首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The structural change of β-lactoglobulin A (βLG A) on heating was measured at pH 3.0 and 7.5 with UV absorption difference spectra, differential scanning calorimetry (DSC), and circular dichroism (CD). At pH 3.0, βLG A showed a reversible structural change by heating at 80 °C, while an irreversible change was observed and molecular aggregates of βLG were formed by heating at 95 °C. DSC analysis of βLG A gave endothermic peaks at 75 °C and 90 °C at pH 7.5, and 90 °C at pH 3.0. At pH 7.5, βLG A modified with N-ethylmaleimide (NEM-βLG A) gave two endothermic peaks: at 72 °C and 90 °C. CD spectra of βLG A heated at various temperatures and pHs were measured and the spectra at pH 3.0 and 7.5 were not changed by heating to 95 °C and 80 °C, respectively. Unheated NEM-βLG A gave a spectrum similar to that of heated βLG A, suggesting that the secondary structure was changed by NEM treatment.  相似文献   

2.
The thermal denaturation, aggregation, and degradation of hen egg white ovalbumin dissolved in distilled and deionized water (60 mg/ml, pH 7.5) was investigated by differential scanning calorimetry (DSC), polyacrylamide gel electrophoresis (PAGE), and viscosity measurement. Two independent endothermic peaks were observed up to 180 degrees C by the DSC analysis. The first peak appeared at around 80 degrees C, corresponding to the denaturation temperature of ovalbumin. The second peak occurred around 140 degrees C due to the degradation of protein molecules as judged from the analysis by SDS-PAGE. The viscosity of the ovalbumin solution increased dramatically above 88 degrees C and maintained almost the same value up until heating to 140 degrees C. The increase in viscosity after heating to 88 degrees C was due to the denaturation and subsequent aggregation of ovalbumin molecules as observed by SDS-PAGE. The decrease in viscosity of the samples heated above 150 degrees C appears to have been the result of degradation of the ovalbumin molecules.  相似文献   

3.
Thermally induced transition between anhydrous and hydrated forms of highly crystalline beta-chitin was studied by differential thermal calorimetry (DSC) and X-ray diffraction. DSC of wet beta-chitin in a sealed pan gave two well-defined endothermic peaks at 85.2 and 104.7 degrees C on heating and one broad exothermic peak at between 60 and 0 degrees C on cooling. These peaks were highly reproducible and became more distinct after repeated heating-cooling cycles. The X-ray diffraction pattern of wet beta-chitin at elevated temperature showed corresponding changes in d-spacing between the sheets formed by stacking of chitin molecules. These phenomena clearly show that water is reversibly incorporated into the beta-chitin crystal and that the temperature change induces transitions between anhydrous, monohydrate, and dihydrate forms. The DSC behavior in heating-cooling cycles, including reversion between the two endothermic peaks, indicated that the transition between monohydrate and dihydrate was a fast and narrow-temperature process, whereas the one between the anhydrous and the monohydrate form was a slow and wide-temperature process.  相似文献   

4.
S Kitamura  T Kuge 《Biopolymers》1989,28(2):639-654
The thermal conformational transitions of two sonicated samples of schizophyllan were studied in water-dimethylsulfoxide (DMSO) mixtures by high-sensitivity differential scanning calorimetry (DSC). Two transitions were observed over most of the range of solvent compositions. These were assigned to an internal change of the triple helix [T. Itou et al. (1986) Macromolecules 19, 1234-1240] and a triple-helix-single-coil transition [T. Sato et al. (1981) Carbohydr. Res. 95, 195-204], respectively. In water, the former transition observed at lower temperature for a low molecular weight sample, U-1, is centered at 3 degrees C and characterized by the specific enthalpy, delta hcal = 3.29 J g-1. A higher molecular weight sample, M-2, showed this transition at 7 degrees C with delta hcal = 4.39 J g-1. The transition temperature for both samples increased with increasing DMSO concentration up to about 50 degrees C at 70 weight % DMSO, and then rapidly decreased with increasing DMSO concentration, with about 3 degrees C higher for M-2 than for U-1 over the DMSO concentration. The transition was not observed when the concentration of DMSO exceeded 87%. It was found that delta hcal for both samples was a linear function of t 1/2, the temperature of half-completion in degrees C, delta hcal = 0.177t + 2.96. The triple helix-coil transition was observed at around 127 degrees C for U-1 and above 130 degrees C for M-2 in the range of DMSO composition below about 70%. The transition temperature decreased with increasing DMSO concentration at above 70%, and the transition finally disappeared when the DMSO concentration exceeded 90%. The plot of delta hcal vs. t 1/2 for the transition of both samples gave a linear relation, delta hcal = 0.253t - 10.58. The reversibility of the transition at lower temperature was demonstrated by the reversibility of the curves when the first heating was stopped before the second transition. Once the heating was performed over the second transition, the reheating DSC curves showed several endothermic peaks, indicating the irreversibility of the transition and heterogeneity in the conformation of the heated schizophyllan.  相似文献   

5.
Two endothermic peaks could be observed for five commercial samples of bovine serum albumin (BSA). The smaller peak observed by differential scanning calorimetry (DSC) corresponded to enthalpy relaxation. This peak was followed on storage of BSA, in its glassy state, after it had been heated above its denaturation temperature. Enthalpy and peak temperature increased with duration of storage. On storage for one week at 60 degrees C, a sample at 8.3% moisture showed a peak at 100 degrees C with an energy value of approximately 2 J per g protein. BSA samples were heated within the DSC sufficiently to eliminate the lower enthalpy peak but without altering the denaturation enthotherm. The amount of physical aging shown by these BSA samples was similar to that of the heat-denatured samples. It was concluded that the heating endotherms of dry BSA reflect both the storage and thermal history of the sample. Possible implications of the enthalpy relaxation of BSA on the behavior of this important protein are considered.  相似文献   

6.
The Tanford transition is a conformational change of bovine beta-lactoglobulin (betaLG) occurring at around pH 7, identified originally on the basis of optical rotatory dispersion and the accessibility of a thiol group. X-ray analysis has suggested that a conformational change to the EF-loop is responsible for the Tanford transition, with the loop closing the hydrophobic cavity of the beta-barrel of the betaLG molecule below pH 7 and flipping to open the cavity above pH 7. To clarify the dynamics of this conformational change, NMR measurements were made at neutral pH. Since severe signal broadening due to monomer-dimer equilibrium prevented NMR measurements of wild-type betaLG at neutral pH, we searched for optimal sample conditions, finding that a disulfide bond-linked dimer of the mutant A34C gives an HSQC spectrum without signal broadening. The HSQC and CD spectra indicated that in overall conformation A34C is similar to wild-type betaLG, suggesting that the A34C dimer is a good model with which to study the structure and dynamics of the wild-type at neutral pH. The pH-dependent HSQC signal changes and Lipari-Szabo type relaxation analyses of the A34C dimer revealed that the conformational change to the EF-loop occurs above pH 7. We observed two types of motions in the EF-loop region; relatively fast (micro- to milliseconds) and slow (milliseconds or slower) conformational exchanges of the residues located in the hinge and top of the EF-loop regions, respectively. Furthermore, the GH-loop adjacent to the EF-loop exhibited conformational change at a pH slightly lower than that at which the EF-loop motions occurred. From these observations, we propose a three-step mechanism of conformational change in the EF-loop leading to the Tanford transition, in which the GH-loop conformational change, the cleavage of the hydrogen bonds at the hinge, and the flip of the EF-loop occur sequentially.  相似文献   

7.
The heat activation of bacterial spores was studied by means of differential thermal analysis in the temperature range 30-110 degrees C using the spores of Bacillus cereus. The thermogram showed three endothermic peaks at 56, 95, and 103 degrees C with one exothermic peak at 105 degrees C during the heating process. The spore coat separated from the native spores also showed a peak at 56 degrees C on its heating thermogram. The peak at 56 degrees C was reversible for both native spores and the spore coat. It was suggested that this peak at 56 degrees C might be related to the heat-activation process that takes place in the spore-coat region. It seems that the peak is due to the denaturation or the structural change of the spore-coat protein that might facilitate either the permeation of germination stimulators or the release of some germination inhibitor into or out of the spores.  相似文献   

8.
The possible structure of lipophorin in insect blood (hemolymph) was investigated by differential scanning calorimetry (DSC) and 13C nuclear magnetic relaxation studies. The DSC heating curves of intact lipophorins showed endothermic peaks between -3 and 40 degrees C for lipophorins which contain hydrocarbons, whereas no such peaks were observed for lipophorins which do not contain this lipid. Hydrocarbon fractions isolated from the lipophorins showed endothermic peaks similar to those obtained from intact lipophorin in terms of the transition temperatures, the shapes, and the enthalpy changes. 13C spin lattice relaxation times of the (CH2)n resonance of hydrocarbons of intact lipophorin were measured as a function of temperature and revealed that the motions of hydrocarbon chains changed coincidentally with the onset and offset of phase transition. These data suggest the presence of a hydrocarbon-rich region within the lipophorin particles.  相似文献   

9.
Conformation, acid-induced conformational changes and stability of the murine monoclonal antibody CB4-1 directed against the human immunodeficiency virus type 1 capsid protein p24, and its Fab and Fc fragments, were analysed by circular dichroism (CD), fluorescence, and differential scanning calorimetry (DSC) measurements. CD spectra show the characteristics expected for beta-proteins. Lowering the pH to 3.5 reduces the stability, but does not change the conformation. Between pH 3.5 and 2.0 conformational changes and the formation of new structures are indicated. Deconvolution of the bimodal DSC curves of CB4-1 reveals five 'two-state' transitions at pH 7.5. At pH 5 and below, only four transitions are found. Half transition temperatures Tm and molar enthalpy changes DeltaHm gradually decrease at pH 4 and 3.4. At pH 2.1, two low-temperature (Tm=36.9 and 44.1 degrees C) and two high-temperature (Tm=74.6 and 76.8 degrees C) transitions are identified. The Fab and Fc fragments behave similarly. Deconvolution of their monophasic DSC curves yields two 'two-state' transitions for each fragment. Tm and DeltaHm values gradually decrease at pH 4.0 and 3.4; and at pH 2.1 and 2.8 for Fab and Fc, respectively, one of the transitions is found at high temperature (Tm=67.2 and 75.9 degrees C for Fab and Fc, respectively).  相似文献   

10.
Circular dichroism (CD), fluorescence, and differential scanning calorimetry (DSC) were used to investigate the thermal conformational change associated with the activity loss of spinach Rubisco. CD and intrinsic fluorescence demonstrated a three stage thermal unfolding of Rubisco. At 25-45 degrees C, the secondary structure did not change but the tertiary and/or quaternary structure changed obviously with increased temperature. In 45-60 degrees C, the secondary structure showed much change with increased temperature and the tertiary and/or quaternary structure changed much faster. Over 60 degrees C, whole conformation changed abruptly with increased temperature and finally unfolded completely. DSC, CD and activity assays after annealing showed that the conformational change and the activity loss of Rubisco were completely reversible if the heating temperature was below 45 degrees C, partly reversible between 45 and 60 degrees C, and irreversible beyond 60 degrees C.  相似文献   

11.
The melting curves of 11 vegetable oils have been characterised. Vegetable oil samples that were cooled at a constant rate (5 degrees C/min) from the melt showed between one and seven melting endotherms upon heating at four different heating rates (1, 5, 10 and 20 degrees C/min) in a differential scanning calorimeter (DSC). Triacylglycerol (TAG) profiles and iodine value analyses were used to complement the DSC data. Generally, the melting transition temperature shifted to higher values with increased rates of heating. The breadth of the melting endotherm and the area under the melting peak also increased with increasing heating rate. Although the number of endothermic peaks was dependent on heating rate, the melting curves of the oil samples were not straightforward in that there was no correlation between the number of endothermic peaks and heating rates. Multiple melting behaviour in DSC experiments with different heating rates could be explained by: (1) the melting of TAG populations with different melting points; and (2) TAG crystal reorganisation effects. On the basis of the corollary results obtained, vegetable oils and fats may be distinguished from their offset-temperature (Toff) values in the DSC melting curves. The results showed that Toff values of all oil samples were significantly (p < 0.01) different in the melting curves scanned at four different scanning rates. These calorimetric results indicate that DSC is a valuable technique for studying vegetable oils.  相似文献   

12.
Zhang X  Keiderling TA 《Biochemistry》2006,45(27):8444-8452
Bovine beta-lactoglobulin (betaLG) provides an excellent model protein system for beta-to-alpha conformational change, but its behavior varies when the change is induced by alcohols, surfactants, or lipid vesicles. Here the interaction and orientation of betaLG in association with various artificial lipid vesicles at neutral and acidic pH have been studied by use of several complementary spectroscopic techniques. Circular dichroism (CD) and Fourier transform infrared (FTIR) spectra demonstrated that betaLG acquires a non-native alpha-helical structure upon binding with anionic lipids, while zwitterionic lipids do not have a significant effect on its conformation. The degree of induced alpha-helix depends on the lipid concentration and is strongly affected by the charge of the protein and lipids as well as the ionic strength of the solution. Near-UV CD and Trp emission spectra revealed that the tertiary structure of lipid-bound betaLG is highly expanded but not completely disrupted. Fluorescence quenching together with a Trp emission blue shift showed that the Trp residues remain largely shielded from the solvent when interacting with DMPG, which would be consistent with at least some portions of betaLG having been inserted into the lipid membrane. The orientations of the alpha-helix and beta-sheet axes in membrane-bound betaLG were found to be parallel and perpendicular, respectively, to the membrane film normal, as determined by use of polarized attenuated total reflection (ATR) FTIR spectra. Our findings reveal that the lipid-induced beta-to-alpha transition in betaLG, accompanied by a substantial disruption in tertiary structure, is mainly driven by strong electrostatic interactions. Once the tightly packed betaLG is disrupted, hydrophobic residues become exposed and available for insertion into the lipid bilayer, where hydrophobic interaction with the lipids may play a role in stabilizing the helical components.  相似文献   

13.
Zaiss K  Jaenicke R 《Biochemistry》1999,38(14):4633-4639
The folding of phosphoglycerate kinase (PGK) from the hyperthermophilic bacterium Thermotoga maritima and its isolated N- and C-terminal domains (N1/2 and C1/2) was characterized by differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy. At pH 3.0-4.0, reversible thermal denaturation of TmPGK occurred below 90 degrees C. The corresponding peaks in the partial molar heat capacity function were fitted by a four-state model, describing three well-defined unfolding transitions. Using CD spectroscopy, these are ascribed to the disruption of the domain interactions and subsequent sequential unfolding of the two domains. The isolated N-terminal domain unfolds reversibly between pH 3.0 and pH 4.0 to >90% and at pH 7.0 to about 70%. In contrast, the isolated engineered C-terminal domain only shows reversible thermal denaturation between pH 3.0 and pH 3.5. Neither N1/2 nor C1/2 obeys the simple two-state mechanism of unfolding. Instead, both unfold via a partially structured intermediate. In the case of N1/2, the intermediate exhibits native secondary structure and perturbed tertiary structure, whereas for C1/2 the intermediate could not be defined with certainty.  相似文献   

14.
The effects of pH and temperature on the stability of interdomain interactions of colicin B have been studied by differential-scanning calorimetry, circular dichroism, and fluorescence spectroscopy. The calorimetric properties were compared with those of the isolated pore-forming fragment. The unfolding profile of the full-length toxin is consistent with two endothermic transitions. Whereas peak A (T(m) = 55 degrees C) most likely corresponds to the receptor/translocation domain, peak B (T(m) = 59 degrees C) is associated with the pore-forming domain. By lowering the pH from 7 to 3.5, the transition temperature of peaks A and B are reduced by 25 and 18 degrees C, respectively, due to proton exchange upon denaturation. The isolated pore-forming fragment unfolds at much higher temperatures (T(m) = 65 degrees C) and is stable throughout a wide pH range, indicating that intramolecular interactions between the different colicin B domains result in a less stable protein conformation. In aqueous solution circular dichroism spectra have been used to estimate the content of helical secondary structure of colicin B ( approximately 40%) or its pore-forming fragment ( approximately 80%). Upon heating, the ellipticities at 222 nm strongly decrease at the transition temperature. In the presence of lipid vesicles the differential-scanning calorimetry profiles of the pore-forming fragment exhibit a low heat of transition multicomponent structure. The heat of transition of membrane-associated colicin B (T(m) = 54 degrees C at pH 3.5) is reduced and its secondary structure is conserved even at intermediate temperatures indicating incomplete unfolding due to strong protein-lipid interactions.  相似文献   

15.
Temperature and pH effects were studied for stability, structural organization, fluidity and permeability of vesicles from a polar lipid methanol fraction isolated from the Aeropyrum pernix. We determined the permeability of C25,25 liposomes using fluorescence intensity of released calcein. At pH 7.0 and 9.0, and from 85 °C to 98 °C, only 10% of entrapped calcein was released. After 10 h at 90 °C, calcein release reached 27%, independent of pH. Fluorescence anisotropy measurements of hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene revealed gradual changes up to 60 °C. At higher temperatures, the anisotropy did not change significantly. Fluorescence alone did not provide detailed and direct structural information about these C25,25 liposomes, so we used electron paramagnetic resonance spectroscopy (EPR) and differential scanning calorimetry (DSC). From EPR spectra, mean membrane fluidity determined according to maximal hyperfine splitting and empirical correlation times showed continuous increases with temperature. Computer simulation of EPR spectra showed heterogeneous membranes of these C25,25 liposomes: at low temperatures, they showed three types of membrane regions characterized by different motional modes. Above 65 °C, the membrane becomes homogeneous with only one fluid-like region. DSC thermograms of C25,25 liposomes reveal a very broad and endothermic transition in the temperature range from 0 °C to 40 °C.  相似文献   

16.
Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the structural and thermal properties of totally synthetic D-erythro-N-palmitoyl-lactosyl-C(18)-sphingosine (C16:0-LacCer). Over the temperature range 0-90 degrees C, fully hydrated C16:0-LacCer shows complex thermal transitions characteristic of polymorphic behavior of exclusively bilayer phases. On heating at 5 degrees C/min, hydrated C16:0-LacCer undergoes a complex two-peak endothermic transition with maxima at 69 degrees C and 74 degrees C and a total enthalpy of 14.6 kcal/mol C16:0-LacCer. At a slower heating rate (1.5 degrees C/min), two endothermic transitions are observed at 66 degrees C and 78 degrees C. After cooling to 0 degrees C, the subsequent heating run shows three overlapping endothermic transitions at 66 degrees C, 69 degrees C, and 71.5 degrees C, followed by a chain-melting endothermic transition at 78 degrees C. Two thermal protocols were used to completely convert C16:0-LacCer to its stable, high melting temperature (78 degrees C) form. As revealed by x-ray diffraction, over the temperature range 20-78 degrees C this stable phase exhibits a bilayer structure, periodicity d approximately 65 A with an ordered chain packing mode. At the phase transition (78 degrees C) chain melting occurs, and C16:0-LacCer converts to a liquid crystalline bilayer (L(alpha)) phase of reduced periodicity d approximately 59 A. On cooling from the L(alpha) phase, C16:0-LacCer converts to metastable bilayer phases undergoing transitions at 66-72 degrees C. These studies allow comparisons to be made with the behavior of the corresponding C16:0-Cer (. J. Lipid Res. 36:1936-1944) and C16:0-GluCer and C16:0-GalCer (. J. Lipid Res. 40:839-849). Our systematic studies are aimed at understanding the role of oligosaccharide complexity in regulating glycosphingolipid structure and properties.  相似文献   

17.
Two kinds of calcium-dimyristoylphosphatidic acid (DMPA) complexes at acidic and neutral pH conditions were prepared in the following ways. The complex at pH 4 was obtained by adding Ca2+ to DMPA dispersion in pure water. On the other hand, the complex at pH 7.4 was obtained by adding Ca2+ to DMPA dispersion in the presence of NaOH. The stoichiometries of Ca2+ ion to DMPA molecule are 0.5-0.67 and approximately 1 for the complexes at pH 4 and 7.4, respectively. Static x-ray diffraction shows that the hydrocarbon chains of the Ca(2+)-DMPA complex at pH 4 at 20 degrees C are more tightly packed than those of the complex at pH 7.4 at 20 degrees C. Furthermore, the complex at pH 4 at 20 degrees C gives rise to several reflections that might be related to the ordered arrangement of the Ca2+ ions. These results indicate that the structure of the complex at pH 4 is crystalline-like. In the differential scanning calorimetry (DSC) thermogram, the complex at pH 7.4 undergoes no phase transition in a temperature range between 30 and 80 degrees C. On the other hand, in the DSC thermogram for the complex at pH 4, a peak appears at 65.8 degrees C in the first heating scan. In the successive second heating scan, a transition peak appears at 63.5 degrees C. In connection with the DSC results, the structural changes associated with these phase transitions were studied with temperature-scan x-ray diffraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The circular dichroic (CD) spectra of a type lambda Bence Jones protein (Tod), its variable (VL) fragment, and the constant (CL) fragment of a type lambda protein (Nag) were measured under various conditions. In the pH region from 5.5 to 7.5, the CD spectra of Tod protein with intact interchain disulfide bond (L(SS)) and and CL did not change with pH, while the spectra of Tod protein in which the interchain disulfide bond had been reduced and alkylated (L(RA)) and VL did not change with pH. The dimerization reactions of L(RA) and VL were studied by following the CD change with protein concentration. The CD spectrum of CL did not change with the protein concentration. The dimerization constant for L(RA) was 4 X 10(4) M-1 at at pH 7.5 and 25 degrees C, which was smaller than that for VL (1 X 10(5) M-1). The ellipticity at 278 nm for the L(RA) dimer was different from that for the L(SS) dimer and changed with pH. These findings indicate that the L(RA) dimer and L(SS) dimer have different conformations. The differences in the conformation and L-L interaction between the L(RA) dimer and L(SS) dimer are discussed on the basis of the conformations of VL and CL and the interactions between the paired domains.  相似文献   

19.
The in vitro heat effect on protein characteristics of thermostable enzyme was examined using a cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) from the hyperthermophilic archaeon Thermococcus sp. B1001 as a model protein. The recombinant form of CGTase was obtained as an inclusion body from Escherichia coli cells harboring a plasmid which carried the B1001 CGTase gene (cgtA). CGTase was solubilized by 6 M urea, refolded, purified to homogeneity, and heat treated at 80 degrees C for 20 min. Enzyme characteristics were examined compared with those of unheated CGTase. Cyclization activity was increased by in vitro heat treatment, while hydrolysis activity was decreased. The heated and unheated CGTases were analyzed for structures by circular dichroism (CD). The near- and far-UV CD spectra indicated that the structure of unheated CGTase with low cyclization activity was different from that of heated CGTase with high activity. Differential scanning calorimetry of unheated CGTase showed two absorption peaks at 87 and 106 degrees C with increasing temperature. After heat treatment, the minor peak at 87 degrees C disappeared, suggesting that heat-dependent structural conversion occurred in CGTase. These results indicate that the thermal environment plays an important role for the protein folding process of thermostable CGTase.  相似文献   

20.
The heat resistance of Campylobacter jejuni strains AR6 and L51 and the heat resistance of Campylobacter coli strains DR4 and L6 were measured over the temperature range from 50 to 60 degrees C by two methods. Isothermal measurements yielded D55 values in the range from 4.6 to 6.6 min and z values in the range from 5.5 to 6.3 degrees C. Dynamic measurements using differential scanning calorimetry (DSC) during heating at a rate of 10 degrees C/min yielded D55 values of 2.5 min and 3.4 min and z values of 6.3 degrees C and 6.5 degrees C for AR6 and DR4, respectively. Both dynamic and isothermal methods yielded mean D55 values that were substantially greater than those reported previously (0.75 to 0.95 min). DSC analysis of each strain during heating at a rate of 10 degrees C/min yielded a complex series of overlapping endothermic peaks, which were assigned to cell wall lipids, ribosomes, and DNA. Measurement of the decline in the numbers of CFU in calorimetric samples as they were heated showed that the maximum rate of cell death occurred at 56 to 57 degrees C, which is close to the value predicted mathematically from the isothermal measurements of D and z (61 degrees C). Both estimates were very close to the peak m1 values, 60 to 62 degrees C, which were tentatively identified with unfolding of the 30S ribosome subunit, showing that cell death in C. jejuni and C. coli coincided with unfolding of the most thermally labile regions of the ribosome. Other measurements indicated that several essential proteins, including the alpha and beta subunits of RNA polymerase, might also unfold at the same time and contribute to cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号