首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The measurement of apolipoprotein B (apoB) in purified lipoproteins by immunological assays is subject to criticism because of denatured epitopes or immunoreactivity differences between purified lipoproteins and standard. Chemical methods have therefore been developed, such as the selective precipitation of apoB followed by quantification of the precipitate. In this study, we present the measurement of apoB concentration in lipoproteins purified by ultracentrifugation by combining isopropanol precipitation and gas chromatography/mass spectrometry. Very low density lipoprotein (VLDL; d < 1.006 g/mL); VLDL plus intermediate density lipoprotein (VLDL + IDL; d < 1.019 g/mL); and VLDL, IDL, and low density lipoprotein (VLDL + IDL + LDL; d < 1.063 g/mL) were purified by ultracentrifugation. Apolipoprotein B-100 was selectively precipitated by isopropanol. The leucine content of the pellet was then determined by gas chromatography/mass spectrometry, using norleucine as internal standard. Knowledge of the number of leucine molecules in one apoB-100 molecule makes it possible to calculate the plasma concentration of apoB in the various lipoprotein fractions. ApoB in IDL (d 1.006-1.019 g/mL) and LDL (d 1.019-1.063 g/mL) were then determined by subtracting VLDL-apoB from apoB in lipoproteins d < 1.019 and apoB in lipoproteins d < 1.019 g/mL from apoB in lipoproteins d < 1.063 g/mL, respectively. The isopropanol precipitate was verified as pure apoB (>97%) in lipoprotein fractions isolated from normo- and hyperlipidemic plasma and the method appeared reproducible.The combination of isopropanol precipitation and the GC/MS method appears therefore to be a precise and reliable method for kinetic and epidemiological studies.  相似文献   

2.
The contribution of very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) to various low density lipoprotein (LDL) subfractions was examined in three normal subjects and two with familial combined hyperlipidemia. Autologous VLDL + IDL (d less than 1.019 g/ml) or VLDL only (d less than 1.006 g/ml; one subject only) were isolated by sequential ultracentrifugation, iodinated, and injected into each subject. The appearance, distribution, and subsequent disappearance of radioactivity into LDL density subpopulations was characterized using density gradient ultracentrifugation. These techniques help determine the contribution of precursors to various LDL subpopulations defined uniquely for each subject. The results from these studies have suggested: 1) it took up to several days of intravascular processing of precursor-derived LDL before it resembled the distribution of the 'steady-state' plasma LDL protein; 2) plasma VLDL and IDL precursors contributed rapidly to a broad density range of LDL; 3) the radiolabeled plasma precursors did not always contribute to all LDL density subfractions within an individual in proportion to their relative LDL protein mass as determined by density gradient ultracentrifugation; 4) with time, the distribution of the precursor-derived LDL became more buoyant or more dense than distribution of the LDL protein mass; and 5) the kinetic characteristics of precursor-derived particles within LDL changed within a relatively narrow density range and were not always related to the LDL density heterogeneity of each subject. These studies emphasize the complexities of apoB metabolism and the need to design studies to carefully examine the production of various LDL subpopulations, the kinetic fate and interconversions among the subpopulations, and ultimately, their relationship to the development of atherosclerosis.  相似文献   

3.
To determine the metabolic mechanism of hypercholesterolemia in rabbits produced by feeding cholesterol-rich diets, control and hypercholesterolemic rabbits were injected with I-labelled very low density lipoproteins (VLDL, d 1.006 g/ml) from control and/or hypercholesterolemic donors. Apolipoprotein B in VLDL decayed biphasically. The first phase occurred much more rapid than the second. 95% of the VLDL apolipoprotein B was catabolized via the first phase (t1/2 = 0.55 +/- 0.19 h) in normal rabbit with the immediate appearance of this radioactivity in intermediate density lipoproteins (IDL, d 1.006-1.025 g/ml) and low density lipoproteins (LDL, d 1.025-1.063 g/ml). The apolipoproteins C and E at the same time were transferred to high density lipoproteins where they decayed biphasically. The apolipoprotein B from hypercholesterolemic VLDL in the normal recipient disappeared at a similar rate as from normal VLDL via phase I; however, it was incompletely converted to IDL and LDL. Apolipoprotein B from normal VLDL in cholesterol-fed rabbits disappeared at a normal rate via phase I, but only 82% was catabolized by this phase. Hypercholesterolemic VLDL injected into the hypercholesterolemic recipient was less rapidly catabolized via phase I (T1/2 = 2.5 +/- 0.89 H) and only a small fraction was converted to IDL and LDL.  相似文献   

4.
The plasma of squirrel monkeys contains extremely low levels of very low density lipoproteins. The delipidated apoproteins from the different lipoprotein density classes of this species show a heterogeneity similar to that of man and the rat. The biosynthesis of the apoproteins of squirrel monkey lipoproteins was studied in fasted normal and Triton WR1339-treated animals. After intravenous injection of [3-H] leucine, maximal labeling of very low density lipoproteins occurred after 1 h, intermediate density lipoproteins (d 1.006--1.019) in 2 h, and low density lipoproteins after 3 h. At all times, however, low density lipoproteins had the greatest percentage of radioactivity. Polyacrylamide gel electrophoresis revealed that the apoprotein B moiety of very low density and intermediate density lipoproteins contained 62% and 81% of the total radioactivity in these lipoproteins whereas the fast-migrating peptides were minimally labeled. In monkeys injected with Triton WR1339, 70--80% of the radioactivity incorporated into d smaller than 1.063 lipoproteins was in very low density lipoproteins with only 10--15% in intermediate and low density lipoproteins. After injection of 3-H-labeled very low density lipoproteins and [14-C] leucine into Triton-treated monkeys, catabolism of 3-H-labeled very low density lipoprotein to intermediate and low density lipoproteins was small and was significantly less than corresponding values for the incorporation of [14-C] leucine. Thus, breakdown of very low density lipoproteins could not account for all the labeled apoprotein B present in the intermediate and low density lipoprotein fractions. The results indicate that most, but not all, of the newly synthesized apoprotein B enters plasma in very low density lipoproteins and that the low concentrations of this lipoprotein in squirrel monkey plasma are a consequence of its rapid turnover.  相似文献   

5.
Plasma lipoproteins of d < 1.063 g/ml from rabbits fed a diet containing 1% cholesterol for 4 days showed changes in concentration and rates of flotation as determined by analytical ultracentrifugation. A marked increase in cholesteryl ester content of lipoprotein with d < 1.019 g/ml was the most prominent change in rabbits fed the diet for 21 days. Gel electrophoresis and immunochemical procedures demonstrated that in control and hypercholesterolemic rabbits there were some common apolipoproteins found in all lipoproteins with density < 1.063 g/ml. In control rabbits, there were also apolipoproteins specific to the lipoprotein fraction with d < 1.019 and to the fraction with d 1.019-1.063 g/ml. However, in rabbits fed the hypercholesterolemic diet for 21 days, the apolipoproteins characteristic of fraction 1.019-1.063 were the most abundant in the fraction with d < 1.019 g/ml. Liver slices from rabbits fed the high cholesterol diet for 7 and 21 days incorporated more l-[(14)C]leucine into very low density and low density lipoproteins than controls. The results suggest that cholesterol feeding leads to an increase in biosynthesis of lipoproteins with d < 1.063 g/ml. The newly synthesized lipoprotein contains apolipoproteins similar to those found in controls but with a higher lipid-to-protein ratio. From the apoprotein composition, it is concluded that the very low density fraction present in cholesterol-fed animals is more structurally related to low density lipoproteins than to the very low density lipoproteins isolated from control animals.  相似文献   

6.
The metabolism of heterogeneous subpopulations of low density lipoprotein (LDL) apoB100 was examined in three normolipidemic and two familial combined hyperlipidemic subjects. Autologous radioiodinated plasma LDL (1.019 less than d less than 1.063 g/ml) were injected into each subject and the disappearance and appearance of radiolabeled lipoproteins into various LDL subpopulations were examined using density gradient ultracentrifugation. Eleven to 13 fractions (-320 microliter each) were collected within LDL defined uniquely in each subject. In all subjects, the disappearance of radiolabeled LDL from plasma was biexponential. However, changes with time in the distribution of radiolabeled LDL among the various LDL density subpopulations revealed complex metabolic behavior that differed among the subjects. When the relationships between density and kinetic characteristics were examined in more detail by following the disappearance of individual fractions defining LDL in each subject, the data suggested that: 1) the kinetic behavior of the LDL fractions was more complex than suggested by the disappearance of radiolabeled LDL from plasma: 2) certain fractions within specific density ranges were kinetically similar; 3) distinct differences in the disappearance curves among the fractions occurred within narrow density ranges; and 4) precursor-product relationships were seen among specific LDL density fractions and varied from subject to subject. These studies underscore the complexities of plasma LDL apoB-100 metabolism. More detailed characterizations of the kinetic behavior of various LDL subpopulations should help in our understanding of the origin(s) and potential physiological consequences of different LDL subpopulations.  相似文献   

7.
The catabolism of human and rat 125I-labelled very low density lipoproteins (VLDL) was compared by perfusing the lipoproteins through beating rat hearts. Triacylglycerol was removed from the VLDL to a greater extent than the protein moiety, leaving remnants containing relatively more apo-B and less apo-C. The change in apo-C content of the remnants correlated with the loss of triacylglycerol. The extent of removal of triacylglycerol from the rat and human VLDL was similar and in most cases appeared to saturate the heart lipoprotein lipase. The remnants were slightly smaller in size than the VLDL, and included particles which appeared to be partially emptied. In addition to remnants of d less than 1.019 g/ml, iodinated lipoproteins derived from rat and human VLDL were recovered at d 1.019-1.063 and 1.063-1.21 g/ml. The former contained largely cholesterol and cholesteryl esters, while phospholipids were the dominant lipid in the latter. An average of 40% of the 125I-labelled apoprotein lost from the VLDL was associated with the perfused hearts. Very little d 1.019-1.063 g/ml lipoprotein was produced from low (physiological) concentrations of rat VLDL, most of the lipoprotein being removed by the heart. However, lipoproteins of density 1.019-1.063 g/ml were formed from human VLDL at all concentrations in the perfusate, as well as from higher concentrations of the rat VLDL. Agarose gel filtration of lipoproteins following heart perfusion with human VLDL revealed large aggregates containing particles which resemble low density lipoproteins (LDL) in electron microscopic appearance and apoprotein composition, since they contain largely apo-B. These data suggest that at normal concentrations rat VLDL are almost completely catabolised and taken up by the heart without the formation of LDL, while LDL is produced from human VLDL at all concentrations.  相似文献   

8.
Six male cynomolgus monkeys and five male African green monkeys were fed dietary cholesterol to induce hypercholesterolemia. The two groups studied had equivalent total plasma cholesterol concentrations. Low density lipoproteins (LDL) were isolated from whole plasma by ultracentrifugation and separated from other lipoprotein classes by agarose column chromatography. LDL were further subfractionated by density gradient ultracentrifugation in a VTi-50 vertical rotor. The material within five density regions was pooled from each sample and molecular weight, electrophoretic mobility, apoprotein heterogeneity, and percentage composition were determined for each subfraction. In general, cynomolgus monkey LDL were larger and more polydisperse than African green monkey LDL, and the LDL subfractions of cynomolgus monkeys were generally of lower densities although molecular weights at any density were in the same range for both species. ApoB-100 was the major apoprotein in each subfraction. ApoE was frequently present in the less dense subfractions while apoA-I was often seen in the more dense subfractions. Cynomolgus monkey LDL appeared to contain more apoE than African green monkey LDL. Over the entire spectrum of LDL, the percentage composition of the particles at any given density was indistinguishable between the species. In general, the average cynomolgus monkey LDL was larger, more polydisperse, less dense, and appeared to contain more apoE than the average African green monkey LDL. One or all of these differences might help explain the increased susceptibility to diet-induced atherosclerosis seen in cynomolgus monkeys.  相似文献   

9.
1. The metabolism of apolipoprotein B (apoB) was investigated in pigs injected with [125I]very low density lipoproteins (VLDL) to determine to which extent the two distinct low density lipoprotein subclasses (LDL1 and LDL2) derive from VLDL. 2. The lipoproteins were isolated by density gradient ultracentrifugation and the transfer of radioactivity from VLDL into LDL1 and LDL2 apoB was measured. 3. Only a minor portion of VLDL apoB was converted to LDL1 (7.7 +/- 3.2%) and LDL2 (3.6 +/- 1.5%), respectively. Thus, we conclude that the major portion of LDL, especially LDL2, is synthesized independently from VLDL catabolism.  相似文献   

10.
Although Triton WR 1339 has been used to block triglyceride or cholesterol removal from plasma, no data are available on the extent to which Triton WR 1339 administered to rabbits blocks clearance of newly absorbed dietary lipids. In the present study, we have measured the efficiency of this blockade during a 24-hr interval. After the Triton WR 1339 administration, plasma Sf greater than 400 and d less than 1.019 g/ml lipoprotein lipid concentrations increased greatly, but the concentration of d greater than 1.019 g/ml lipids decreased. In the rabbits fed 0.5% cholesterol for 1 week, the increase in d less than 1.019 g/ml and the decrease in 1.019 less than d less than 1.063 g/ml lipoprotein fractions 24 hr after the Triton WR 1339 injection were much greater than in the chow-fed Tritonized rabbits. After the Triton treatment, 50% of intravenously injected LDL-125I-labeled apoB disappeared in 24 hr, but little or no apoB appeared in other lipoprotein fractions and no VLDL apoB was converted to LDL. Labeled cholesterol and retinol were fed to rabbits and 24-hr increments in plasma cholesteryl- and retinyl-ester label and mass were measured. In chow-fed Tritonized rabbits about one-half of the absorbed oral doses of both labeled lipids was recovered in plasma, indicating that Triton WR 1339 does not completely inhibit the clearance of intestinal lipoproteins. When rabbits were injected with Triton and an ethyl oleate emulsion, the blockade of dietary lipid removal from plasma was substantially improved and chylomicron cholesterol uptake by extra-hepatic tissues was completely abolished.  相似文献   

11.
The concentration of cholesterol, apolipoproteins A-I, B, and E has been determined in lymphedema fluid from nine patients with chronic primary lymphedema. The concentrations were: 38.14 +/- 21.06 mg/dl for cholesterol, 15.6 +/- 6.17 mg/dl for apolipoprotein A-I, 7.5 +/- 2.8 mg/dl for apolipoprotein B, and 1.87 +/- 0.50 mg/dl for apolipoprotein E. These values represent 23%, 12%, 6%, and 38% of plasma concentrations, respectively. The ratio of esterified to unesterified cholesterol in lymphedema fluid was 1.46 +/- 0.45. Lipoproteins of lymphedema fluid were fractionated according to particle size by gradient gel electrophoresis and by exclusion chromatography. Gradient gel electrophoresis showed that a majority of high density lipoproteins (HDL) of lymphedema fluid were larger than ferritin (mol wt 440,000) and smaller than low density lipoproteins (LDL); several discrete subpopulations could be seen with the large HDL region. Fractionation by exclusion chromatography showed that more than 25% of apolipoprotein A-I and all of apolipoprotein E in lymphedema fluid was associated with particles larger than plasma HDL2. Apolipoprotein A-I also eluted in fractions that contained particles the size of or smaller than albumin. Isolation of lipoproteins by sequential ultracentrifugation showed that less than 25% of lymphedema fluid cholesterol was associated with apolipoprotein B. The majority of apolipoprotein A-containing lipoproteins of lymphedema fluid were less dense than those in plasma. Ultracentrifugally separated fractions of lipoproteins were examined by electron microscopy. The fraction d less than 1.019 g/ml contained little material, while fraction d 1.019-1.063 g/ml contained two types of particles: round particles 17-26 nm in diameter and square-packing particles 13-17 nm on a side. Fractions d 1.063-1.085 g/ml had extensive arrays of square-packing particles 13-14 nm in size. Fractions d 1.085-1.11 g/ml and fractions d 1.11-1.21 g/ml contained round HDL, 12-13 nm diameter and 10 nm diameter, respectively. Discoidal particles were observed infrequently.  相似文献   

12.
Low-density lipoproteins (density = 1.019-1.063 g/ml) were isolated in 10 subjects with type V hyperlipoproteinemia by ultracentrifugation in a zonal rotor under rate flotation conditions. Plasma LDL concentrations in these patients were extremely reduced, as well as being heterogeneous, and two different subclasses consisting of LDL2 (density = 1.019-1.045 g/ml) and LDL3 (density = 1.045-1.063 g/ml) were observed. LDL2 and LDL3 have similar electrophoretic mobilities in beta position in agarose gel, and their diameters, calculated from gel filtration studies, were inversely proportional to their densities. LDL2 and LDL3 have a mean hydrated density of 1.034 and 1.054 g/ml, respectively. In comparison with normal LDL2, the LDL2 and LDL3 of hypertriglyceridemic subjects are particularly rich in triacylglycerols and poor in cholesteryl esters and free cholesterol, while they have an increasing amount of proteins. The protein moiety is composed almost exclusively of apolipoprotein B-100 in IDL, LDL2 and LDL3 ; in addition, IDL also contain apolipoprotein C peptides. This characterization of LDL heterogeneity in type V hyperlipoproteinemia should be considered in interpreting kinetic data in human normal and pathological lipid metabolism and in evaluating the atherogenic risk of hypertriglyceridemia.  相似文献   

13.
The effects of cholestyramine and of clofibrate on the turnover rates of individual cholesteryl esters in whole human plasma and in each of the three classes of plasma lipoproteins have been studied. Four hyperlipidemic patients (two under treatment with each of the two drugs) were injected intravenously with cholesterol-(14)C, and serial plasma samples were collected after 3-4 hr, 8 hr, 24 hr, and 4-5 days. The plasma samples were separated into three classes of lipoproteins by ultracentrifugation. The cholesteryl esters and free cholesterol were isolated from each sample, and the specific radioactivity of the free and esterified cholesterol was determined. The specific radioactivity of each individual cholesteryl ester was then determined for each sample, by separately measuring the distribution of cholesterol mass and of radioactivity among four different cholesteryl ester groups, namely the saturated, mono-, di-, and tetra-unsaturated esters. In all subjects the plasma cholesteryl esters were metabolically heterogeneous, and could be divided into three pools corresponding to the three classes of plasma lipoproteins. High density lipoprotein (d > 1.063) cholesteryl esters showed the greatest fractional turnover rate, and low density lipoprotein (d 1.019-1.063) cholesteryl esters showed the smallest fractional turnover rate. In each subject the cholesteryl ester composition of the three classes of plasma lipoprotein was almost identical. Within each lipoprotein, and in whole plasma, all the different individual cholesteryl esters were found to turn over at the same fractional rate. In all respects these results were similar to those previously obtained with normal subjects. The results suggest that neither drug has a strongly selective effect on the turnover of one particular cholesteryl ester, or on the turnover or composition of the cholesteryl esters in one particular plasma lipoprotein.  相似文献   

14.
Swine plasma low density lipoprotein (LDL) isolated ultracentrifugally (d 1.019-1.063) was labeled with 125-I, dialyzed, and reisolated by centrifugation at d 1.063. Over 96% of the radioactivity was shown to be associated with the apoprotein. After reinjection into the donor animal, disapperance of 125-I was followed for up to 122 hr. At all time intervals examined, over 95% of the total plasma 125-I was recovered in LDL (D 1.006-1.063), i.e., there was apparently no transfer of radioactivity to high density or very low density lipoproteins. The disappearance curve was biexponential, with half-lives of 0.83 plus or minus 0.06 and 22.5 plus or minus 1.7 hr for the first and second phases, respectively (13 studies). The mean calculated fractional catabolic rate was 0.041 plus or minus 0.003 hr-minus 1. Similar results were obtained in three dogs using autologous LDL of density 1.020-1.050; fractional catabolic rates were 0.031, 0.031, and 0.029 hr-minus 1. Tissue distribution of 125-I was determined in swine killed at various time intervals after [125-I]LDL injection with corrections for radioactivity in trapped plasma. Of the tissues examined, the liver showed by far the highest concentration. Total hepatic radioactivity, expressed as a percentage of total plasma radioactivity, was rather constant and independent of the time of killing from 3 to 122 hr (15.8 plus or minus 1.9%). The total extravascular LDL pool calculated from analysis of the plasma disappearance curves was about 20-30% of the size of the plasma LDL pool. These data are consistent with the conclusion that the liver accounts for a very large fraction of the total extravascular LDL pool. These data are consistent with the conclusion that the liver accounts for a very large fraction of the total extravascular LDL pool and that it is infairly rapid equilibrium with the plasma pool. To what extent the liver is involved in irreversible degradation cannot be inferred from these findings.  相似文献   

15.
1. Low-density (d 1.006-1.063g/ml) lipoproteins from normal human plasma were separated by differential preparative ultracentrifugation into six subfractions. Each low-density (LD) lipoprotein subfraction contained lipoprotein B as the major and lipoproteins A and C as the minor lipoprotein families. 2. Three lipoprotein B subfractions (LP-B), LP-B-III (d 1.019-1.030g/ml), LP-B-IV (d 1.030-1.040g/ml) and LP-B-V (d 1.040-1.053g/ml) were prepared from the corresponding LD lipoprotein subfractions by immunoprecipitating small amounts of lipoproteins A and C. 3. Determination of hydrodynamic properties indicated that LD lipoproteins consisted of three molecular segments characterized by a stepwise change in the molecular weight: LDL-I and LDL-II subfractions (d 1.006-1.019g/ml) with an average mol.wt. of 4.75x10(6), LDL-III (d 1.019-1.030g/ml) with a mol.wt. of 3.99x10(6), and LDL-IV, LDL-V and LDL-VI (d 1.030-1.063g/ml) with a mol.wt. of 2.85x10(6). 4. All three lipoprotein B subfractions had an average mol.wt. of 3.16x10(6). 5. The LDL-I and LDL-II subfractions consisted of lipoprotein B and lipoprotein C families which were present in the form of an association complex. This was isolated from serum by immunoprecipitation with antibodies to lipoprotein B. The complex had a mol.wt. of 4.35x10(6). 6. The results indicate a fundamental difference between the LD lipoprotein subfractions with d 1.006-1.019g/ml and those subfractions with d 1.030-1.063g/ml. In the former, lipoprotein B occurs as a part of an association complex, whereas in the latter it occurs as a separate entity.  相似文献   

16.
The distribution of cholesterol (C), triglycerides (TG), phospholipids (PL) and protein in the different lipoproteins was studied in male Wistar rats under 2 conditions: control and 2 months after portacaval anastomosis (PCA). PCA decreased the levels of cholesterol and the other components in chylomicrons (-90%), very low density lipoproteins (-65 to -78%), LDL2 (1.040 less than d less than 1.063 g/ml; -51 to -61%) and HDL (1.063 less than d less than 1.21 g/ml), whereas no change was observed in LDL1 (1.006 less than d less than 1.040 g/ml). Apoprotein C contents were decreased in all lipoproteins. The relative proportions of C, TG, PL and proteins in lipoproteins were essentially unchanged by the shunt, suggesting a reduced number of lipoprotein particles in plasma after PCA. It was concluded that PCA reduced the levels of all lipoproteins secreted by liver and/or the intestine without modifying those of intraplasmatic origin (LDL1).  相似文献   

17.
18.
1. The work reported was designed to provide quantitative information about the capacity of the extrahepatic tissues of the rat to degrade injected VLD lipoproteins (very-low-density lipoproteins, d less than 1.006) to LD lipoproteins (low-density lipoproteins, d 1.006--1.063) and to study the fate of the different VLD-lipoprotein apoproteins during the degradative process. 2. Rat liver VLD lipoproteins, radioactively labelled in their protein moieties, were produced by the perfusion of the organ and were either injected into the circulation of the supradiaphragmatic rats or incubated in rat plasma at 37 degrees C. At a time (75 min) when approx. 90% of the triacylglycerol of the VLD lipoproteins had been hydrolysed the supradiaphragmatic rats were bled and VLD lipoproteins, LD lipoproteins and HD lipoproteins (high-density lipoproteins, d 1.063--1.21) were separated from their plasma and from the plasma incubated in vitro. The apoproteins of each of the lipoprotein classes were resolved by gel-filtration chromatography into three main fractions, designated peaks I, II and III. 3. Incubation of the liver VLD lipoproteins in plasma in vitro led to the transfer of about 30% of the total protein radioactivity to the HD lipoproteins. The transfer mainly involved the peak-II (arginine-rich and/or apo A-I) and peak-III (apo C) proteins. There was also a small transfer of radioactivity (about 5% of the total) to the LD lipoproteins. 4. Injection of the liver VLD lipoproteins into the circulation of the supradiaphragmatic rat resulted in the transfer of about 15% of the total VLD-lipoprotein radioactivity to the LD lipoproteins. The transfer involved mainly the peak-I (apo B) proteins and accounted for about 20% of the total apo B protein radioactivity of the injected VLD lipoproteins. When the endogenous plasma VLD lipoprotein was taken into account the transfer of apo B protein was about 35%. 5. The transfer of peak-II protein radioactivity from the VLD to the HD lipoproteins was greater in the plasma of the supradiaphragmatic rat than in the incubated plasma suggesting that there was a net transfer of peak-II apoproteins during the VLD lipoprotein degradation. The transfer of peak-III protein radioactivity was not greater in the plasma of the supradiaphragmatic rat, but there was a loss of this radioactivity from the circulation.  相似文献   

19.
G C Chen  J P Kane  R L Hamilton 《Biochemistry》1984,23(6):1119-1124
Induced circular dichroism (CD) of beta-carotene has been used to study the physical state in the cores of three classes of triglyceride-rich lipoproteins from human serum: intermediate-density lipoproteins (IDL) (1.006 less than d less than 1.019 g/mL) and subfractions of the d less than 1.006 g/mL lipoproteins of beta and pre-beta electrophoretic mobility. Effects on the physical state in the cores attributable to the ratio of triglycerides to cholesteryl esters and particle diameters were assessed by comparing the temperature-dependent CD spectra of beta-carotene with those of low-density lipoproteins (LDL). Lipoproteins were prepared from serum by sequential ultracentrifugation after the donors were given supplemental dietary beta-carotene (60 mg/day) for 2 weeks. The beta- and pre-beta-migrating d less than 1.006 g/mL lipoproteins were separated by starch block electrophoresis and were then individually separated into subfractions by agarose gel filtration chromatography. Between 7 and 30 degrees C, four subfractions of the beta-migrating d less than 1.006 g/mL lipoproteins and IDL exhibited reversible, temperature-dependent induced CD of beta-carotene, with contours similar to those of LDL but with smaller magnitudes and much broader transitions of the CD bands than those of LDL. In contrast, subfractions of the pre-beta-migrating d less than 1.006 g/mL lipoproteins showed no detectable induced CD of beta-carotene. These results show that the cores of triglyceride-rich lipoproteins can exist in some ordered state between 7 and 30 degrees C if they have a relatively low ratio of triglycerides to cholesteryl esters (mass ratio less than 1.6) and relatively small particle diameter (less than 60 nm).  相似文献   

20.
A new method for low density lipoprotein (LDL) (d 1.019-1.063 g/ml)-apolipoprotein B (apoB) determination has been developed, based on the fact that very low density and intermediate density lipoproteins (VLDL and IDL) contain apolipoprotein C-I (apoC-I), whereas this apolipoprotein is apparently absent in LDL. VLDL and IDL were quantitatively precipitated with a monospecific anti-apoC-I antibody whereafter LDL-apoB in the supernatant was quantitated by Laurell rocket electrophoresis. Over a wide range of cholesterol and triglyceride values there was a linear correlation with LDL-apoB values measured after ultracentrifugation. The method would be useful for routine measurements, especially in children, since only 25 microliter of serum is required, and for making the diagnosis of hyperapobetalipoproteinemia, which at present is complicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号