共查询到20条相似文献,搜索用时 0 毫秒
1.
Human embryonic stem cell-derived neural precursors as a continuous, stable, and on-demand source for human dopamine neurons 总被引:1,自引:0,他引:1
Ko JY Park CH Koh HC Cho YH Kyhm JH Kim YS Lee I Lee YS Lee SH 《Journal of neurochemistry》2007,103(4):1417-1429
Human embryonic stem (hES) cells can be guided to differentiate into ventral midbrain-type neural precursor (NP) cells that proliferate in vitro by specific mitogens. We investigated the potential of these NP cells derived from hES cells (hES-NP) for the large-scale generation of human dopamine (DA) neurons for functional analyses and therapeutic applications. To address this, hES-NP cells were expanded in vitro for 1.5 months with six passages, and their proliferation and differentiation properties determined over the NP passages. Interestingly, the total hES-NP cell number was increased by > 2 × 104 -folds over the in vitro period without alteration of phenotypic gene expression. They also sustained their differentiation capacity toward neuronal cells, exhibiting in vitro pre-synaptic DA neuronal functionality. Furthermore, the hES-NP cells can be cryopreserved without losing their proliferative and developmental potential. Upon transplantation into a Parkinson's disease rat model, the multi-passaged hES-NP cells survived, integrated into the host striatum, and differentiated toward the neuronal cells expressing DA phenotypes. A significant reduction in the amphetamine-induced rotation score of Parkinson's disease rats was observed by the cell transplantation. Taken together, these findings indicate that hES-NP cell expansion is exploitable for a large-scale generation of experimental and transplantable DA neurons of human-origin. 相似文献
2.
A simplified method to generate serotonergic neurons from mouse embryonic stem and induced pluripotent stem cells 总被引:1,自引:0,他引:1
Shimada T Takai Y Shinohara K Yamasaki A Tominaga-Yoshino K Ogura A Toi A Asano K Shintani N Hayata-Takano A Baba A Hashimoto H 《Journal of neurochemistry》2012,122(1):81-93
We have developed a new simple method to induce serotonergic neurons from embryonic stem (ES) and induced pluripotent stem cells. When ES or induced pluripotent stem cells were cultured on a thick gel layer of Matrigel, most colonies extended TuJ1-positive neurites. We found that noggin, a known antagonist of bone morphogenic protein, induces ES cells to express genes involved in serotonergic differentiation, such as Nkx2.2, Pet-1, Sonic hedgehog, tryptophan hydroxylase 2, and serotonin transporter, as well as increases high potassium-induced release of serotonin. To concentrate serotonergic neurons, ES cells carrying Pet-1-enhancer-driven enhanced green fluorescent protein were differentiated and sorted into about 80% pure cultures of serotonergic neurons. Whole cell voltage-clamp recordings showed a voltage-dependent current in dissociated neurons. This simplified method provides an alternative option for serotonergic differentiation of pluripotent stem cells and will likely contribute a deeper understanding regarding the nature of serotonergic neurons and open new therapeutic perspectives for the treatment of psychiatric disorders. 相似文献
3.
人胚胎干细胞(human embryonic stem cells,hESCs)由囊胚期胚胎内细胞团分离培养获得,具有保持未分化状态的无限增殖能力。hESCs具有多向分化潜能,在体内和体外均可分化形成所有三个胚层(外胚层、中胚层、内胚层)的衍生物。hESCs一般在鼠胚胎成纤维细胞(mouse embryonic fibroblast,MEF)饲养层上培养和扩增。为了优化培养条件,目前人们已发展了多种人类细胞饲养层和无饲养层、非条件培养基体系。hESCs可以在体外定向诱导分化为多种细胞类型,为揭示人胚早期发育机制和发展多种疾病的细胞移植治疗奠定了基础。hESCs可以在体外进行遗传修饰,将有助于揭示特定基因在发育过程中的调控和功能。对hESCs的深入研究将极大地推动医学和生命科学的进展,并将最终应用于临床,造福人类。 相似文献
4.
5.
6.
In vitro differentiation of human embryonic neural stem cells 总被引:1,自引:1,他引:1
7.
8.
Suemori H 《Human cell》2006,19(2):65-70
Embryonic stem (ES) cell lines, which are derived from the inner cell mass of blastocysts, proliferate indefinitely in vitro, retaining their potency to differentiate into various cell types derived from all of the three embryonic germ layers: the ectoderm, mesoderm and endoderm. Establishment of human ES cell lines in 1998 has indicated the great potential of ES cells for applications in medical research and other purposes such as cell transplantation therapy. Careful assessment of safety and effectiveness using proper animal models is required before such therapies can be attempted on human patients. Monkey ES cell lines provide valuable models for such research. 相似文献
9.
10.
Homozygous human embryonic stem cells (hESCs) are thought to be better cell sources for hESC banking because their human leukocyte antigen (HLA) haplotype would strongly increase the degree of matching for certain populations with relatively smaller cohorts of cell lines. Homozygous hESCs can be generated from parthenogenetic embryos, but only heterozygous hESCs have been established using the current strategy to artificially activate the oocyte without second polar body extrusion. Here we report the first successful derivation of a human homozygous ESC line (chHES- 32) from a one-pronuclear oocyte following routine in vitro fertilization treatment, chHES-32 cells express common markers and genes with normal hESCs. They have been propagated in an undifferentiated state for more than a year (〉P50) and have maintained a stable karyotype of 46, XX. When differentiated in vivo and in vitro, chHES-32 cells can form derivatives from all three embryonic germ layers. The almost undetectable expression of five paternally expressed imprinted genes and their HLA genotype identical to the oocyte donor indicated their parthenogenetic origin. Using genome-wide single-nucleotide polymorphism analysis and DNA fingerprinting, the homozygosity of chHES-32 cells was further confirmed. The results indicated that ‘ unwanted' one-pronuclear oocytes might be a potential source for human homozygous and parthenogenetic ESCs, and suggested an alternative strategyfor obtaining homozygous hESC lines from parthenogenetic haploid oocytes. 相似文献
11.
Over the last several decades, murine embryonic stem cells (mESCs) have been used as a model for human embryonic stem cell (hESC) research. The relevance of this approach has not yet been proven. There is a great deal of evidence that is indicative of substantial differences between these two cell types. An analysis of the literature shows that the differences concern ESC proliferation, self-renewal, and differentiation. Consequently, mESC may be considered as a model object for hESC studies only for some aspects of their biology. The alternative model objects, such as primate ESC, are also discussed briefly in this review. 相似文献
12.
Yueying Li Jing He Fengchao Wang Zhenyu Ju Sheng Liu Yu Zhang Zhaohui Kou Yanfeng Liu Tao Cheng Shaorong Gao 《遗传学报》2010,37(7):431-439
Embryonic stem cells (ESCs) are a potential source of generating transplantable hematopoietic stem and progenitor cells, which in turn can serve as "seed" cells for hematopoietic regeneration. In this study, we aimed to gauge the ability of mouse ESCs directly differentiating into hematopoietic cells in adult bone marrow (BM). To this end, we first derived a new mouse ESC line that constitutively expressed the green fluorescent protein (GFP) and then injected the ESCs into syngeneic BM via intra-tibia. The progeny of the transplanted ESCs were then analyzed at different time points after transplantation. Notably, however, most injected ESCs differentiated into non-hematopoietic cells in the BM whereas only a minority of the cells acquired hematopoietic cell surface markers. This study provides a strategy for evaluating the differentiation potential of ESCs in the BM micro-environment, thereby having important implications for the physiological maintenance and potential therapeutic applications of ESCs. 相似文献
13.
小鼠胚胎干细胞移植入成体大鼠脑内的区域特异性存活与分化 总被引:1,自引:0,他引:1
全能区域非特异性的胚胎干细胞是研究成体不同脑区控制干细胞分化能力的十分有力的工具。胚胎干细胞源性神经前体细胞移植入成体脑后可分化为功能性神经元,但是未分化的胚胎干细胞在成体脑内各个部位的存活、生长与分化的潜能差异尚不清楚。本文旨在探讨成体脑组织对胚胎干细胞的影响及胚胎干细胞在成体脑内的一系列行为。将少量转绿色荧光蛋白未分化的小鼠胚胎干细胞移植入成体大鼠脑内不同部位,分别于移植5、14和28d后处死大鼠,进行形态学观察及免疫组化定性,以了解未分化的小鼠胚胎干细胞在大鼠脑内不同区域的存活、生长与分化。结果发现未分化的小鼠胚胎干细胞可逐步整合入受体组织并向nestin阳性神经前体细胞分化。移植细胞及其后裔在海马生长最为旺盛,而在隔区最差(P〈0.01);移植细胞分化为神经干细胞的效率也是在海马最高,而在隔区最低(P〈0.01)。提示只有部分脑区适合胚胎干细胞及其后裔生存,并提供促进其分化的有益环境。因此,由于位置特异的微环境因子及环境因素的存在,宿主组织特性对决定中枢神经系统疾病的细胞替代疗法策略是相当重要的。 相似文献
14.
Nat R 《Journal of cellular and molecular medicine》2011,15(6):1429-1431
The connection of embryonic stem cell technology and developmental biology provides valuable tools to decipher the mechanisms underlying human brain development and diseases, especially among neuronal populations, that are not readily available in primary cultures. It is obviously the case of neurons forming the human cerebral cortex. In the images that are presented, the neurons were generated in vitro from human embryonic stem cells via forebrain-like progenitors. Maintained in culture for prolonged time, they acquired a mainly glutamatergic phenotype and morphological characteristics of cortical pyramidal neurons, including dendritic spines, and formed spectacular networks. 相似文献
15.
16.
Human embryonic stem (hES) cells provide a promising supply of specific cell types for transplantation therapy. We presented
here the method to induce differentiation of purified neural precursors from hES cells. hES cells (Line PKU-1 and Line PKU-2)
were cultured in suspension in bacteriological Petri dishes, which differentiated into cystic embryoid bodies (EBs). The EBs
were then cultured in N2 medium containing bFGF in poly-L-lysine-coated tissue culture dishes for two weeks. The central, small cells with 2–3 short
processes of the spreading outgrowth were isolated mechanically and replated. The resulting neurospheres were cultured in
suspension for 10 days, then dissociated into single cell suspension with a Pasteur pipette and plated. Cells grew vigorously
in an attached way and were passed every 4–5 days. Almost all the cells were proved nestin positive by immunostaining. Following
withdrawal of bFGF, they differentiated into neurons expressing β-tubulin isotypeIII, GABA, serotonin and synaptophysin. Through induction of PDGF-AA, they differentiated into astrocytes expressing GFAP and
oligodendrocytes expressing O4. The results showed that hES cells can differentiate into typical neural precursors expressing the specific marker nestin
and capable of generating all three cell types of the central nervous system (CNS)in vitro. 相似文献
17.
18.
Establishment and in vitro differentiation of a new embryonic stem cell line from human blastocyst 总被引:10,自引:0,他引:10
Baharvand H Ashtiani SK Valojerdi MR Shahverdi A Taee A Sabour D 《Differentiation; research in biological diversity》2004,72(5):224-229
Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. These cells have, therefore, potential for in vitro differentiation studies, gene function, and so on. The aim of this study was to produce a human embryonic stem cell line. An inner cell mass of a human blastocyst was separated and cultured on mouse embryonic fibroblasts in embryonic stem cell medium with related additives. The established line was evaluated by morphology; passaging; freezing and thawing; alkaline phosphatase; Oct-4 expression; anti-surface markers including Tra-1-60 and Tra-1-81; and karyotype and spontaneous differentiation. Differentiated cardiomyocytes and neurons were evaluated by transmission electron microscopy and immunocytochemistry. Here, we report the derivation of a new embryonic stem cell line (Royan H1) from a human blastocyst that remains undifferentiated in morphology during continuous passaging for more than 30 passages, maintains a normal XX karyotype, is viable after freezing and thawing, and expresses alkaline phosphatase, Oct-4, Tra-1-60, and Tra-1-81. These cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers in the presence or absence of recombinant human leukemia inhibitory factor. Royan H1 cells can differentiate in vitro in the absence of feeder cells and can produce embryoid bodies that can further differentiate into beating cardiomyocytes as well as neurons. These results define Royan H1 cells as a new human embryonic stem cell line. 相似文献
19.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。 相似文献
20.
The carbohydrates present on the surface of differentiated human embryonic stem cells (hESCs) are not yet well established. Here, we have employed a panel of lectins and several anti-carbohydrate antibodies to determine the carbohydrates that are present at day 12 of hESC differentiation as embryoid bodies (EBs). On the basis of staining with fluorescein-labeled lectins, we have determined the presence of both terminal and internally linked alpha-d-mannopyranosyl groups, poly-N-acetyllactosaminyl chains, both alpha2,3- and alpha2,6-linked N-acetylneuraminic acid (Neu5Ac), alpha1,6-linked l-fucosyl, and beta-D-galactosyl groups, and more specifically, the T, Tn, and sialyl-Tn antigens. However, no alpha1,2-linked l-fucosyl, terminal nonreducing alpha-D-galactosyl, N-acetyl-beta-D-glucosaminyl, nor N-acetyl-alpha-D-galactosaminyl groups were found by this approach. We also established the presence of Neu5Acalpha2,3/2,6-Galbeta1,4 GlcNAc-terminated chains on the surfaces of 12-day-old EBs, as indicated by the great enhancement of staining by Erythrina cristagalli agglutinin (ECA) after treatment with neuraminidase. In each case, inhibition of binding by a haptenic sugar or treatment with neuraminidase was used to eliminate the possibility of nonspecific binding of the lectins. A comparison with undifferentiated cell staining revealed an increase in alpha2,3-linked Neu5Ac as well as a change to exclusively alpha1,6-linked l-fucose upon differentiation. 相似文献