首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1983,96(6):1708-1716
The directed movement of human polymorphonuclear leukocytes (PMN) in a plane (Zigmond chamber assay) is described by a statistical model. We demonstrate that (a) the movement of a single cell is a superposition of a directed and a random movement, and (b) the degree of orientation, P1, of moving cells in a chemotactic gradient can be determined either by the time average of a single cell or by the average of movement of multiple cells at a fixed time (Ergoden hypothesis). However, an homogeneous cell population is a necessary condition. P1, which is identical with the McCutcheon index, is derived from the measured angular distribution function of moving cells. The statistical model allows one to distinguish between chemotaxis and chemokinesis. Applying this model to the temperature-dependent changes of cell movement, we found that P1 = 0.82 (37 degrees C) decreased to P1 = 0.4 (22 degrees C). The average speed of moving cells exhibits a very strong temperature-dependent variation from 30 microns/min (37 degrees C) to 5 microns/min (22 degrees C), indicating a different temperature dependence of chemotaxis and chemokinesis. At a fixed temperature (37 degrees C) the stability of the chemotactic gradient can also be checked by the angular distribution function. In addition, this model was applied to investigate the enteric cytopathogenic human orphan, strain 9 (ECHO 9) virus-induced disturbances of cell movement. We found: (a) The average speed of cell movement is not affected by the virus. (b) The degree of orientation is not affected for virus doses below a critical virus dose, ao (virus/PMN = 0.8:1). (c) The degree of orientation above this critical value exhibits a time- and virus-dose- dependence. (d) At a fixed viral dose, the time-dependent decrease of P1 is described by an exponential law (virus/PMN = 5:1, the characteristic time is 110 min). (e) This characteristic time investigated as a function of viral dose results in a logarithmic law analogous with the Weber-Fechner law. These findings indicate that only chemotactic and not chemokinetic response is disturbed by ECHO 9 virus.  相似文献   

2.
Summary Changes in the fluorescence intensity of the dye 3-3 dipentyloxacarbocyanine were measured in suspensions of purified human peripheral blood polymorphonuclear leukocytes (PMNs) during exposure to the chemotactic factors N-formyl-methionylleucyl-phenylalanine (f-met-leu-phe) and partially purified C5a. Incubation of PMNs with dye resulted in a stable fluorescence reflecting the resting membrane potential of the cell. Exposure of PMNs to dye did not affect stimulated chemotaxis or secretion. The mechanism of cell-associated dye fluorescence involved solvent effects from partitioning of the dye between the aqueous incubation medium and the cell and not dye aggregation, Chemotactically active concentrations of f-met-leu-phe (5×10–9 m or greater) produced a biphasic response characterized as a decrease followed by an increase in fluorescence. No fluorescence response was seen in lysed PMNs, and no response was elicited by an inhibitor of f-met-leu-phe binding (carbobenzoxy-phenylalanyl-methionine). The ability of several other synthetic peptides to elicit a fluorescence response corresponded to their effectiveness as chemotactic agents. Although the first component of the response suggested a depolarization, it was not influenced by variation in the external concentration of sodium, potassium, chloride, or calcium, and could not be characterized as a membrane potential change. The second component of the response, which was inhibited by both Mg2+ (10mm)-EGTA (10mm) and high external potassium, was compatible with a membrane hyperpolarization. The data indicate that chemotactic factors produce changes in dye fluorescence which can, at least in part, be attributed to a hyperpolarizing membrane potential change occurring across the plasma membrane.Presented in part at the 17th Annual Cell Biology Meeting.Cell Biol. 75:103a, 1977.  相似文献   

3.
Purified lipopolysaccharide (LPS) from Veillonella incubated in normal rabbit serum was tested for chemotactic activity on rabbit polymorphonuclear leukocytes (PMNs) in modified Boyden chambers. In doses above those giving optimal response (over-optimal dose), a decrease of the PMN migration activity was found. This decrease also correlated well with an increase in the migration inhibition of the PMNs as demonstrated with the capillary tube assay. The PMN chemotactic factor isolated from LPS-induced inflammatory exudate (LPS-CF) in rabbits, produced both a decrease in chemotactic response and a migration inhibition of PMNs in over-optimal doses. This inhibitory effect was not due to cytotoxicity, proved by the trypan blue exclusion test. Also, a reduced locomotion of PMNs first preincubated with chemoattractants and then reactivated, was shown when the same PMNs were restimulated to migration using the same chemoattractants. This was interpreted as a deactivation of the cells. A cross-deactivation was demonstrated between LPS-CF and casein. The results from the experiments reported show that the Boyden chamber may be used to disciminate directional chemotaxis and migration inhibition. It may also be concluded from the study that the reduced migration activity of PMNs at over-optimal doses of chemoattractants is not due to cytotoxicity, but most probably is caused by a deactivation of the cells.  相似文献   

4.
Polymorphonuclear leukocyte (PMN) chemotaxis has been examined under conditions which allow phase microscope observations of cells responding to controlled gradients of chemotactic factors. With this visual assay, PMNs can be seen to orient rapidly and reversibly to gradients of N-formylmethionyl peptides. The level of orientation depends upon the mean concentration of peptide present as well as the concentration gradient. The response allows an estimation of the binding constant of the peptide to the cell. In optimal gradients, PMNs can detect a 1% difference in the concentration of peptide. At high cell densities, PMNs incubated with active peptides orient their locomotion away from the center of the cell population. This orientation appears to be due to inactivation of the peptides by the cells. Such inactivation in vivo could help to limit an inflammatory response.  相似文献   

5.
Polymorphonuclear leukocytes (PMNs) from human neonates respond less efficiently to chemotactic factor stimulation than do PMNs from adults. The biologic mechanisms underlying this developmental process are poorly understood. In previous studies, we have found that pentoxifylline, an agent report to enhance membrane deformability, increased the chemotactic response of neonatal PMNs. In the present studies, we have examined the effect of pentoxifylline on cell surface mobility and membrane fluidity by assessing fluorescent concanavalin A (Con A) capping and fluorescent polarization (FP). Baseline Con A capping was lower in the PMNs of neonates when compared to PMNs from adult controls. Colchicine, which increases capping by disrupting microtubules, exaggerated the differences between the adult and neonatal PMNs. Following exposure of neonatal PMNs to pentoxifylline, colchicine enhanced Con A capping to levels equivalent to those of colchicine-treated PMNs from adults. Employing a fluorescence polarization (FP) assay, we found the fluid state of the membrane of PMNs from neonates was significantly less than that of adult controls. Pentoxifylline alone significantly increased the fluidity of the cell membranes of neonatal PMNs while decreasing elevated basal levels of F-actin in the cell. These data suggest an intrinsic cytoskeletal difference in the PMNs of neonates that may be responsive to pharmacologic manipulation.  相似文献   

6.
The amount of sialic acid on the surface of the neutrophil (PMN) influences its ability to interact with other cells. PMN activation with various stimuli mobilizes intracellular sialidase to the plasma membrane, where it cleaves sialic acid from cell surfaces. Because enhanced PMN adherence, spreading, deformability, and motility each are associated with surface desialylation and are critical to PMN diapedesis, we studied the role of sialic acid on PMN adhesion to and migration across pulmonary vascular endothelial cell (EC) monolayers in vitro. Neuraminidase treatment of either PMN or EC increased adhesion and migration in a dose-dependent manner. Neuraminidase treatment of both PMNs and ECs increased PMN adhesion to EC more than treatment of either PMNs or ECs alone. Moreover, neuraminidase treatment of ECs did not change surface expression of adhesion molecules or release of IL-8 and IL-6. Inhibition of endogenous sialidase by either cross-protective antineuraminidase antibodies (45.5% inhibition) or competitive inhibition with pseudo-substrate (41.2% inhibition) decreased PMN adhesion to ECs; the inhibitable sialidase activity appeared to be associated with activated PMNs. Finally, EC monolayers preincubated with activated PMNs became hyperadhesive for subsequently added resting PMNs, and this hyperadhesive state was mediated through endogenous PMN sialidase activity. Blocking anti-E-selectin, anti-CD54 and anti-CD18 antibodies decreased PMN adhesion to tumor necrosis factor-activated ECs but not to PMN-treated ECs. These data implicate desialylation as a novel mechanism through which PMN-EC adhesion can be regulated independent of de novo protein synthesis or altered adhesion molecule expression. The ability of activated PMNs, through endogenous sialidase activity, to render the EC surface hyperadherent for unstimulated PMNs may provide for rapid amplification of the PMN-mediated host response.  相似文献   

7.
The neuropeptide substance P (SP), a member of the tachykinin family, has stimulatory effects on various cell types at nanomolar concentrations. SP has also direct effects on polymorphonuclear leukocytes (PMNs). However, unlike other cells, stimulation of PMNs requires extremely high concentrations of the peptide (greater than 10 microM), suggesting that direct PMN activation by SP is not physiologically relevant. By measuring primed stimulation of PMNs, we now demonstrate potent synergistic effects of nanomolar doses of SP on the migratory and cytotoxic functions of human PMNs stimulated by fMLP and C5a. This synergism between SP and chemotactic peptides reveals a new regulatory activity of SP and suggests that neurogenic stimuli may prepare neutrophils for an exaggerated inflammatory response to other phlogistic mediators.  相似文献   

8.
The healthy intact polymorphonuclear leukocytes (PMNs) were labeled with 4-maleimide-TEMPO spin labeling compound (MAL) to study the effects of oxygen radicals produced by phorbol myristate acetate (PMA)-stimulated PMNs on the conformation of sulfhydryl (SH) groups of PMN membrane proteins. The lipid peroxidation induced by PMA-stimulated PMNs was detected by evaluating the formation of malonaldehyde (MDA) with the thiobarbituric acid (TBA) test. From the experiments of luminol-dependent chemiluminescence (CL) and fluorometry, it was found that Chinese herbs schizandrin B (Sin B) and quercetin (Q) possessed scavenging properties for oxygen radicals produced during the PMN respiratory burst. These two herbs can also inhibit the conformation changes in SH binding sites on the PMN membrane proteins caused by oxygen radicals produced by the PMNs themselves. They also decreased the amount of MDA, which was a final product formed during lipid peroxidation.  相似文献   

9.
S Tsuruta  S Ito  H Mikawa 《FEBS letters》1990,268(1):241-244
Chlorotetracycline has been used in human polymorphonuclear leukocytes as a probe to investigate the state of membrane-bound calcium. We examined the effect of adenosine on the fluorescence responses of CTC-loaded PMNs stimulated with the synthetic chemotactic peptide, formyl-methionyl-leucyl- phenylalanine. Adenosine inhibited the decrease in CTC fluorescence in a dose-dependent fashion and its effect was reversed by theophylline, an adenosine receptor antagonist. Removal of extracellular adenosine by incubating PMNs with adenosine deaminase abolished the effect of adenosine. These data suggest that adenosine inhibits the release of membrane-bound calcium in PMNs that normally occurs in response to chemotactic stimuli, acting via PMN surface adenosine receptors.  相似文献   

10.
Thrombospondin stimulates motility of human neutrophils   总被引:10,自引:1,他引:9       下载免费PDF全文
《The Journal of cell biology》1990,111(6):3077-3086
Polymorphonuclear leukocytes (PMNs) migrate to sites of inflammation or injury in response to chemoattractants released at those sites. The presence of extracellular matrix (ECM) proteins at these sites may influence PMN accumulation at blood vessel walls and enhance their ability to move through tissue. Thrombospondin (TSP), a 450-kD ECM protein whose major proteolytic fragments are a COOH-terminal 140-kD fragment and an NH2-terminal heparin-binding domain (HBD), is secreted by platelets, endothelial cells, and smooth muscle cells. TSP binds specifically to PMN surface receptors and has been shown, in other cell types, to promote directed movement. TSP in solution at low concentrations (30-50 nM) "primed" PMNs for f-Met-Leu-Phe (fMLP)- mediated chemotaxis, increasing the response two- to fourfold. A monoclonal antibody against the HBD of TSP totally abolished this priming effect suggesting that the priming activity resides in the HBD of TSP. Purified HBD retains the priming activity of TSP thereby corroborating the antibody data. TSP alone, in solution at high concentrations (0.5-3.0 microM), stimulated chemotaxis of PMNs and required both the HBD and the 140-kD fragment of TSP. In contrast to TSP in solution, TSP bound to nitrocellulose filters in the range of 20- 70 pmol stimulated random locomotion of PMNs. The number of PMNs migrating in response to bound TSP was approximately two orders of magnitude greater than the number of cells that exhibited chemotaxis in response to soluble TSP or fMLP. Monoclonal antibody C6.7, which recognizes an epitope near the carboxyl terminus of TSP, blocked migration stimulated by bound TSP, suggesting that the activity resides in this domain. Using proteolytic fragments, we demonstrated that bound 140-kD fragment, but not HBD, promoted migration of PMNs. Therefore, TSP released at injury sites, alone or in synergy with chemotactic peptides like fMLP, could play a role in directing PMN movement.  相似文献   

11.
Helicobacter pylori induces an acute inflammatory response followed by a chronic infection of the human gastric mucosa characterized by infiltration of neutrophils/polymorphonuclear cells (PMNs) and mononuclear cells. The H. pylori neutrophil-activating protein (HP-NAP) activates PMNs, monocytes, and mast cells, and promotes PMN adherence to the endothelium in vitro. By using intravital microscopy analysis of rat mesenteric venules exposed to HP-NAP, we demonstrated, for the first time in vivo, that HP-NAP efficiently crosses the endothelium and promotes a rapid PMN adhesion. This HP-NAP-induced adhesion depends on the acquisition of a high affinity state of beta(2) integrin on the plasma membrane of PMNs, and this conformational change requires a functional p38 MAPK. We also show that HP-NAP stimulates human PMNs to synthesize and release a number of chemokines, including CXCL8, CCL3, and CCL4. Collectively, these data strongly support a central role for HP-NAP in the inflammation process in vivo: indeed, HP-NAP not only recruits leukocytes from the vascular lumen, but also stimulates them to produce messengers that may contribute to the maintenance of the flogosis associated with the H. pylori infection.  相似文献   

12.
Increased vascular endothelial cell (EC)permeability and neutrophilic leukocyte (PMN) diapedesis throughparacellular gaps are cardinal features of acute inflammation.Activation of the EC contractile apparatus is necessary and sufficientto increase vascular permeability in specific models of EC barrierdysfunction. However, it is unknown whether EC contraction withsubsequent paracellular gap formation is required for PMNtransendothelial migration in response to chemotactic factors. To testthis possibility, we assessed migration of human PMNs across confluentbovine pulmonary arterial EC monolayers. Transendothelial PMN migrationin the absence of a chemotactic gradient was minimal, whereas abluminal addition of leukotriene B4(LTB4; 5 µM) resulted insignificantly increased PMN migration. Reductions in EC myosin lightchain kinase (MLCK) activity by EC monolayer pretreatment with specificMLCK inhibitors (KT-5926 or ML-7) or by increases in cAMP-proteinkinase A activity (cholera toxin) significantly reduced PMNtransmigration (30-70% inhibition). In contrast, pretreatmentwith the myosin-associated phosphatase inhibitor calyculin resulted inthe accumulation of phosphorylated myosin light chains, EC contraction,and significantly enhanced PMN migration. Finally, the interaction ofPMNs with 32P-labeled ECmonolayers was shown to directly increase EC myosin phosphorylation ina time-dependent fashion. Taken together, these results are consistentwith the hypothesis that the phosphorylation status of EC myosinregulates PMN migration and further indicate that EC MLCK is activatedby chemoattractant-stimulated PMNs. Neutrophil-dependent activation ofthe EC contractile apparatus with subsequent paracellular gap formationmay be a key determinant of transendothelial PMN migration responses tochemotactic agents.

  相似文献   

13.
Tissue injury triggers inflammatory responses that may result in release of degradation products or exposure of cryptic domains of extracellular matrix components. Previously, we have shown that a cryptic peptide (AQARSAASKVKVSMKF) in the alpha-chain of laminin-10 (alpha5beta1gamma1), a prominent basement membrane component, is chemotactic for both neutrophils (PMNs) and macrophages (Mphis) and induces matrix metalloproteinase-9 (MMP-9) production. To determine whether AQARSAASKVKVSMKF has additional effects on inflammatory cells, we performed microarray analysis of RNA from RAW264.7 Mphis stimulated with AQARSAASKVKVSMKF. Several cytokines and cytokine receptors were increased >3-fold in response to the laminin alpha5 peptide. Among these were TNF-alpha and one of its receptors, the p75 TNFR (TNFR-II), increasing 3.5- and 5.7-fold, respectively. However, the peptide had no effect on p55 TNFR (TNFR-I) expression. Corroborating the microarray data, the protein levels of TNF-alpha and TNFR-II were increased following stimulation of RAW264.7 cells with AQARSAASKVKVSMKF. In addition, we determined that the production of TNF-alpha and TNFR-II in response to AQARSAASKVKVSMKF preceded the production of MMP-9. Furthermore, using primary Mphis from mice deficient in TNFR-I, TNFR-II, or both TNF-alpha receptors (TNFRs), we determined that AQARSAASKVKVSMKF induces MMP-9 expression by Mphis through a pathway triggered by TNFR-II. However, TNF-alpha signaling is not required for AQARSAASKVKVSMKF-induced PMN release of MMP-9 or PMN emigration. These data suggest that interactions of inflammatory cells with basement membrane components may orchestrate immune responses by inducing expression of cytokines, recruitment of inflammatory cells, and release of proteinases.  相似文献   

14.
Polymorphonuclear leukocytes undergo directed movement to sites of infection, a complex process known as chemotaxis. Extension of the polymorphonuclear leukocyte (PMN) leading edge toward a chemoattractant in association with uropod retraction must involve a coordinated increase/decrease in membrane, redistribution of cell volume, or both. Deficits in PMN phagocytosis and trans-endothelial migration, both highly motile PMN functions, suggested that the anion transporters, ClC-3 and ICl(swell), are involved in cell motility and shape change ( Moreland, J. G., Davis, A. P., Bailey, G., Nauseef, W. M., and Lamb, F. S. (2006) J. Biol. Chem. 281, 12277-12288 ). We hypothesized that ClC-3 and ICl(swell) are required for normal PMN chemotaxis through regulation of cell volume and shape change. Using complementary chemotaxis assays, EZ-TAXIScantrade mark and dynamic imaging analysis software, we analyzed the directed cell movement and morphology of PMNs lacking normal anion transporter function. Murine Clcn3(-/-) PMNs and human PMNs treated with anion transporter inhibitors demonstrated impaired chemotaxis in response to formyl peptide. This included decreased cell velocity and failure to undergo normal cycles of elongation and retraction. Impaired chemotaxis was not due to a diminished number of formyl peptide receptors in either murine or human PMNs, as measured by flow cytometry. Murine Clcn3(-/-) and Clcn3(+/+) PMNs demonstrated a similar regulatory volume decrease, indicating that the ICl(swell) response to hypotonic challenge was intact in these cells. We further demonstrated that ICl(swell) is essential for shape change during human PMN chemotaxis. We speculate that ClC-3 and ICl(swell) have unique roles in regulation of PMN chemotaxis; ICl(swell) through direct effects on PMN volume and ClC-3 through regulation of ICl(swell).  相似文献   

15.
Physiologic concentrations of prostaglandin E2 but not A1 or F1 α enhance human neutrophil migration in response to a chemotactic stimulus while higher concentrations decrease the response. Enhanced migration requires the presence of PGE2 and is not observed when PMNs are preincubated with optimal doses of PGE2. Furthermore, maximal enhancement is only observed when low concentrations of chemotactic factor are utilized to stimulate PMNs. Experiments indicate that PGE2 acts to enhance the chemokinetic response of human PMNs to chemotactic factors. These data support a role for physiologic concentrations of PGE2 in the control of PMN function at an inflammatory site.  相似文献   

16.
Upon activation with various noncytokine stimuli, polymorphonuclear leukocytes (PMNs) mobilize intracellular sialidase to the plasma membrane, where the sialidase releases sialic acid from the cell surface. This desialylation enhances PMN adherence, spreading, deformability, and motility, functions critical to diapedesis. We now have examined the role of sialidase activity in PMN adhesion to and migration across the endothelium in vivo. A polyclonal antibody prepared against Clostridium perfringens neuraminidase 1) detected surface expression of sialidase on human PMNs stimulated with IL-8 in vitro and on murine PMNs stimulated in vivo, but not on that of unstimulated cells, 2) recognized proteins in human PMN lysates and granule preparations that were not detected by preimmune antibody, 3) inhibited bacterial neuraminidase and human PMN sialidase activities in vitro, and 4) inhibited both pulmonary leukostasis in mice systemically infused with cobra venom factor and intrapulmonary transendothelial migration of PMNs into the bronchoalveolar compartment of mice intranasally challenged with interleukin-8. We conclude that the chemokine interleukin-8, like other PMN agonists, induces the translocation of sialidase to the PMN surface and that surface expression of this sialidase is a prerequisite to PMN recruitment in vivo. The ability of antibodies raised against a prokaryotic neuraminidase to recognize eukaryotic sialidase extends the concept of the neuraminidase superfamily to mammalian enzymes. Inhibition of mobilized endogenous sialidase may provide a novel strategy for limiting the inflammatory response.  相似文献   

17.
We present evidence for intrinsic polymorphonuclear leukocyte (PMN) polarity manifested in presence of microtubule-disrupting drugs. Polarization in response to colchicine correlated with the known dose-dependent effects of this drug on microtubule disassembly. The response to 10(-5) M colchicine, 10(-5) M vinblastine and 10(-6) M nocodazole was associated with stimulated motility and random locomotion. Responses elicited by microtubule-disrupting drugs differed from f-Met-Leu-Phe (fMLP)-induced polarization by functional and morphological criteria. Polarization, motility and orthokinesis responses were much weaker. Furthermore, ruffling was almost absent in PMNs polarized in response to colchicine, vinblastine or nocodazole. The response was inhibited by cytochalasin B, indicating that it is microfilament-dependent. We suggest that microtubule-disrupting drugs induce motility via structural changes in the cytoskeleton which act as signals for the motor apparatus. The intrinsic polarity manifested in the presence of microtubule-disrupting drugs could be reversed by an extracellular chemotactic gradient. Stimulated locomotion and motility in response to microtubule-disrupting drugs was only observed with initially spherical PMNs but not with initially motile cells. The findings provide an explanation for the numerous conflicting statements on the chemokinetic activities of these drugs. The role of cAMP in stimulated polarization and motility has been studied. Colchicine, vinblastine and nocodazole elicited a transient elevation of cAMP levels within 1 min of stimulation. cAMP elevation and stimulated motility were not quantitatively correlated.  相似文献   

18.
Shwachman-Diamond Syndrome (SDS) is a rare autosomal recessive, multisystem disorder presenting in childhood with intermittent neutropenia and pancreatic insufficiency. It is characterized by recurrent infections independent of neutropenia, suggesting a functional neutrophil defect. While mutations at a single gene locus (SBDS) appear to be responsible for SDS in a majority of patients, the function of that gene and a specific defect in SDS neutrophil behavior have not been elucidated. Therefore, employing 2D and 3D computer-assisted motion analysis systems, we have analyzed the basic motile behavior and chemotactic responsiveness of individual polymorphonuclear leukocytes (PMNs) of 14 clinically diagnosed SDS patients. It is demonstrated that the basic motile behavior of SDS PMNs is normal in the absence of chemoattractant, that SDS PMNs respond normally to increasing and decreasing temporal gradients of the chemoattractant fMLP, and that SDS PMNs exhibit a normal chemokinetic response to a spatial gradient of fMLP. fMLP receptors were also distributed uniformly through the plasma membrane of SDS PMNs as in control PMNs. SDS PMNs, however, were incapable of orienting in and chemotaxing up a spatial gradient of fMLP. This unique defect in orientation was manifested by the PMNs of every SDS patient tested. The PMNs of an SDS patient who had received an allogenic hematopoietic stem cell transplant, as well as PMNs from a cystic fibrosis patient, oriented normally. These results suggest that the defect in SDS PMNs is in a specific pathway emanating from the fMLP receptor that is involved exclusively in regulating orientation in response to a spatial gradient of fMLP. This pathway must function in parallel with additional pathways, intact in SDS patients, that emanate from the fMLP receptor and regulate responses to temporal rather than spatial changes in receptor occupancy.  相似文献   

19.
In human intestinal disease induced by Salmonella typhimurium, transepithelial migration of neutrophils (PMN) rapidly follows attachment of the bacteria to the epithelial apical membrane. In this report, we model those interactions in vitro, using polarized monolayers of the human intestinal epithelial cell, T84, isolated human PMN, and S. typhimurium. We show that Salmonella attachment to T84 cell apical membranes did not alter monolayer integrity as assessed by transepithelial resistance and measurements of ion transport. However, when human neutrophils were subsequently placed on the basolateral surface of monolayers apically colonized by Salmonella, physiologically directed transepithelial PMN migration ensued. In contrast, attachment of a non-pathogenic Escherichia coli strain to the apical membrane of epithelial cells at comparable densities failed to stimulate a directed PMN transepithelial migration. Use of the n-formyl-peptide receptor antagonist N-t-BOC-1-methionyl-1-leucyl-1- phenylalanine (tBOC-MLP) indicated that the Salmonella-induced PMN transepithelial migration response was not attributable to the classical pathway by which bacteria induce directed migration of PMN. Moreover, the PMN transmigration response required Salmonella adhesion to the epithelial apical membrane and subsequent reciprocal protein synthesis in both bacteria and epithelial cells. Among the events stimulated by this interaction was the epithelial synthesis and polarized release of the potent PMN chemotactic peptide interleukin-8 (IL-8). However, IL-8 neutralization, transfer, and induction experiments indicated that this cytokine was not responsible for the elicited PMN transmigration. These data indicate that a novel transcellular pathway exists in which subepithelial PMN respond to lumenal pathogens across a functionally intact epithelium. Based on the known unique characteristics of the intestinal mucosa, we speculate that IL-8 may act in concert with an as yet unidentified transcellular chemotactic factor(s) (TCF) which directs PMN migration across the intestinal epithelium.  相似文献   

20.
During inflammation polymorphonuclear neutrophils (PMNs) traverse venular walls, composed of the endothelium, pericyte sheath and vascular basement membrane. Compared to PMN transendothelial migration, little is known about how PMNs penetrate the latter barriers. Using mouse models and intravital microscopy, we show that migrating PMNs expand and use the low expression regions (LERs) of matrix proteins in the vascular basement membrane (BM) for their transmigration. Importantly, we demonstrate that this remodeling of LERs is accompanied by the opening of gaps between pericytes, a response that depends on PMN engagement with pericytes. Exploring how PMNs modulate pericyte behavior, we discovered that direct PMN-pericyte contacts induce relaxation rather than contraction of pericyte cytoskeletons, an unexpected response that is mediated by inhibition of the RhoA/ROCK signaling pathway in pericytes. Taking our in vitro results back into mouse models, we present evidence that pericyte relaxation contributes to the opening of the gaps between pericytes and to the enlargement of the LERs in the vascular BM, facilitating PMN extravasation. Our study demonstrates that pericytes can regulate PMN extravasation by controlling the size of pericyte gaps and thickness of LERs in venular walls. This raises the possibility that pericytes may be targeted in therapies aimed at regulating inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号