show here was partially deficient in the epsilon subunit. These results show that the delta and epsilon subunits are not required for binding CF1 to the membranes and that the delta subunit is not an absolute requirement for ATP synthesis.  相似文献   

14.
Summary We have investigated the molecular basis of differential localization of enzyme activities in mesophyll(M) and bundle-sheath (B) cells of maize leaves. M protoplasts and B strands were prepared by enzymatic digestions and mechanical treatment of secondary leaves. Soluble and thylakoid membrane proteins from the two cell types were compared by one- and two-dimensional gel electrophoresis and quantitative rocket immunoelectrophoresis. In addition, several thylakoid polypeptides were identified by crossed immunoelectrophoresis using monospecific antibodies. M and B thylakoids show quantitative and qualitative differences in their polypeptide compositions. While the M thylakoids contain the normal complement of polypeptides, the B thylakoids are deficient in ferredoxin-NADP+ reductase, photosystem II reaction center polypeptides, and the light-harvesting chlorophyll a/b-protein complex. Comparison of the soluble proteins by two-dimensional gel electrophoresis revealed marked differences between M and B cells. The major proteins of one cell type are clearly absent from the other. These differences are paralleled by differences in the in vitro translation products of poly A+ RNA isolated from the two cell types. Immunoprecipitation experiments showed that mRNA encoding the small subunit of ribulose-1,5-bisphosphate carboxylase (rbcS) is localized exclusively in B cells, whereas mRNA encoding phosphoenolpyruvate carboxylase is detected only in M cells. cDNA clones encoding the carboxylase rbcS and the chlorophyll a/b binding protein were used as probes in Northern blot analysis. M cells contain no detectable RNA encoding rbcS but have a higher steady state level of RNA encoding the chlorophyll a/b-binding polypeptide compared to B cells. Taken together, our results demonstrate that differential gene expression in the two leaf cell types is regulated at the level of translatable mRNA, and, for at least two proteins, at the level of steady-state RNA.  相似文献   

15.
《FEBS letters》1987,215(1):37-40
Ferredoxin has been chemically cross-linked to thylakoids by using N-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The membranes thus treated became able to photoreduce cytochrome c and to catalyze the NADPH-cytochrome c reductase reaction without adding exogenous ferredoxin. Preincubation of thylakoids with an antibody against ferredoxin-NADP+ reductase before carbodiimide treatment or removal of the reductase by mild trypsin treatment after the cross-linking reaction did not alter the cytochrome c photoreduction activity of the treated membranes. Two independent binding sites of ferredoxin to thylakoids are thus inferred: one site is shown to be the membrane-bound reductase, the second is suggested to be at the level of the photosystem I complex.  相似文献   

16.
Oxysterol binding protein   总被引:3,自引:0,他引:3  
A binding protein is described for certain oxygenated derivatives of cholesterol which suppress 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesis in cultured mammalian cells. This protein is found in the cytosolic fraction of many cell types and is distinct from cytosolic proteins which bind cholesterol. The relative binding affinity of a wide variety of oxysterols correlates with their ability to suppress reductase and it is proposed that the binding protein functions as a receptor for endogenous regulatory oxysterols. The binding protein from cultured mouse fibroblasts (L cells) has been partially purified and characterized. Changes in its molecular form occur when a ligand is bound and further changes in form and binding kinetics occur at acid pH and in the presence of urea. Based on these changes a subunit model for the binding protein is presented.  相似文献   

17.
18.
Chlorophyll a/b binding polypeptides (CABp) are integral thylakoid membrane proteins containing three membrane-spanning helices. We have created a series of mutations in tomato CABp to test whether individual membrane helices with hydrophilic flanking sequences, when fused to a transit peptide, can be imported into chloroplasts and correctly targeted to thylakoid membranes. All of the mutated precursors, including those with large C-terminal and internal deletions, were imported successfully, showing that these regions of the mature CABp are not required for import into chloroplasts. All mutants tested, containing either one or two membrane helices, were found primarily in the stroma and not in the thylakoids. The small amount of protein found associated with the thylakoids was largely resistant to alkali extraction but was sensitive to protease, unlike wild-type protein, which is resistant to both treatments. When incubated with thylakoids in the absence of stroma and/or ATP, a significant amount of wild-type protein assumes a form that is resistant to alkali extraction but is protease sensitive, like the imported deletion proteins. This form of the wild-type protein is not chased into a protease-resistant form by adding stroma and/or ATP. These results suggest that CABp can spontaneously associate with membranes as an aberrant species that is not an intermediate in the process of integration. The inability of the deletion forms of CABp to assume a protease-resistant conformation suggests that correct integration is afforded by elements within the entire protein that collectively contribute to the proper conformation of the protein. The ability of deletion mutants to associate with thylakoids in a nonphysiological way suggests that the study of such mutants may not be useful in elucidating thylakoid-targeting signals.  相似文献   

19.
The binding of endogenous manganese (Mn) to proteins released from spinach grana-thylakoid membranes by 2% cholate detergent or by osmotic shock is investigated. A mixture of 15–20 proteins is released by cholate and has been separated by isoelectric focusing in a sucrose gradient or by chromatofocusing. Mn coelutes with several proteins, but is lost upon dialysis. A dramatic redistribution of this Mn occurs in proteins released by osmotic shock in the presence of hydrophobic and hydrophilic oxidants. Maintaining an oxidizing solution potential during extraction apparently precludes reduction of the higher oxidation states of Mn to the labile Mn(II) state by reducing agents released from the membranes during lysing. This allows proteins to be separated which bind non-labile Mn ions. Under these extraction conditions, a protein is isolated which has an apparent molecular weight (Mr) of 65 000 or 56 000 on SDS-polyacrylamide gel electrophoresis depending on the sample buffer system used. The nondissociated protein occurs as a monomer of 58 kDa (90%) and an apparent dimer of 112 kDa (10%) by gel filtration. This protein binds little Mn if extracted by cholate and separated by isoelectric focusing. However, extraction by osmotic shock in the presence of oxidants and separation by chromatofocusing results in the retention of 1.9 ± 0.3 Mn ions per monomer. This protein is identical to that reported by Spector and Winget (Spector, M., and Winget, G.D. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 957–959). Contrary to their result, this protein does not reconstitute O2 evolution when added to depleted membranes. Rabbit antibody to this purified protein inhibits O2 evolution by 20% when incubated with intact grana-thylakoid membranes or 10–20% with partially inverted, French-pressed thylakoids. This inhibition is completely removed by 10?3 M NH3Cl as an uncoupler of photophosphorylation. These results support a role in Phosphorylation and a location on the outer surface of the thylakoids. This antibody also selectively binds purified coupling factor, CF1, the multisubunit phosphorylation enzyme which is located on the outer thylakoid surface and which is known to bind two Mn ions tightly (Hochman, Y. and Carmeli, C. (1981) Biochemistry 20, 6293–6297). Thus the β-subunit of CF1, which has a molecular weight of 56 kDa, can be identified as the locus of Mn binding in CF1 and as the Mn protein isolated by Spector and Winget. This protein plays no role on O2 evolution.  相似文献   

20.
Increased renal ammoniagenesis and bicarbonate synthesis from glutamine during chronic metabolic acidosis facilitate the excretion of acids and partially restore normal acid-base balance. This adaptation is sustained, in part, by a cell-specific stabilization of the glutaminase mRNA that leads to an increased synthesis of the mitochondrial glutaminase. A direct repeat of an 8-base AU sequence within the 3'-nontranslated region of the glutaminase mRNA binds a unique protein with high affinity and specificity. Expression of various chimeric mRNAs in LLC-PK(1)-FBPase(+) cells demonstrated that a single 8-base AU sequence is both necessary and sufficient to function as a pH response element (pH RE). A biotinylated oligoribonucleotide containing the direct repeat was used as an affinity ligand to purify the pH RE-binding protein from a cytosolic extract of rat renal cortex. The purified binding activity retained the same specific binding properties as observed with crude extracts and correlated with the elution of a 36-kDa protein. Microsequencing by mass spectroscopy and Western blot analysis were used to identify this protein as zeta-crystallin/NADPH:quinone reductase. The purified protein contained eight tryptic peptides that were identical to sequences found in mouse zeta-crystallin and three peptides that differed by only a single amino acid. The observed differences may represent substitutions found in the rat homolog. A second protein purified by this protocol was identified as T-cell-restricted intracellular antigen-related protein (TIAR). However, the purified TIAR neither bound nor affected the binding of zeta-crystallin/NADPH:quinone reductase to the pH RE. Furthermore, specific antibodies to zeta-crystallin, but not TIAR, blocked the formation of the complex between the pH RE and either the crude cytosolic extract or the purified protein. Thus, zeta-crystallin/NADPH:quinone reductase is a pH response element-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号