首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to understand: (1) how environmental conditions can contribute to formation of Microcystis-dominated blooms in lowland, dam reservoirs in temperate climate—with the use of quantitative molecular monitoring, and (2) what is the role of toxic Microcystis genotypes in the bloom functioning. Monitoring of the Sulejow Reservoir in 2009 and 2010 in two sites Tresta (TR) and Bronislawow BR), which have different morphometry, showed that physicochemical conditions were always favorable for cyanobacterial bloom formation. In 2009, the average biomass of cyanobacteria reached 13 mg L?1 (TR) and 8 mg L?1 (BR), and in the second year, it decreased to approximately 1 mg L?1 (TR and BR). In turns, the mean number of toxic Microcystis genotypes in the total Microcystis reached 1 % in 2009, both in TR and BR, and in 2010, the number increased to 70 % in TR and 14 % in BR. Despite significant differences in the biomass of cyanobacteria in 2009 and 2010, the mean microcystins (MCs) concentration and toxicity stayed at a similar level of approximately 1 μg L?1. Statistical analysis indicated that water retention time was a factor that provided a significant difference between the two monitoring seasons and was considered a driver of the changes occurring in the Sulejow Reservoir. Hydrologic differences, which occurred between two studied years due to heavy flooding in Poland in 2010, influenced the decrease in number of Microcystis biomass by causing water disturbances and by lowering water temperature. Statistical analysis showed that Microcystis aeruginosa biomass and 16S rRNA gene copy number representing Microcystis genotypes in both years of monitoring could be predicted on the basis of total and dissolved phosphorus concentrations and water temperature. In present study, the number of mcyA gene copies representing toxic Microcystis genotypes could be predicted based on the biomass of M. aeruginosa. Moreover, MCs toxicity and concentration could be predicted on the basic of mcyA gene copy number and M. aeruginosa (biomass, 16S rRNA), respectively. Present findings may indicate that Microcystis can regulate the number of toxic genotypes, and in this way adjust the whole bloom to be able to produce MCs at the level which is necessary for its maintenance in the Sulejow Reservoir under stressful hydrological conditions.  相似文献   

2.
The patterns of spatial and temporal shifts in bloom‐forming cyanobacteria and the driving factors for these patterns were determined by analyzing the distribution of these cyanobacteria in Lake Chaohu using data from satellite images and field samples collected during 2012 and 2013. The cyanobacterial blooms primarily occupied the western region of Lake Chaohu, and the direction and speed of the prevailing wind determined the spatial distribution of these blooms. The cyanobacteria in Lake Chaohu were dominated by species of Microcystis and Anabaena. Microcystis reached its peak in June, and Anabaena had peaks in May and November, with an overall biomass that was higher than that of Microcystis. Microcystis generally occupied the western region of the lake in summer, whereas Anabaena dominated in other regions and seasons. Temperature may be responsible for these seasonal shifts. However, total phosphorus (TP), pH, temperature, turbidity and nitrate/nitrite nitrogen determined the coexistence of the two genera in different regions in summer. TP was correlated with Microcystis dominance, and pH and light availability were correlated with Anabaena dominance. Our results contribute to the understanding of shifts in bloom‐forming cyanobacteria and are important for the control of cyanobacterial blooms.  相似文献   

3.
We estimated the grazing impact of the heterotrophic flagellate Collodictyon triciliatum on the harmful, bloom-forming cyanobacterium Microcystis aeruginosa in an experimental pond during a Microcystis bloom from summer to winter in 2010. For these experiments, we calculated the grazing rates from the digestion rate of C. triciliatum and its food vacuole contents. During the study period, M. aeruginosa exhibited one bloom event with a maximum density of 1.1 × 105 cells ml?1. The cell density of C. triciliatum fluctuated from below the detection limit to 291 cells ml?1. The number of M. aeruginosa cells ingested by C. triciliatum food vacuoles ranged between 0.4 and 10.8 cells flagellate?1, and the digestion rate of C. triciliatum at 25 °C was 0.73 % cell contents min?1. The grazing rate of C. triciliatum on the M. aeruginosa prey was 0.2–6.9 cells flagellate?1 h?1, and its grazing impact was 0.0–25.3 % standing stock day?1. The functional response of C. triciliatum to the M. aeruginosa prey followed the Michaelis–Menten model of significance (r 2 = 0.873, p < 0.001) in our experimental systems, in which the prey concentration varied from 1.0 × 104 to 2.1 × 106 cells ml?1. The maximum grazing rate was 6.2 prey cells grazer?1 h?1, and the half-saturation constant was 1.2 × 105 cells ml?1. We present evidence that C. triciliatum grazing explained the remarkable decrease in M. aeruginosa cell density in the pond. The present study is the first demonstration of the high potential of protistan grazing on M. aeruginosa to reduce cyanobacterial blooms.  相似文献   

4.
Microcystis aeruginosa is one of the most common blue-green algae species that forms harmful water bloom, which frequently causes serious ecological pollution and poses a health hazard to animals and humans. To understand the progression of algal blooms and to provide a theoretical basis for predicting and preventing the occurrence of algal blooms and reducing the harm of algal bloom to environment, we investigated the diurnal variation of photosynthesis, ATP content and cell division in M. aeruginosa PCC7820. The results showed that the photosynthesis and ATP content of M. aeruginosa PCC7820 exhibited clear circadian rhythm with a period of approximately 24 h and that the periodic rhythms continued for at least three cycles under continuous light conditions. Furthermore, the period length showed that a temperature compensation effect and changes in light cycle or temperature could reset the phase of circadian rhythm. These results indicate that the circadian rhythms of physiological process in M. aeruginosa PCC7820 are controlled by the endogenous circadian clock. Examinations of the number, size and cytokinin content of cells also reveal that the cell division of M. aeruginosa PCC7820 with the generation time of 38.4 h exhibits robust circadian rhythms with a period close to 24 h. The circadian rhythms of cell division may be generated by a biological clock through regulation of the cell division phase of M. aeruginosa PCC7820 via a gating mechanism. The phases in which cell division slows or stop recur with a circadian periodicity of about 24 h.  相似文献   

5.
In highly eutrophic ponds, buoyancy of the gas-vacuolate blue-green alga Anabaenopsis Elenkinii (Miller) was regulated by complex interactions between chemical and physical parameters, as well as by biological interactions between various trophic levels. Algal buoyancy and surface bloom formation were enhanced markedly by decreased light intensity, and to a lesser extent by decreased CO2 availability and increased availability of inorganic nitrogen. In the absence of dense populations of large-bodied Cladocera, early season blooms of diatoms and green algae reduced light availability in the ponds thus creating conditions favorable for increased buoyancy and bloom formation by A. Elenkinii. The appearance of blue-green algal blooms could be prevented by a reduced density of planktivorous fish, which allowed development of dense cladoceran populations. The cladocerans limited the growth of precursory blooms of diatoms and green algae, and given the resulting clear-water conditions, buoyancy of A. Elenkinii was reduced, and blue-green algal blooms never appeared.  相似文献   

6.
Microcystis is a freshwater cyanobacterium frequently forming nuisance blooms in the summer months. The genus belongs to the predominant producers of the potent hepatotoxin microcystin. The success of Microcystis and its remarkable resistance to high light conditions are not well understood. Here, we have compared the metabolic response of Microcystis aeruginosa PCC7806, its microcystin‐deficient ΔmcyB mutant (Mut) and the cyanobacterial model organism Synechocystis PCC6803 to high light exposure of 250 μmol photons m?2 s?1 using GC/MS‐based metabolomics. Microcystis wild type and Mut show pronounced differences in their metabolic reprogramming upon high light. Seventeen per cent of the detected metabolites showed significant differences between the two genotypes after high light exposure. Whereas the microcystin‐producing wild type shows a faster accumulation of glycolate upon high light illumination, loss of microcystin leads to an accumulation of general stress markers such as trehalose and sucrose. The study further uncovers differences in the high light adaptation of the bloom‐forming cyanobacterium Microcystis and the model cyanobacterium Synechocystis. Most notably, Microcystis invests more into carbon reserves such as glycogen after high light exposure. Our data shed new light on the lifestyle of bloom‐forming cyanobacteria, the role of the widespread toxin microcystin and the metabolic diversity of cyanobacteria.  相似文献   

7.
Microcystis blooms can lead to a decline in water quality and ecological damage, and pose risks to human health. Therefore, studies on the mechanisms of Microcystis colony formation and bloom occurrence are of great significance for the aquatic ecosystem. In this study, Microcystis aeruginosa was cultured with nitrate, ammonium, or urea as the nitrogen source in the medium to investigate the effects of nitrogen forms on colony formation. Nitrogen was added as a single dose or in multiple doses to determine the effect of the nitrogen supply modes on colony formation. Compared with urea, nitrate significantly stimulated the growth of M. aeruginosa while ammonium inhibited growth. Among the three nitrogen forms, ammonium resulted in the highest concentrations of total dissolved nitrogen (TDN). Colonies larger than 10 μm were significantly promoted in the ammonium treatment. Cells were generally smaller in the nitrate treatment than in the ammonium and urea treatments. The extracellular polysaccharide (EPS) contents were lower in the nitrate and urea treatments than in the ammonium treatments. Within the same nitrogen form, there was little difference in growth and colony formation between the single-dose and multiple-dose treatments. Our results demonstrated that ammonium significantly promoted M. aeruginosa colony formation, and that the nitrogen supply mode did not affect colony formation in M. aeruginosa.  相似文献   

8.
Toxic blooms of the cyanobacterium Microcystis aeruginosa affect humans and animals in inland water systems worldwide, and it has been hypothesized that the development of these blooms will increase under the future scenario of global change, considering eutrophication and temperature increase as two important consequences. The importance of genetic adaptation, chance and history on evolution of growth rate, and toxin production of M. aeruginosa was studied under these new conditions. The experiment followed the idea of “replaying life’s tape” by means of the simultaneous propagation of 15 independent isolates of three M. aeruginosa strains, which were grown under doubled nutrient concentration and temperature during c. 87 generations. Adaptation by new mutations that resulted in the enhancement of growth rate arose during propagation of derived cultures under the new environmental conditions was the main component of evolution; however, chance also contributed in a lesser extension to evolution of growth rate. Mutations were selected, displacing the wild-type ancestral genotypes. In contrast, the effect of selection on mutations affecting microcystin production was neutral. Chance and history were the pacemakers in evolution of toxin production. Although this study might be considered an oversimplification of the reality, it suggest that a future scenario of global change might lead to an increase in M. aeruginosa bloom frequency, but no predictions about the frequency of toxicity can be made.  相似文献   

9.
The improvement of water quality in Lake Tega, Japan, has been carried out by dilution, causing the shift of dominant species from Microcystis aeruginosa to Cyclotella sp. in summer. The disappearance of Microcystis blooms would be related to dilution, but the detail effect has not been understood yet. In this study, the effect of nitrate concentration on the competition between M. aeruginosa and Cyclotella sp. was investigated through the single-species and the competitive culture experiments. The single-species culture experiment indicated that the half saturation constants for M. aeruginosa and Cyclotella sp. were 0.016 and 0.234?mg?N L?1, representing that M. aeruginosa would possess a higher affinity to nitrate. On the other hand, the maximum growth rate for Cyclotella sp. was obtained as 0.418?day?1, which did not represent a significant difference with 0.366?day?1 obtained for M. aeruginosa. The competitive culture experiment revealed that Cyclotella sp. completely dominated over M. aeruginosa at the nitrate concentrations of 0.5 and 2.5?mg?N L?1. The dominance of Cyclotella sp. could be attributed to the difference in the abilities of nitrate storage as well as nitrate uptake. One of the possibilities for the disappearance of Microcystis blooms caused by dilution as observed in Lake Tega could be due to the decrease in nitrate concentration, and the lower N:P ratio seemed not to relate to Microcystis blooms.  相似文献   

10.
Rapid economic development in China’s Lake Taihu basin during the past four decades has accelerated nitrogen (N) and phosphorus (P) loadings to the lake. This has caused a shift from mesotrophic to hypertrophic conditions, symptomized by harmful cyanobacterial blooms (CyanoHABs). The relationships between phytoplankton biomass as chlorophyll a (Chla) and nutrients as total nitrogen (TN) and total phosphorus (TP) were analyzed using historical data from 1992 to 2012 to link the response of CyanoHAB potential to long-term nutrient changes. Over the twenty year study period, annual mean Chla showed significantly positive correlations with both annual mean TN and TP (P < 0.001), reflecting a strong phytoplankton biomass response to changes in nutrient inputs to the lake. However, phytoplankton biomass responded slowly to annual changes in TN after 2002. There was not a well-defined or significant relationship between spring TN and summertime Chla. The loss of a significant fraction of spring N loading due to denitrification likely weakened this relationship. Bioavailability of both N and P during the summer plays a key role in sustaining cyanobacterial blooms. The frequency of occurrence of bloom level Chla (>20 μg L?1) was compared to TN and TP to determine nutrient-bloom thresholds. A decline in bloom risk is expected if TN remains below 1.0 mg L?1 and TP below 0.08 mg L?1.  相似文献   

11.
The impacts of climate change on Microcystis blooms in San Francisco Estuary are uncertain because factors associated with the abundance and distribution of Microcystis blooms since their inception in 1999 are poorly understood. Discrete and continuous data collected between 2004 and 2008 were used to assess what factors controlled bloom initiation and persistence, if there was an impact of the bloom on mesozooplankton abundance and toxicity or dissolved organic carbon concentration, and how these might vary with climate change. Microcystis abundance was greater in dry years than wet years and both total microcystins concentration and the microcystins content of mesozooplankton tissue increased with abundance. The bloom began in the upstream portions of the estuary and spread farther west during dry years. Bloom initiation required water temperature above 19°C and surface irradiance in the visible range above 100 W m?2. The bloom persisted during a wide range of water quality conditions but was closely correlated with low turbidity. The intensity of Microcystis blooms will likely increase with climate change due to increased water temperature and low streamflow during droughts. Elevated water temperature earlier in the spring could also extend the duration of Microcystis blooms by up to 3 months.  相似文献   

12.
Cyanobacterial blooms induce significant costs that are expected to increase in the near future. Cyanobacterial resistance to zooplankton grazing is one factor thought to promote bloom events. Yet, numerous studies on zooplankton ability to graze upon cyanobacteria have been producing contradictory results and such a puzzle might arise from the lack of direct observations in situ. Our objective was to track, using fatty acid (FA) and fatty acid stable isotope analyses (FA-SIA), the fate of cyanobacterial organic matter in the food web of a lake subjected to summer blooms of Planktothrix rubescens. A metalimnetic bloom of P. rubescens occurred in Lake Bourget (France) during the study period (May–November 2009). The bloom was especially rich in α-linolenic acid, 18:3(n-3), but none of the considered zooplankton taxa exhibited spiking content in this particular FA. FA-SIA revealed, however, that over a quarter of 18:3(n-3) in small zooplankton (<500 μm) was provided by P. rubescens while large cladocerans (>500 μm) did not benefit from it. P. rubescens 18:3(n-3) could be tracked up to perch (Perca fluviatilis) young of the year (YOY) to which it contributed to ~15 % of total 18:3(n-3). Although transferred with a much lower efficiency than micro-algal organic matter, the P. rubescens bloom supported a significant share of the pelagic secondary production and did not constitute, sensu stricto, a ‘trophic dead end’. The cyanobacterial bloom also provided perch YOY with components of high nutritional values at a season when these are critical for their recruitment. This cyanobacterial bloom might thus be regarded as a significant dietary bonus for juvenile fish.  相似文献   

13.
Food supply for deposit feeders varies from highly seasonal phytodetritus to a steady source of older organic matter, resulting in contrasting patterns of nutrient uptake and storage. To identify patterns in energy storage and feeding behaviour driven by different food conditions for the circumpolar deposit-feeding protobranch bivalve Yoldia hyperborea, we measured variations in cytological (digestive cell height) and biochemical (lipid class, fatty acid, glycogen, and protein content) components during controlled experiments. Three treatments with organisms in sediment with high refractory organic matter (12 % OM) were exposed to different feeding regimes resembling (a) the annual spring bloom settlement, (b) low food availability during winter, and (c) sporadic resuspension events. Yoldia exposed to a diatom-supplemented diet showed significantly higher mean values for digestive cell height (28.44 μm), glycogen (30.4 mg g?1 dry mass, DM), diatom-specific fatty acids, and total lipid (TL) levels (14.4 mg g?1 DM), but lower protein concentrations, than in non-supplemented treatments (digestive cell height 20.34 μm; glycogen 9.23 mg g?1 DM; TL 6.7 mg g?1 DM). All analyses showed no effect of resuspension events; thus, it was unlikely that resuspension improved sediment nutritional value. In the absence of recently deposited diatoms, Y. hyperborea did not increase nutrient storage, suggesting that significant amounts of older refractory OM are not used for growth or reproduction. The rapid storage of nutrients derived from diatoms demonstrates the role of seasonal episodic events of settling algae in the nutrition of subpolar Y. hyperborea and in the transfer of energy from the water column to the benthos.  相似文献   

14.
Colonial Microcystis aeruginosa isolates tend to lose their typical colonial morph after some generations under laboratory conditions, one interesting but yet important question is whether unicellular M. aeruginosa, originally isolated from the field, can revert back to colonial morphology when growing back in natural waters. Based on this idea, we employed dialysis bags and plastic bottles to conduct an in situ experiment. Each of the dialysis bags and plastic bottles was filled with unicellular M. aeruginosa with high concentrations and then submerged to two natural lakes (Lake Caiyue and Lake Taihu) for 40 and 28 days, respectively. Results showed M. aeruginosa grew well in dialysis bags but not in plastic bottles; no colonies were observed in M. aeruginosa incubated in either dialysis bags or plastic bottles exposed in both lakes. This suggests laboratory maintained unicellular M. aeruginosa cannot revert back to colonial form after short-term exposure in natural conditions.  相似文献   

15.
The factors controlling phytoplankton bloom development in the marginal ice zone of the northwestern Weddell Sea were investigated during the EPOS (Leg 2) expedition (1988). Measurements were made of physical and chemical processes and biological activities associated with the process of ice-melting and their controlling variables particularly light limitation mediated by vertical stability and ice-cover, trace metal deficiency and grazing pressure. The combined observations and process studies show that the initiation of the phytoplankton bloom, dominated by nanoplanktonic species, was determined by the physical processes operating in the marginal ice zone at the time of ice melting. The additional effects of grazing pressure by protozoa and deep mixing appeared responsible for a rather moderate phytoplankton biomass (4 mg Chla m–3) with a relatively narrow geographical extent (100–150 km). The rôle of trace constituents, in particular iron, was minor. The importance of each factor during the seasonal development of the ice-edge phytoplankton bloom was studied through modelling of reasonable scenarios of meteorological and biological forcing, making use of a one-dimensional coupled physicalbiological model. The analysis of simulations clearly shows that wind mixing events — their duration, strength and frequency — determines both the distance from the iceedge of the sea ice associated phytoplankton bloom and the occurrence in the ice-free area of secondary phytoplankton blooms during the summer period. The magnitude and extent of the ice-edge bloom is determined by the combined action of meteorological conditions and grazing pressure. In the absence of grazers, a maximum ice-edge bloom of 7.5 mg Chla m–3 is predicted under averaged wind conditions of 8 m s–1. Extreme constant wind scenarios (4–14 m s–1) combined with realistic grazing pressure predict maximum ice-edge phytoplankton concentrations varying from 11.5 to 2 mg Chla m–3. Persistent violent wind conditions ( 14 m s–1) are shown to prevent blooms from developing even during the brightest period of the year.  相似文献   

16.
The occurrence, features and impacts on oxygen resources of an upwelling event in culturally eutrophic Onondaga Lake, NY, are documented, and recurrence is investigated, based on data collected as part of long-term, robotic, and event monitoring programs. The upwelling event occurred on September 11, 2002, in response to a wind event of average wind speed of ~10 m s?1 that extended over an interval of 11 hours along the main axis of the lake. Longitudinal differences in temperature (T) and dissolved oxygen (DO) documented for the lake's surface waters during the upwelling event were 5.7?°C and 10 mg l?1. DO concentrations <1 mg l?1 were observed in surface waters at the windward end of the lake. Oxidation of reduced oxygen-demanding by-products of anaerobic metabolism supplied to the upper waters from stratified layers during the event contributed to a loss of DO from the lake. Review of historic lake stratification, water quality related to oxygen resources, and long-term wind data indicate upwelling events with coupled deleterious impacts on DO resources have not been rare; at least 14 such events are estimated to have occurred over the 1990–2002 interval. The documented event probably represents a worst case for oxygen impacts for this period. An underway rehabilitation program, that will reduce anthropogenic phosphorus loading and implement hypolimnetic oxygenation, may ameliorate the impacts of upwelling events on the DO resources of the lake.  相似文献   

17.
Blooming and non-blooming periods between 2004 and 2006 in a hypereutrophic reservoir, where cyanobacterial blooms have previously been reported to be permanent, presented an opportunity to characterise factors that may favour cyanobacterial dominance. As a bloom developed in May 2004, a shift to dominance by Microcystis aeruginosa, similar to competitive exclusion, was observed. The period of M. aeruginosa dominance was characterised by the lowest Secchi depth and euphotic zone depth readings, and a decline of non-buoyant species because of competitive exclusion by M. aeruginosa, which reduced light availability in the water column. After the bloom collapsed, the euphotic zone depth increased, followed by the establishment of a Cryptomonas–Cyclotella phytoplankton assemblage. Cyanobacterial dominance within the phytoplankton assemblage was favoured by an extended stratification and was limited by nitrogen (mainly ammonium) availability. Other taxa were limited by light availability, as shown by their decline when M. aeruginosa dominated. The period of extended stratification, an increase in ammonium concentration and a decrease in nitrate concentration promoted dominance by M. aeruginosa.  相似文献   

18.
Cyanobacterial blooms are found in many freshwater ecosystems around the world, but the effect of environmental factors on their growth and the proportion of species still require more investigation. In this study, the physiological responses of bloom‐forming cyanobacteria M icrocystis aeruginosa FACHB912, M icrocystis flos‐aquae FACHB1028 and P seudanabaena sp. FACHB1282 to iron deficiency were investigated. Their specific growth rates were found to decrease as the available iron concentration decreased. At low available iron concentrations of 1 × 10?7 M (pFe 21.3) and 5 × 10?8 M (pFe 21.6), M . aeruginosa had the lowest specific growth rate among three studied species. The cell sizes of M . flos‐aquae and Pseudanabaena sp. were significantly smaller under the lowest iron concentration. The chlorophyll a content of the three species decreased at the lowest iron concentration. The maximal relative electron transport rate, photosynthetic efficiency, and light‐saturation parameter of M . aeruginosa were lower than the other two cyanobacteria at pFe 21.3. Therefore, M . aeruginosa was the least able to adapt to iron deficiency. Under iron deficiency, the functional absorption cross‐section of PSII and electron transport rate on the acceptor side of PSII decreased in M . aeruginosa, while the connectivity factor between individual photosynthetic units increased in M . flos‐aquae, and the electron transport rate on the acceptor side of PSII and between PSII and PSI decreased in P seudanabaena sp. The ability to store iron was highest in M . flos‐aquae, followed by P seudanabaena sp. and M . aeruginosa. Thus, these results provide necessary information for detecting the role of iron in the succession of cyanobacterial species in Lake Taihu, the third largest freshwater lake in China, because all three species were isolated from this lake.  相似文献   

19.
The hypothesis that outcomes of phosphorus and light competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa are strain dependent was tested experimentally. Critical requirements of phosphorus (P*) and of light (I*) of two strains of each species were determined through monoculture experiments, which indicated a trade-off between species and also between Microcystis strains. Competition experiments between species were performed using the weakest predicted competitors (with the highest values of P* and of I*) and with the strongest predicted competitors (with the lowest values of P* and of I*). Under light limitation, competition between the weakest competitors led C. raciborskii to dominate. Between the strongest competitors, the opposite was observed, M. aeruginosa displaced C. raciborskii, but both strains co-existed in equilibrium. Under phosphate limitation, competition between the weakest competitors led C. raciborskii to exclude M. aeruginosa, and between the strongest competitors, the opposite was observed, M. aeruginosa displaced C. raciborskii, but the system did not reach an equilibrium and both strains were washed out. Hence, outcomes of the competition depended on the pair of competing strains and not only on species or on type of limitation. We concluded that existence of different trade-offs among strains and between species underlie our results showing that C. raciborskii can either dominate or be displaced by M. aeruginosa when exposed to different conditions of light or phosphate limitation.  相似文献   

20.
Blooms caused by the green macroalga Ulva pose a serious threat to coastal ecosystems around the world. Despite numerous studies of the causes and consequences of these blooms, we still have a limited understanding of Ulva bloom species richness and abundance due to difficulties in identifying Ulva species using morphological features. Along the northeastern U.S. coastline, all blooms of distromatic Ulva blades were previously identified as Ulva lactuca. Recent molecular sequencing, however, discovered the presence of additional distromatic Ulva species. Therefore, in order to determine the relative abundance of Ulva species within blooms, we conducted monthly surveys at four Narragansett Bay, RI, sites representing a gradient of bloom severity. We found that the biomass of Ulva within blooms was a mix of Ulva compressa and Ulva rigida, not U. lactuca as previously reported. In contrast, sites not impacted by blooms that were located near the mouth of Narragansett Bay were dominated by U. lactuca. We also observed spatial and temporal differences in Ulva and total macroalgal diversity between bloom-impacted sites, indicating that Ulva bloom composition can be radically different between similar sites within close proximity. We discuss our results in the context of Ulva blooms worldwide, highlighting the need to definitively determine bloom species composition in order to fully understand bloom dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号