首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ferredoxin (Fd) in higher plants is encoded by a nuclear gene, synthesized in the cytoplasm as a larger precursor, and imported into the chloroplast, where it is proteolytically processed, and assembled with the [2Fe-2S] cluster. The final step in the biosynthetic pathway of Fd can be analyzed by a reconstitution system composed of isolated chloroplasts and [35S]cysteine, in which [35S]sulfide and iron are incorporated into Fd to build up the 35S-labeled Fe-S cluster. Although a lysed chloroplast system shows obligate requirements for ATP and NADPH, in vitro chemical reconstitution of the Fe-S cluster is generally thought to be energy-independent. The present study investigated whether ATP and NADPH in the chloroplast system of spinach (Spinacia oleracea) are involved in the supply of [35S]sulfide or iron, or in Fe-S cluster formation itself. [35S]Sulfide was liberated from [35S] cysteine in an NADPH-dependent manner, whereas ATP was not necessary for this process. This desulfhydration of [35S]cysteine occurred before the formation of the 35S-labeled Fe-S cluster, and the amount of radioactivity in [35S]sulfide was greater than that in 35S-labeled holo-Fd by a factor of more than 20. Addition of nonradioactive sulfide (Na2S) inhibited competitively formation of the 35S-labeled Fe-S cluster along with the addition of nonradioactive cysteine, indicating that some of the inorganic sulfide released from cysteine is incorporated into the Fe-S cluster of Fd. ATP hydrolysis was not involved in the production of inorganic sulfide or in the supply of iron for assembly into the Fe-S cluster. However, ATP-dependent Fe-S cluster formation was observed even in the presence of sufficient amounts of [35S]sulfide and iron. These results suggest a novel type of ATP-dependent in vivo Fe-S cluster formation that is distinct from in vitro chemical reconstitution. The implications of these results for the possible mechanisms of ATP-dependent Fe-S cluster formation are discussed.  相似文献   

2.
Treatment of clostridial ferredoxin with cyanide caused bleaching of the protein and formation of thiocyanate. The rate of bleaching was increased by urea, heat, or alkali. In experiments with C. acidi-urici [35S]sulfide-ferredoxin, it was shown that cyanolysis converts 70–80% of the sulfide to [35S]thiocyanate. Apoferredoxinox, other disulfides, or Na2S alone did not yield thiocyanate under these conditions. However, the apoprotein, as well as 2-mercaptoethanol disulfide, forms thiocyanate when Na2S is added. The addition of Na2S also increases the amount of thiocyanate formed from ferredoxin. The specific activity of the thiocyanate formed from [35S]sulfide-ferredoxin in the presence of added unlabeled Na2S is greatly decreased. The specific activity of the thiocyanate formed from the cyanolysis of [35S]sulfide-ferredoxin in the presence of urea and excess sulfide increased with time. Bleaching of ferredoxin during cyanolysis in the presence of urea led to the release of inorganic sulfide prior to the formation of thiocyanate. These observations suggest that it is likely that thiocyanate formation from ferredoxin and cyanide results from the production of a persulfide bond between the apoprotein and the released sulfide. Therefore, thiocyanate production from ferredoxin treated with cyanide does not constitute evidence for the occurrence of the persulfide group in the native protein.  相似文献   

3.
Polysulfides formed through the breakdown of elemental sulfur or other sulfur compounds were found to be reduced to H2S by the hyperthermophilic archaebacterium Pyrococcus furiosus during growth. Metabolism of polysulfides by the organism was dissimilatory, as no incorporation of 35S-labeled elemental sulfur was detected. However, [35S]cysteine and [35S]methionine were incorporated into cellular protein. Contact between the organism and elemental sulfur is not necessary for metabolism. The sulfide generated from metabolic reduction of polysulfides dissociates to a strong nucleophile, HS, which in turn opens up the S8 elemental sulfur ring. In addition to H2S, P. furiosus cultures produced methyl mercaptan in a growth-associated fashion.  相似文献   

4.
A technique for the simultaneous determination of [35S]sulfide and [14C]carbon dioxide produced in anaerobic aqueous samples dual-labeled with [35S]sulfate and a 14C-organic substrate is described. The method involves the passive distillation of sulfide and carbon dioxide from an acidified water sample and their subsequent separation by selective chemical absorption. The recovery of sulfide was 93% for amounts ranging from 0.35 to 50 μmol; recovery of carbon dioxide was 99% in amounts up to 20 μmol. Within these delineated ranges of total sulfide and carbon dioxide, 1 nmol of [35S]sulfide and 7.5 nmol of [14C]carbon dioxide were separated and quantified. Correction factors were formulated for low levels of radioisotopic cross-contamination by sulfide, carbon dioxide, and volatile organic acids. The overall standard error of the method was ±4% for sulfide and ±6% for carbon dioxide.  相似文献   

5.
The first effects of 3,4-methylen-dioxy-metamphetamine (MDMA, “ecstasy”), on serotonin 1A (5-HT1A) receptors in rat hippocampus were determined by means of [3H]-8-hydroxy-dipropylamino-tetralin ([3H]-8-OH-DPAT) and 5′guanosine-(γ-[35S]-thio)triphosphate ([35S]-GTPγS) binding as well as inhibition of forskolin (FK)-stimulated adenylyl cyclase (AC) activity. The study was completed by [35S]-GTPγS functional autoradiography experiments carried out in frontal sections of rat brain, including the hippocampal region. Results showed that MDMA was either able to displace [3H]-8-OH-DPAT binding (Ki  500 nM) or to reduce the number of specific sites (Bmax) without affecting Kd. The drug also failed to change the [35S]-GTPγS binding or to inhibit AC velocity, underlying its behavior as a non-competitive 5-HT1A receptor antagonist. Further, MDMA (1 or 100 μM), partially antagonized either [35S]-GTPγS binding stimulation of the agonists 5CT and 8-OH-DPAT or the AC inhibition induced by 5CT and DP-5CT. However, in contrast to binding studies, in AC assays the amphetamine displayed an effect also on EC50, always being less potent than the reference antagonist WAY100,635. In functional autoradiography, MDMA behaved either as a partial 5-HT1A antagonist in limbic areas or, added alone, as an agonist, increasing the coupling signal presumably through 5-HT release from synapses. Interestingly, the selective 5-HT re-uptake inhibitor (SSRI) fluoxetine had no effect on MDMA [35S]-GTPγS binding activation. This latter finding indicates that the amphetamine can release 5-HT via alternative mechanisms to 5-HT transporter binding, probably via membrane synaptic receptors or vesicular transporters. The release of other transmitters is not excluded. Therefore, our results encourage at extending the study of MDMA biochemical profiles, in the attempt to elucidate those amphetamine-induced pathways with a potential for neurotoxicity or psycho-stimulant activity.  相似文献   

6.
《Insect Biochemistry》1986,16(2):293-297
Phenolsulphotransferase (PST) activity was measured with N-acetyldopamine (NADA) and harmol as substrates in the larvae, pupae and adult mosquito (Aedes togoi). Only the newly emerged pupae showed high PST activity 1–4 hr after pupation. PST activity could also be measured in each individual pupa, with the female exhibiting significantly higher specific activity (30 ± 3.7 pmol NADA [35S]sulphate/min per mg protein) than the males (13.6 ± 2.9 pmol NADA [35S]sulphate/min per mg protein). The optimum pH for the PST reaction was 9.0. The Km values for [35S]PAP were 0.55 and 2.5 μM when measured with NADA and harmol as acceptors, respectively; the corresponding Km values for these two substrates were 2.61 and 16.1 μM. Studies with 2,6-dichloro-4-nitrophenol showed a dose-dependent inhibition of PST. Sulphate conjugation of NADA from ATP and sodium [35S]sulphate was also demonstrated with pupal extracts, with pH optimum between 8.6 and 9.0. The specific activity of this overall sulphate conjugation, measured in the female pupal extract was 5.08 pmol NADA [35S]sulphate/min per mg protein and 1.68 pmol harmol [35S]sulphate/min per mg protein. The importance and possible function of sulphate conjugation of NADA in insects is discussed.  相似文献   

7.
Pig brain membranes catalyze the transfer of [35S]sulfate from 3′-phosphoadenosine 5′-phospho[35S]sulfate into two macromolecular endogenous acceptors. Several operational enzymatic properties of the sulfotransferase activity have been defined. An apparent Km = 0.65 μm for 3′-phosphoadenosine 5′-phosphosulfate has been determined for the pig brain in vitro sulfotransferase system. Direct proof for the absolute requirement of the 3′-phosphate moiety of 3′-phosphoadenosine 5′-phosphosulfate is presented. The nucleotide end product, 3′,5′-ADP, is a potent competitive inhibitor of the pig brain sulfotransferase activity. One of the major products enzymatically labeled during incubation with 3′-phosphoadenosine 5′-phospho[35S]sulfate is a membrane-bound glycoprotein of high molecular weight. The sulfated glycoprotein appears to be an integral membrane glycoprotein, requiring 1% Triton X-100 for extraction. An 35S-labeled oligosaccharide, released by mild base treatment, contains O-sulfate ester groups and at least one N-acetylneuraminic acid residue. The sulfated glycoprotein has an apparent molecular weight of 198,000. Under the same in vitro conditions [35S]sulfate is also incorporated into a membrane-associated 35S-labeled proteoglycan having the properties of heparan sulfate. The 35S-labeled proteoglycan is electrostatically bound to the pig brain membranes, and can be readily extracted with 1 m NaCl.  相似文献   

8.
In Cucurbitaceae young leaves are resistant to injury from acute exposure to SO2, whereas mature leaves are sensitive. After exposure of cucumber (Cucumis sativus L.) plants to SO2 at injurious concentrations, illuminated leaves emit volatile sulfur, which is solely H2S. Young leaves emit H2S many times more rapidly than do mature leaves. Young leaves convert approximately 10% of absorbed [35S]SO2 to emitted [35S]H2S, but mature leaves convert less than 2%. These results suggest that a high capability for the reduction of SO2 to H2S and emission of the H2S is a part of the biochemical basis of the resistance of young leaves to SO2.  相似文献   

9.
Sulfate incorporation into carbohydrate of lutropin (LH) has been studied in sheep pituitary slices using H235SO4. Labeled ovine LH was purified to homogeneity by Sephadex G-100 and carboxymethyl-Sephadex chromatography from both the incubation medium and tissue extract. Autoradiography of the gel showed only two protein bands which comigrated with the α and β subunits of ovine LH in both the purified ovine LH and the immunoprecipitate obtained with LH-specific rabbit antiserum. Furthermore, [35S]sulfate was also incorporated into several other proteins in addition to LH. The location of 35SO42? in the oligosaccharides of ovine LH was evidenced by its presence in the glycopeptides obtained by exhaustive Pronase digestion. The location and the point of attachment of sulfate in the carbohydrate unit were established by the isolation of 4-O-[35S]sulfo-N-acetylhexosaminyl-glycerols and 4-O-[35S]sulfo-N-acetylglucosaminitol from the Smith degradation products and by the release of 35SO42? by chondro-4-sulfatase. Thus, the present line of experimentation indicates the presence of sulfate on both the terminal N-acetylglucosamine and N-acetylgalactosamine in the oligosaccharide chains of the labeled ovine LH.  相似文献   

10.
We have separated and purified two forms of Met-tRNAf deacylase (or two separate enzymes), an activity that mediates in part the suppression of polypeptide chain initiation that occurs in heme deficiency or with double-stranded RNA, 1000-fold from the 0.5 M KCl wash of rabbit reticulocyte ribosomes. Deacylase I is a minor activity with an S20,w of 5.9, D20,w of 4.9 and Mr of 110 000, while deacylase II is the major activity with an S20,w of 3.3, D20,w of 7.1 and Mr of 43 000. Both convert crude reticulocyte or pure yeast, wheat germ, and E. coli [35S]Met-tRNAf to [35S]methionine and tRNAMetf and have no effect on reticulocyte [35S]fMet-tRNAf, [3H]Ala-tRNA or [3H]Lys-tRNA. However, while deacylase I has similar activity throughout the pH range of 6.1–8.1, deacylase II has a sharp pH optimum at 7.9 and is almost completely inactive at 6.1. In addition, deacylase II shows a much greater affinity for pure Met-tRNAf than deacylase I (Km of 1.5–3 nM vs. 100 nM), and, while deacylase II is selectively inhibited by tRNAMetf, deacylase I is inhibited similarly by any added tRNA.  相似文献   

11.
The trypsin fragments of rat liver microsomal cytochrome b5 (Tb5) lack both methionine (met) and cysteine (cys), i.e., the sulphur-containing amino acids. Tb5 should therefore contain no 35S-radioactivity after isolation from animals treated with [35S]met or [35S]cys. If, however, the nucleic acids coding for this polypeptide have been damaged by a genotoxic carcinogen, a miscoding could result in an incorporation of met or cys into the polypeptide so that Tb5 could now be 35S-radiolabelled. Two experiments are described, the first one where a toxic regimen of N-nitrosomorpholine (NNM) to rats resulted in a significant increase of 35S-radioactivity in the Tb5 of liver microsomes, and a second experiment with a non-toxic regimen of N,N-diethylnitrosamine (DENA), where no increase was observable.  相似文献   

12.
Corn shoot mitochondria possess an energy-linked transport system for sulfate uptake as demonstrated by osmotic swelling and [35S]SO42− accumulation. Maximum uptake is secured in the presence of Mg2+ and oligomycin with sucrose for osmotic support. Neither phosphate nor dicarboxylate anions are required. When added simultaneously, millimolar concentrations of phosphate block [35S]SO42− uptake after the initial minute. Mersalyl, N-ethylmaleimide, and 2,4-dinitrophenol are strong inhibitors of sulfate uptake; n-butylmalonate is a weak inhibitor. These inhibitors act in the same fashion on phosphate uptake. It is concluded that sulfate uptake in the absence of phosphate is by the phosphate transporter.  相似文献   

13.
Adams DO  Yang SF 《Plant physiology》1977,60(6):892-896
If S-adenosylmethionine (SAM) is the direct precursor of ethylene as previously proposed, it is expected that 5′-S-methyl-5′-thioadenosine (MTA) would be the fragment nucleoside. When [Me-14C] or [35S]methionine was fed to climacteric apple (Malus sylvestris Mill) tissue, radioactive 5-S-methyl-5-thioribose (MTR) was identified as the predominant product and MTA as a minor one. When the conversion of methionine into ethylene was inhibited by l-2-amino-4-(2′-aminoethoxy)-trans-3-butenoic acid, the conversion of [35S] or [Me14C]methionine into MTR was similarly inhibited. Furthermore, the formation of MTA and MTR from [35S]methionine was observed only in climacteric tissue which produced ethylene and actively converted methionine to ethylene but not in preclimacteric tissue which did not produce ethylene or convert methionine to ethylene. These observations suggest that the conversion of methionine into MTA and MTR is closely related to ethylene biosynthesis and provide indirect evidence that SAM may be an intermediate in the conversion of methionine to ethylene.  相似文献   

14.
Experiments document the ability of two species of autotrophic methanogens to assimilate and utilize organic substrates as the nutrient sulfur or nitrogen source and as a carbon source during growth on H2-CO2. Methanobacterium thermoautotrophicum strain ΔH and the mesophilic species Methanobacterium sp. strain Ivanov grew with glutamine as the nitrogen source or cysteine as the sulfur source. M. thermoautotrophicum also utilized urea as the nitrogen source and as a carbon precursor for methane and cell synthesis. Methanobacterium sp. strain Ivanov grew with methionine as the sulfur source. The growth rate of two different Methanobacterium species was lower on an organic N or S source than on ammonium or sulfide. 35S and 14C tracer studies demonstrated that amino acid or urea assimilation correlated with time and amount of growth. The rate of [35S]cysteine incorporation was similar in strain ΔH (34 nmol h−1 mg of cells−1) and strain Ivanov (23 nmol h−1 mg of cells−1). However, the rate of [14C]acetate incorporation was dramatically different (17 versus 208 nmol h−1 mg of cells−1 in strains ΔH and Ivanov, respectively). [14C]acetate accounted for 1.3 and 21.2% of the total cell carbon synthesized by strains ΔH and Ivanov, respectively. Amino acids and urea were mainly assimilated into the cell protein fraction, but accounted for less than 2.0% of the total cell carbon synthesized. The data suggest that a biochemical-genetic approach to understanding cell carbon synthesis in methanogens is feasible; mutants that are auxotrophic for either acetate, glutamine, cysteine, or methionine are suggested as future targets for genetic studies.  相似文献   

15.
1. Whole scrapings of rat intestinal mucosa were incubated with carrier-free sodium [35S]sulphate. Radioactivity was found in S-sulphocysteine and to a small extent in S-sulphoglutathione. 2. Whole scrapings of rat intestinal mucosa incubated with carrier-free sodium [35S]sulphate and oxidized glutathione formed S[35S]-sulphoglutathione as the main radioactive product. The amount of S[35S]-sulphocysteine formed was considerably lower than in a control that contained no oxidized glutathione. 3. The supernatant fraction of homogenates of rat intestinal mucosa catalyses the NADPH-dependent reduction of adenosine 3′-phosphate 5′-sulphatophosphate to inorganic sulphite. NADH or GSH fail to replace NADPH as reducing agents. 4. The formation of inorganic [35S]sulphite from inorganic [35S]-sulphate may account for the incorporation of [35S]sulphate into S-sulphoglutathione by the small intestine of the rat in vivo and in vitro.  相似文献   

16.
Sulphate activation in the unicellular red alga Rhodella   总被引:1,自引:0,他引:1  
ATP-sulphurylase (ATP: sulphate adenylyl-transferase, E.C. 2.7.74) from the unicellular red alga Rhodella has been purified 14-fold by (NH4)2SO4 fractionation. It exhibits a temperature optimum of 31°, an activation energy of 10.8 kcal, has a pH optimum between 7.5 and 9.0 and forms unstable intermediates when incubated with ATP and group VI anions (CrO42?, MoO42?), WO42?), resulting in the accumulation of pyrophosphate. Of the nucleotides tested, only ATP is acted upon by the enzyme. A divalent ion is required for activity and stimulation of the enzyme is 5 times higher with Mg2+ than any other ion tested. The actual substrate for the reaction is a Mg-ATP2? complex. Free ATP inhibits the reaction. APS-[35S] and traces of PAPS-[35S] are formed when cell-free extract from Rhodella is incubated with ATP and sulphate-[35S]. This indicates the existence of APS-kinase (ATP:adenylyl-sulphate 31-phosphotransferase, E.C. 2.7.1.25) as well as ATP-sulphurylase.  相似文献   

17.
Mengovirus RNA was translated in Ehrlich ascites cell extracts using as radioactive precursors f[35S]Met tRNAFMet and [35S]Met tRNAMMet to label the products in N-terminal and internal positions, respectively. Tryptic peptides were compared with those derived from purified [35S]Met-labeled mengovirus. The results indicate that the sequences corresponding to the viral coat polypeptides are preceded by a short “lead-in” peptide which is probably removed by a cleavage process in infected cells.  相似文献   

18.
《Life sciences》1996,59(8):659-668
Cannabinoid receptors belong to the class of G-protein-coupled receptors which inhibit adenylyl cyclase. Coupling of receptors to G-proteins can be assessed by the ability of agonists to stimulate guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding in the presence of excess GDP. The present study examined the effect of cannabinoid agonists on [35S]GTPγS binding in rat brain membranes. Assays were conducted with 0.05 nM [35S]GTPγS, incubated with rat cerebellar membranes, 1–30 μM GDP and the cannabinoid agonist WIN 55212-2. Results showed that the ability of WIN 55212-2 to stimulate [35S]GTPγS binding increased with increasing concentrations of GDP, with 10–30 μM GDP providing approximately 150–200% stimulation by the cannabinoid agonist. The pharmacology of cannabinoid agonist stimulation of [35S]GTPγS binding paralleled that of previously reported receptor binding and adenylyl cyclase assays, and agonist stimulation of [35S]GTPγS binding was blocked by the cannabinoid antagonist SR141716A. Brain regional studies revealed widespread stimulation of [35S]GTPγS binding by WIN 55212-2 in a number of brain areas, consistent with in vitro [35S]GTPγS autoradiography. These results demonstrate that [35S]GTPγS binding in the presence of excess GDP is an effective measure of cannabinoid receptor coupling to G-proteins in brain membranes.  相似文献   

19.
Marine microorganisms that consume one-carbon (C1) compounds are poorly described, despite their impact on global climate via an influence on aquatic and atmospheric chemistry. This study investigated marine bacterial communities involved in the metabolism of C1 compounds. These communities were of relevance to surface seawater and atmospheric chemistry in the context of a bloom that was dominated by phytoplankton known to produce dimethylsulfoniopropionate. In addition to using 16S rRNA gene fingerprinting and clone libraries to characterize samples taken from a bloom transect in July 2006, seawater samples from the phytoplankton bloom were incubated with 13C-labeled methanol, monomethylamine, dimethylamine, methyl bromide, and dimethyl sulfide to identify microbial populations involved in the turnover of C1 compounds, using DNA stable isotope probing. The [13C]DNA samples from a single time point were characterized and compared using denaturing gradient gel electrophoresis (DGGE), fingerprint cluster analysis, and 16S rRNA gene clone library analysis. Bacterial community DGGE fingerprints from 13C-labeled DNA were distinct from those obtained with the DNA of the nonlabeled community DNA and suggested some overlap in substrate utilization between active methylotroph populations growing on different C1 substrates. Active methylotrophs were affiliated with Methylophaga spp. and several clades of undescribed Gammaproteobacteria that utilized methanol, methylamines (both monomethylamine and dimethylamine), and dimethyl sulfide. rRNA gene sequences corresponding to populations assimilating 13C-labeled methyl bromide and other substrates were associated with members of the Alphaproteobacteria (e.g., the family Rhodobacteraceae), the Cytophaga-Flexibacter-Bacteroides group, and unknown taxa. This study expands the known diversity of marine methylotrophs in surface seawater and provides a comprehensive data set for focused cultivation and metagenomic analyses in the future.  相似文献   

20.
Abstract— Sciatic nerves from 18-day-old chick embryos incorporated 35SO4 into myelin sulphatide in vitro. Sulphatide in a microsomal subfraction of the nerve was rapidly labelled with 35SO4, and a lipoprotein fraction in the nerve served to transfer the [35S]sulphatide from the microsomal subfraction to myelin. Puromycin and cycloheximide inhibited the incorporation of [35S]sulphatide into myelin after a lag period of about 2 h. These agents did not alter the rate of appearance of [35S]sulphatide in the microsomal subfraction, and did not diminish the capacity of myelin to take up [35S]sulphatide from the lipoprotein fraction; instead, they appeared to interfere with the incorporation of [35S]sulphatide into myelin by decreasing the available pool of the transport lipoprotein. Partial characterization of the [35S]labelled lipoprotein fraction indicated that it had a density of 1.06–1.08. The lipoprotein was highly aggregated, but, after incubation with SDS and mercaptoethanol, it was dissociated into sulphatide-containing micelles and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号