首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Incubation of intact frog erythrocytes with 12-O-tetradecanoyl phorbol-13-acetate (TPA), a tumor-promoting phorbol diester which activates protein kinase C, results in an approximate two- to threefold increase in subsequently tested beta-adrenergic agonist-stimulated adenylate cyclase activity. This increase is due to an elevation in the Vmax of the enzyme rather than to a change in affinity for the agonist. TPA treatment of frog erythrocytes does not alter the affinity (KD) or the binding capacity (Bmax) for the beta-adrenergic antagonist [125I]cyanopindolol. In addition, agonist/[125I]cyanopindolol competition curves are not affected by TPA pretreatment nor is their sensitivity to guanine nucleotides. Incubation of frog erythrocyte membranes alone with TPA does not promote sensitization or activation of adenylate cyclase activity. Pretreatment of intact frog erythrocytes with TPA also produces approximately two- to threefold increases in basal, guanine nucleotide-, prostaglandin E1-, forskolin-, NaF-, and MnCl2-stimulated adenylate cyclase activities in frog erythrocyte membranes. This enhancement of adenylate cyclase activity by TPA is induced rapidly (t1/2 approximately equal to 5 min) and with an EC50 of about 10(-7) to 10(-6) M. Other tumor-promoting phorbol diesters or phorbol diester-like compounds including 4 beta-phorbol 12,13-dibutyrate, 4 beta-phorbol 12,13-didecanoate, and mezerein are effective in promoting enhanced adenylate cyclase activity. In contrast, phorbols such as 4 beta-phorbol, 4 alpha-phorbol 12,13-didecanoate, and 4-O-methylphorbol 12-myristate 13-acetate, which are inactive in tumor promotion and which do not activate protein kinase C, do not affect frog erythrocyte adenylate cyclase activity. These data are suggestive of a protein kinase C-mediated phosphorylation of one of the adenylate cyclase components that is distal to the receptor, i.e., the nucleotide regulatory and/or catalytic components.  相似文献   

2.
The guanine nucleotide regulatory protein(s) regulates both adenylate cyclase activity and the affinity of adenylate cyclase-coupled receptors for hormones or agonist drugs. Cholera toxin catalyzes the covalent modification of the nucleotide regulatory protein of adenylate cyclase systems. Incubation of frog erythrocyte membranes with cholera toxin and NAD+ did not substantially alter the dose dependency for guanine nucleotide activation of adenylate cyclase activity. In contrast, toxin treated membranes demonstrated a 10 fold increase in the concentrations of guanine nucleotide required for a half maximal effect in regulating beta-adrenergic receptor affinity for the agonist (+/-) [3H]hydroxybenzylisoproterenol. The data emphasize the bifunctional nature of the guanine nucleotide regulatory protein and suggest that distinct structural domains of the guanine nucleotide regulatory protein may mediate the distinct regulatory effects on adenylate cyclase and receptor affinity for agonists.  相似文献   

3.
A new method was developed to follow the rate of activation of adenylate cyclase in rat brain membranes by rapid freezing and N-ethylmaleimide treatment at 0 degrees C. This method was used to investigate the relationship between the rate of activation of adenylate cyclase by p(NH)ppG and GTP gamma S and their apparent affinities. These studies established the following. 1) The kinetics of activation by p(NH)ppG and GTP gamma S were indistinguishable although the apparent affinity of p(NH)ppG was 20-fold lower than the affinity of GTP gamma S. Activation was first order, kobs varying approximately 1.5-fold (average t 1/2 = 3.5 min, 30 degrees C) between 20-90% occupancy by either guanine nucleotide. 2) Final levels of activity were strictly dependent on the concentration of the nucleotides in a saturable manner. 3) Mg2+ increased the apparent affinity of either guanine nucleotide by 10-20-fold between 0.1 microM and 3 mM free Mg2+ in the presence of 2 mM EDTA but did not enhance the rate or maximal extent of activation. 4) The effects of Mg2+ were expressed through two independent classes of sites with affinities in the nanomolar and micromolar range. 5) A Mg2+ X guanine nucleotide complex was not the substrate for activation. The affinity of Mg2+ for nucleotides was determined as 6.25 mM GTP gamma S, 0.930 mM GTP, 0.156 mM p(NH)ppG. 6) Full activation by p(NH)ppG was completely reversible but activation by GTP gamma S was only partially reversible. These results suggest that: activation of adenylate cyclase in native membranes does not require Mg2+ or irreversible binding of the guanine nucleotide and there are two independent pathways for formation of active adenylate cyclase. A minimal mechanism for activation is discussed in light of current models.  相似文献   

4.
The guanine nucleotide-binding regulatory component of adenylate cyclase (G/F) has been purified from human erythrocyte membranes. It is composed of two major polypeptides with molecular weights of 35,000 and 45,000. When cyc- S49 lymphoma cell plasma membranes are reconstituted with purified human erythrocyte G/F, stimulation of adenylate cyclase by beta-adrenergic agonists, guanine nucleotides, and fluoride is restored. Binding of GTP gamma S to human erythrocyte G/F and GTP gamma S-mediated activation of the protein are closely correlated. The agreement between the apparent dissociation constants for these two reactions suggests that the measured binding site is identical to the site responsible for activation. A 41,000-dalton protein has been identified as a contaminant of preparations of G/F that have been purified by four successive chromatographic steps. This protein serves as a specific substrate for ADP-ribosylation and labeling by islet activating protein (IAP) and [32P]NAD, and it appears to contribute an additional high-affinity guanine nucleotide binding site to such preparations.  相似文献   

5.
The guanine nucleotide regulatory protein component (N) of the frog erythrocyte membrane adenylate cyclase system appears to form a stable complex with the beta-adrenergic receptor (R) in the presence of agonist (H). This agonist-promoted ternary complex HRN can be solubilized with Lubrol. The guanine nucleotide regulatory protein associated with the solubilized complex can be adsorbed either to GTP-Sepharose directly or to wheat germ lectin-Sepharose via its interaction with the receptor which is a glycoprotein. Guanosine 5'-O-(3-thiotriphosphate)(GTP gamma S) can be used to elute the guanine nucleotide regulatory protein from either Sepharose derivative. The resulting N.GTP gamma S complex conveys nucleotide-dependent adenylate cyclase activity when combined with a Lubrol-solubilized extract of turkey erythrocyte membranes. The ability to observe GTP gamma S-dependent reconstitution of adenylate cyclase activity in the eluate from either resin required the formation of the HRN complex prior to solubilization. The N protein can be identified by its specific [32P]ADP ribosylation catalyzed by cholera toxin in the presence of [32P]NAD+. The existence of a stable HRN intermediate complex is supported by the observation that agonist pretreatment of frog erythrocyte membranes results in a 100% increase in the amount of 32P-labeled N protein eluted from the lectin-Sepharose in the presence of GTP gamma S compared to membranes pretreated with either antagonist or agonist plus GTP. Our results therefore provide evidence that the same guanine nucleotide-binding protein that associates with the beta-adrenergic receptor in the presence of agonist mediates adenylate cyclase activation.  相似文献   

6.
Activation of human blood platelet adenylate cyclase is initiated through the binding of prostaglandin E1 to the membrane receptors. Incubation of platelet membrane with [3H]prostaglandin E1 at pH 7.5 in the presence of 5 mM MgCl2 showed that the binding of the autacoid was rapid, reversible and highly specific. The binding was linearly proportional to the activation of adenylate cyclase. Although the membrane-bound radioligand could not be removed either by GTP or its stable analogue 5'-guanylylimido diphosphate, 150 nM cyclic AMP displaced about 40% of the bound agonist from the membrane. Scatchard analyses of the binding of the prostanoid to the membrane in the presence or absence of cyclic AMP showed that the nucleotide specifically inhibited the high-affinity binding sites without affecting the low-affinity binding sites. Incubation of the membrane with 150 mM cyclic AMP and varying amounts of prostaglandin E1 (25 nM to 1.0 microM) showed that the percent removal of the membrane-bound autacoid was similar to the percent inhibition of adenylate cyclase at each concentration of the agonist. At a concentration of 25 nM prostaglandin E1, both the binding of the agonist and the activity of adenylate cyclase were maximally inhibited by 40%. With the increase of the agonist concentration in the assay mixture, the inhibitory effects of the nucleotide gradually decreased and at a concentration of 1.0 microM prostaglandin E1 the effect of the nucleotide became negligible. These results show that cyclic AMP inhibits the activation of adenylate cyclase by low concentrations of prostaglandin E1 through the inhibition of the binding of the agonist to high-affinity binding sites.  相似文献   

7.
Pertussis toxin selectively modifies the function of Ni, the inhibitory guanine nucleotide binding protein of the adenylate cyclase complex. In chick heart membranes, guanine nucleotide activation of Ni resulted in a decrease in the apparent affinity of the muscarinic receptor for the agonist oxotremorine, inhibition of basal adenylate cyclase activity, and the attenuation of adenylate cyclase by oxotremorine. Treatment of chicks with pertussis toxin caused the covalent modification of 80-85% of cardiac Ni. After this treatment Gpp(NH)p had no effect on muscarinic receptor affinity and GTP stimulated basal adenylate cyclase activity. In contrast, the GTP-dependent attenuation of adenylate cyclase caused by muscarinic receptors was unaffected.  相似文献   

8.
125I-Glucagon binding to rat liver plasma membranes was composed of high- and low-affinity components. N-Ethylmaleimide (NEM) and several other alkylating agents induced a dose-dependent loss of high-affinity sites. This diminished the apparent affinity of glucagon receptors for hormone without decreasing the binding capacity of membranes. Solubilized hormone-receptor complexes were fractionated as high molecular weight (Kav = 0.16) and low molecular weight (Kav = 0.46) species by gel filtration chromatography; NEM or guanosine 5'-triphosphate (GTP) diminished the fraction of high molecular weight complexes, suggesting that NEM uncouples glucagon receptor-N-protein complexes. Exposure of intact hepatocytes to the impermeable alkylating reagent p-(chloromercuri)benzenesulfonic acid failed to diminish the affinity of glucagon receptors on subsequently isolated plasma membranes, indicating that the thiol that affects receptor affinity is on the cytoplasmic side of the membrane. Hormone binding to plasma membranes was altered by NEM even after receptors were uncoupled from N proteins by GTP. These data suggest that a sensitive thiol group that affects hormone binding resides in the glucagon receptor, which may be a transmembrane protein. Alkylated membranes were fused with wild-type or cyc- S49 lymphoma cells to determine how alkylation affects the various components of the glucagon-adenylyl cyclase system. Stimulation of adenylyl cyclase with fluoride, guanylyl 5'-imidodiphosphate, glucagon, or isoproterenol was observed after fusion of cyc- S49 cells [which lack the stimulatory, guanine nucleotide binding, regulatory protein of adenylyl cyclase (Ns)] with liver membranes alkylated with 1.5 mM NEM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A guanine nucleotide-binding protein purified from turkey erythrocytes by affinity chromatography confers both F-- and guanine nucleotide-stimulation of adenylate cyclase to membranes from CYC- cells, a mutant cell line deficient in these responses. Interaction of turkey erythrocyte membranes with beta-adrenergic agonists before affinity chromatography, which is essential for binding of the guanine nucleotide regulatory protein to the affinity matrix, was also required for recovery of F--stimulation restoring activity in the affinity eluate.  相似文献   

10.
The adenylate cyclase coupled inhibitory nucleotide regulatory protein (Ni) and the bovine retinal nucleotide regulatory protein transducin (T) appear to share some common functional properties since their GTPase activity is stimulated to similar extents by the retinal photoreceptor rhodopsin. In the present work, we sought to assess whether these functional similarities might extend to their interaction with adenylate cyclase. This necessitated the development of reconstitution systems in which guanine nucleotide regulatory protein mediated inhibition of adenylate cyclase activity could be demonstrated and characterized in a lipid milieu. In the absence of the pure human erythrocyte stimulatory nucleotide regulatory protein (Ns), the insertion into phospholipid vesicles of either pure Ni from human erythrocytes or pure bovine T with the resolved catalytic moiety of bovine caudate adenylate cyclase (C) does not establish GppNHp inhibition of either Mg2+- or forskolin-stimulated adenylate cyclase. However, the coinsertion into lipid vesicles of either Ni or T with Ns and resolved C results in an inhibition of Ns(GppNHp) stimulatable C activity. As is the case in intact membranes, the reconstituted inhibition of the Ns-stimulated C activity extends into the steady-state phase of time courses of activity. This inhibition is highly sensitive to the MgCl2 concentration. At 2 mM MgCl2, the inhibition is greater than 80% while at 50 mM MgCl2 it is only approximately 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Tetracaine and other local anesthetics exert multiple actions on the catecholamine-sensitive adenylate cyclase system of frog erythrocyte membranes. Tetracaine (0.2--20 mM) reduces the responsiveness of adenylate cyclase to (a) guanyl-5'-yl-imidodiphosphate and (b) isoproterenol in the presence of GTP or guanyl-5'-yl-imidodiphosphate. Local anesthetics did not affect (a) basal enzyme activity, and (b) enzyme responsiveness to NaF. Tetracaine inhibited stimulation of adenylate cyclase by guanyl-5'-yl-imidodiphosphate over the whole range of nucleotide concentrations. By contrast, inhibition by tetracaine of isoproterenol activity in the presence of GTP was significant only if GTP concentrations exceeded 10(-7) M. Tetracaine also competitively inhibited binding of both the antagonist [3H]dihydroalprenolol and the agonist [3H]hydroxybenzylisoproterenol to beta-adrenergic receptors. However, it was twice as potent in inhibiting [3H]hydroxybenzylisoproterenol as [3H]dihydroalprenolol binding. The greater potency for inhibition of agonist binding was due to the ability of the anesthetics to promote dissociation of the high-affinity nucleotide sensitive state of the beta-adrenergic receptor induced by agonists. Other local anesthetics mimicked the effects of tetracaine on adenylatecyclase and in dissociating high-affinity agonist-receptor complexes. The other of potency for both processes was dibucaine greater than tetracaine greater than bupivacaine greater than lidocaine which agrees with their relative potencies as local anesthetics. By contrast, a different order of potency was observed for competitive inhibition of [3H]dihydroalprenolol binding: dibucaine greater than tetracaine greater than greater than lidocaine greater than bupivacaine.  相似文献   

12.
The binding of substance P (SP) to receptors in peripheral tissues as well as in the CNS is subject to regulation by guanine nucleotides. In this report, we provide direct evidence that this effect is mediated by a guanine nucleotide-binding regulatory protein (G-protein) that is required for high-affinity binding of SP to its receptor. Rat submaxillary gland membranes bind a conjugate of SP and 125I-labeled Bolton-Hunter reagent (125I-BHSP) with high affinity (KD = 1.2 +/- 0.4 X 10(-9) M) and sensitivity to guanine nucleotide inhibition. Treatment of the membranes with alkaline buffer (pH 11.5) causes a loss of the high-affinity, GTP-sensitive binding of 125I-BHSP and a parallel loss of [35S]guanosine 5'-(3-O-thio)triphosphate ([35S]GTP gamma S) binding activity. Addition of purified G-proteins from bovine brain to the alkaline-treated membranes restores high-affinity 125I-BHSP binding. Reconstitution is maximal when the G-proteins are incorporated into the alkaline-treated membranes at a 30-fold stoichiometric excess of GTP gamma S binding sites over SP binding sites. Both Go (a pertussis toxin-sensitive G-protein having a 39,000-dalton alpha-subunit) and Gi (the G-protein that mediates inhibition of adenylate cyclase) appear to be equally effective, whereas the isolated alpha-subunit of Go is without effect. The effects of added G-proteins are specifically reversed by guanine nucleotides over the same range of nucleotide concentrations that decreases high-affinity binding of 125I-BHSP to native membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Opiate agonists inhibit adenylate cyclase in brain membranes, but under normal conditions the maximal inhibition is small (10-15%). When rat brain membranes were preincubated at pH 4.5, washed, and then assayed for adenylate cyclase at pH 7.4, stimulation of activity by agents (fluoride, guanylyl-5'-imidodiphosphate, cholera toxin) that act through the stimulatory GTP-binding coupling protein (Gs) protein was lost. At the same time, inhibition of basal adenylate cyclase by opiate agonists was increased to a maximum of 30-40%. Opiate inhibition was maximal at low magnesium concentrations (less than 5 mM), required guanine nucleotides, and decreased the Vmax, not Km, of the enzyme. Incubation of membranes with pertussis toxin lowered the apparent affinity for agonists in inhibiting activity. The delta opioid agonists were more potent than mu agonists, and the Ke values for naloxone in blocking agonist inhibition were similar for both mu and delta agonists (50-90 nM). These results suggest that inhibition of adenylate cyclase in brain is not mediated by mu opiate receptors, but whether classic high-affinity delta and kappa receptors are involved with this enzyme cannot be confirmed by these experiments.  相似文献   

14.
12-O-Tetradecanoylphorbol-13-acetate (TPA) enhances the apparent maximal velocity of adenylate cyclase in S49 lymphoma cells, an effect that seems not to result from an increased rate of activation of the catalytic subunit by the stimulatory GTP-binding protein (Gs) (Bell, J. D., Buxton, I. L. O., and Brunton, L. L. (1985) J. Biol. Chem. 260, 2625-2628). In membranes from wild type S49 cells, this enhancing effect of TPA is largely GTP-dependent; TPA enhances forskolin-stimulated adenylate cyclase activity by 35% in the presence of guanine nucleotide but only slightly (approximately 10%) in its absence. TPA causes comparable results in membranes from the cyc- variant that lacks the GTP-binding subunit of Gs. Blockade of the activity of the inhibitory GTP-binding protein (Gi) by high concentrations of Mg2+ (100 mM) or Mn2+ (3 mM) abolishes the effect of TPA to enhance adenylate cyclase activity in wild type membranes. The potentiation by TPA of cAMP accumulation in intact cells is greater than and not additive with the similar effect of pertussis toxin (an agent known to abolish hormonal inhibition of adenylate cyclase). Kinetic experiments indicate that TPA decreases the rate of activation of Gi by guanine nucleotide. We conclude that the resultant withdrawal of tonic inhibition of adenylate cyclase is one mechanism by which phorbol esters enhance guanine nucleotide-dependent cAMP synthesis.  相似文献   

15.
We have utilized limited in situ trypsinization of the adenylate cyclase-coupled beta-adrenergic receptor of frog erythrocytes to probe the processes of receptor activation, desensitization, and recycling. Treatment of intact erythrocytes with trypsin (1 mg/ml) for 1 h at 20 degrees C converts all the receptor peptides (identified by photoaffinity labeling with p-azido-125I-benzylcarazolol) from a Mr approximately 58,000 to a Mr approximately 40,000 species. Nonetheless, the trypsinized beta-adrenergic receptors bind agonists and antagonists with unaltered affinity and with no change in the number of binding sites. Moreover, the ability of the proteolyzed receptors to interact with the nucleotide regulatory protein to form a high affinity guanine nucleotide-sensitive state and to activate adenylate cyclase were also unaltered. However, upon exposure of intact cells to the agonist isoproterenol, trypsinized beta-adrenergic receptors were more rapidly and more completely cleared from the plasma membranes ("down-regulated") than untrypsinized receptors. Whereas down-regulated receptors from nontrypsinized cells appear to recycle to the cell surface after removal of the agonist, internalized trypsinized beta-adrenergic receptors do not recycle to the plasma membrane and appear to be degraded within the cell. Moreover, when internalized receptors, recovered in a light vesicle fraction, were fused with a heterologous adenylate cyclase system, untreated but not trypsinized receptors reconstituted catecholamine stimulation of the enzyme. These data suggest that the beta-adrenergic receptor contains a trypsin-sensitive site which is exposed on the outer surface of the plasma membrane. Proteolysis at this site releases a fragment which though not critically involved in either ligand binding or "effector coupling" might be important for anchoring the receptors in the plasma membrane. These data also suggest that in situ proteolysis of the receptors might serve as a physiological trigger for their internalization and degradation.  相似文献   

16.
Adenosine, acting via A1 adenosine receptors, can inhibit adenylate cyclase activity in adipocytes. To assess the effects of chronic adenosine agonist exposure on the A1 adenosine receptor system of adipocytes, rats were infused with (-)-phenylisopropyladenosine or vehicle for 6 days and membranes were prepared. Basal as well as isoproterenol-, sodium fluoride-, and forskolin-stimulated adenylate cyclase activities were significantly increased (approximately 2-fold) in membranes from treated animals. (-)-Phenylisopropyladenosine-mediated inhibition of forskolin-stimulated adenylate cyclase activity was significantly (p = 0.0001) attenuated in membranes from treated rats (20.1 +/- 2.1% inhibition) versus controls (31.6 +/- 2.3% inhibition). Prostaglandin E1-induced inhibition of forskolin-stimulated adenylate cyclase activity was also attenuated: 11.7 +/- 3.6 versus 23.2 +/- 4.6% (p = 0.001). Using the A1 adenosine receptor agonist radioligand (-)-N6-(3-[125I]iodo-4-hydroxyphenylisopropyl)adenosine, 32% fewer high affinity binding sites were detected in membranes from treated animals (p less than 0.04). Photoaffinity labeling with N6-2-(3-[125I]iodo-4-azidophenyl)ethyladenosine revealed no gross difference in receptor structure. The number of beta-adrenergic receptors as well as the percentage of receptors in the high affinity state as assessed by (-)-3-[125I]iodocyanopindolol binding were the same in both groups. In membranes from treated rats, the amount of [alpha-32P]NAD incorporated by pertussis toxin into the alpha subunit of the inhibitory guanine nucleotide regulatory protein (Ni) was decreased by 37 +/- 11%. Concurrently, the quantity of label incorporated by cholera toxin into the alpha subunit of the stimulatory guanine nucleotide regulatory protein (Ns) was increased by 44 +/- 14% in treated membranes. Finally, the capacity of Ns solubilized from treated membranes to stimulate adenylate cyclase activity when reconstituted into cyc- S49 lymphoma cell membranes was enhanced by approximately 50% compared to control. Thus, heterologous desensitization, manifested by a diminished capacity to inhibit adenylate cyclase and an enhanced responsiveness to stimulatory effectors, can be induced in the A1 adenosine receptor-adenylate cyclase system of adipocytes. A decrease in Ni alpha subunit concomitant with an increase in Ns alpha subunit quantity and activity may represent the biochemical mechanism of desensitization in this system.  相似文献   

17.
We have examined several features of the regulation of cyclic AMP accumulation in lymphoid cells isolated from peripheral blood of human subjects and in the murine T-lymphoma cell line, S49, S49 cells are unique because of the availability of variant clones with lesions in the pathway of cyclic AMP generation and response. We found that human lymphoid cells prepared at 4 degrees C showed substantially greater cyclic AMP accumulation in response to histamine and the beta-adrenergic agonist isoproterenol than did cells prepared at ambient temperature. The muscarinic cholinergic agonist carbamylcholine and peptide hormone somatostatin failed to inhibit cyclic AMP accumulation in human lymphoid cells and treatment with pertussis toxin (which blocks function of Gi, the guanine nucleotide binding protein that mediates inhibition of adenylate cyclase) only minimally increased cyclic AMP levels in these cells. Thus the Gi component of adenylate cyclase appears to play only a small role in modulating cyclic AMP levels in this mixed population of lymphoid cells. Incubation of whole blood with isoproterenol desensitized human lymphocytes to subsequent stimulation with beta agonist. This desensitization was associated with a redistribution of beta-adrenergic receptors such that a substantial portion of the receptors in intact cells could no longer bind a hydrophilic antagonist. Wild-type S49 lymphoma cells showed a similar redistribution of beta-adrenergic receptors after a few minutes' incubation with agonist. Based on studies in S49 variants, this redistribution is independent of components distal to receptors in the adenylate cyclase/cyclic AMP pathway. By contrast, a more slowly developing, agonist-mediated down-regulation of beta-adrenergic receptors was blunted in variants with defective interaction between receptors and Gs, the guanine nucleotide binding protein that mediates stimulation of adenylate cyclase. Unlike results in human lymphoid cells, S49 cells show a prominent inhibition of cyclic AMP accumulation mediated by Gi; this inhibition is promoted by somatostatin and blocked by pertussis toxin. Inhibition by Gi is unable to account for the marked decrease in ability of the diterpene forskolin to maximally stimulate adenylate cyclase in S49 variants having defective Gs. These results emphasize that both Gs and Gi component are important in modulating cyclic AMP accumulation and receptors linked to adenylate cyclase in S49 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Densensitization of turkey erythrocytes by exposure to the beta-adrenergic agonist (-)isoproterenol leads to decreased activation of adenylate cyclase by agonist, NaF, and guanyl-5'-yl imido diphosphate, with no reduction in the number of beta-adrenergic receptors. Interactions between the receptor and the guanine nucleotide regulatory protein (N protein) also seem to be impaired. These observations suggest that a component distal to the beta-adrenergic receptor may be a locus of modification. Accordingly we examined the N protein to determine whether it was altered by desensitization. The rate at which (-)isoproterenol stimulated the release of [3H]GDP from the N protein was substantially lower in membranes prepared from desensitized cells, providing further evidence for uncoupling of the receptor and the N protein. The amount of N protein in membranes from control and desensitized cells was compared by labeling the 42,000 Mr component of the N protein with [32P]NAD+ and cholera toxin; no significant difference was found. However, significantly more N protein (p less than .001) was solubilized by cholate extraction of desensitized membranes, suggesting an altered association of the N protein with the membrane after desensitization. The functional activity of the N protein was measured by reconstitution of cholate extracts of turkey erythrocyte membranes into S49 lymphoma cyc- membranes. Reconstitution of (-)isoproterenol stimulation of adenylate cyclase activity was reduced significantly (p less than .05) after desensitization. These observations suggest that desensitization of the turkey erythrocyte by (-)isoproterenol results in functional modifications of the guanine nucleotide regulatory protein, leading to impaired interactions with the beta-adrenergic receptor and reduced activation of adenylate cyclase.  相似文献   

19.
[3H]Forskolin binds to human platelet membranes in the presence of 5 mM MgCl2 with a Bmax of 125 fmol/mg of protein and a Kd of 20 nM. The Bmax for [3H]forskolin binding is increased to 455 and 425 fmol/mg of protein in the presence of 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and 10 mM NaF, respectively. The increase in the Bmax for [3H]forskolin in the presence of Gpp(NH)p or NaF is not observed in the absence of MgCl2. The EC50 values for the increase in the number of binding sites for [3H]forskolin by Gpp(NH)p and NaF are 600 nM and 4 mM, respectively. The EC50 value for Gpp(NH)p to increase the number of [3H]forskolin binding sites is reduced to 35 mM and 150 nM in the presence of 50 microM PGE1 or PGD2, respectively. The increase in the number of [3H]forskolin binding sites observed in the presence of NaF is unaffected by prostaglandins. The binding of [3H]forskolin to membranes that are preincubated with Gpp(NH)p for 120 min or assayed in the presence of PGE1 reaches equilibrium within 15 min. In contrast, a slow linear increase in [3H]forskolin binding is observed over a period of 60 min when Gpp(NH)p and [3H]forskolin are added simultaneously to membranes. A slow linear increase in adenylate cyclase activity is also observed as a result of preincubating membranes with Gpp(NH)p. In human platelet membranes, agents that activate adenylate cyclase via the guanine nucleotide stimulatory protein (Ns) increase the number of binding sites for [3H]forskolin in a magnesium-dependent manner. This is consistent with the high affinity binding sites for [3H]forskolin being associated with the formation of an activated complex of the Ns protein and adenylate cyclase. This state of the adenylate cyclase may be representative of that formed by a synergistic combination of hormones and forskolin.  相似文献   

20.
The radiolabeled agonist [3H]hydroxybenzylisoproterenol ([3H]HBI) and antagonist [125I]iodopindolol ([125I]IPIN) were used to investigate the properties of beta-adrenergic receptors on membranes prepared from L6 myoblasts and S49 lymphoma cells. The high affinity binding of (-)-[3H]HBI to membranes prepared from L6 myoblasts was stereoselectively inhibited by the active isomers of isoproterenol and propranolol. The density of receptors determined with (-)-[3H]HBI was less than that determined with [125I]IPIN. The binding of (-)-[3H]HBI was inhibited by guanine nucleotides, suggesting an agonist-mediated association of the receptor with a guanine nucleotide-binding protein, presumably the stimulatory guanine nucleotide-binding protein (Ns) of adenylate cyclase. Results obtained in studies with membranes prepared from wild-type S49 lymphoma cells and the adenylate cyclase-deficient variant (cyc-) were similar to those obtained in experiments carried out with membranes prepared from L6 myoblasts. Thus, the high affinity binding of (-)-[3H]HBI to membranes prepared from wild-type and cyc- S49 lymphoma cells was stereoselectively inhibited by the active isomers of isoproterenol and propranolol, and was inhibited by GTP. Moreover, the density of sites determined with (-)-[3H]HBI was less than that determined with [125I]IPIN. These results suggest either that cyc- cells contain a partially functional Ns, or alternatively, that the inhibitory guanine nucleotide-binding protein (Ni) is capable of interacting with beta-adrenergic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号