首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Given the central role of DNA in life, and how ageing can be seen as the gradual and irreversible breakdown of living systems, the idea that damage to the DNA is the crucial cause of ageing remains a powerful one. DNA damage and mutations of different types clearly accumulate with age in mammalian tissues. Human progeroid syndromes resulting in what appears to be accelerated ageing have been linked to defects in DNA repair or processing, suggesting that elevated levels of DNA damage can accelerate physiological decline and the development of age-related diseases not limited to cancer. Higher DNA damage may trigger cellular signalling pathways, such as apoptosis, that result in a faster depletion of stem cells, which in turn contributes to accelerated ageing. Genetic manipulations of DNA repair pathways in mice further strengthen this view and also indicate that disruption of specific pathways, such as nucleotide excision repair and non-homologous end joining, is more strongly associated with premature ageing phenotypes. Delaying ageing in mice by decreasing levels of DNA damage, however, has not been achieved yet, perhaps due to the complexity inherent to DNA repair and DNA damage response pathways. Another open question is whether DNA repair optimization is involved in the evolution of species longevity, and we suggest that the way cells from different organisms respond to DNA damage may be crucial in species differences in ageing. Taken together, the data suggest a major role of DNA damage in the modulation of longevity, possibly through effects on cell dysfunction and loss, although understanding how to modify DNA damage repair and response systems to delay ageing remains a crucial challenge.  相似文献   

4.
5.
6.
DNA repair and protection processes impose arduous demands upon cellular systems. The high-fidelity recombinational repair pathway entails a rapid genome-wide search for sequence homology. The efficiency of this transaction is intriguing in light of the uniquely adverse diffusion traits of the involved species. DNA protection in cells exposed to continuous stress or prolonged starvation is equally enigmatic, because the ability of such cells to deploy energy-dependent enzymatic repair processes is hampered as a result of progressive perturbation of the intracellular energy balance. DNA repair in radio-resistant bacteria, which involves accurate chromosome reconstruction from multiple fragments, is similarly associated with apparently insurmountable logistical obstacles. The studies reviewed here imply that the mechanisms deployed to overcome these intrinsic hurdles have a basic common denominator. In all these cases, condensed and ordered chromatin assemblies are formed, within which molecular diffusion is restricted and confined. Restricted diffusion thus appears as a general strategy that is exploited by nature to facilitate homologous search, to promote energy-independent DNA protection through physical DNA sequestration and attenuated accessibility to damaging agents, and to enable error-free repair of multiple double-strand DNA breaks.  相似文献   

7.
Ionizing radiation and interstrand DNA crosslinking compounds provide important treatments against cancer due to their extreme genotoxicity for proliferating cells. Both the efficacies of such treatments and the mutagenic potential of these agents are modulated by the ability of cells to repair the inflicted DNA damage. Here we demonstrate that homologous recombination-deficient mRAD54(-/-) mice are hypersensitive to ionizing radiation at the embryonic but, unexpectedly, not at the adult stage. However, at the adult stage mRAD54 deficiency dramatically aggravates the ionizing radiation sensitivity of severe combined immune deficiency (scid) mice that are impaired in DNA double-strand break repair through DNA end-joining. In contrast, regardless of developmental stage, mRAD54(-/-) mice are hypersensitive to the interstrand DNA crosslinking compound mitomycin C. These results demonstrate that the two major DNA double-strand break repair pathways in mammals have overlapping as well as specialized roles, and that the relative contribution of these pathways towards repair of ionizing radiation-induced DNA damage changes during development of the animal.  相似文献   

8.
Faithful repair of DNA double-strand breaks (DSBs) is vital for animal development, as inappropriate repair can cause gross chromosomal alterations that result in cellular dysfunction, ultimately leading to cancer, or cell death. Correct processing of DSBs is not only essential for maintaining genomic integrity, but is also required in developmental programs, such as gametogenesis, in which DSBs are deliberately generated. Accordingly, DSB repair deficiencies are associated with various developmental disorders including cancer predisposition and infertility. To avoid this threat, cells are equipped with an elaborate and evolutionarily well-conserved network of DSB repair pathways. In recent years, Caenorhabditis elegans has become a successful model system in which to study DSB repair, leading to important insights in this process during animal development. This review will discuss the major contributions and recent progress in the C. elegans field to elucidate the complex networks involved in DSB repair, the impact of which extends well beyond the nematode phylum.  相似文献   

9.
Cell inactivation by heavy charged particles   总被引:4,自引:0,他引:4  
The inactivation of cells resulting in lethal or aberrant effects by charged particles is of growing interest. Charged particles at extremely high LET are capable of completely eliminating cell-type and cell-line differences in repair capacity. It is still not clear however whether the repair systems are inactivated, or merely that heavy-ion lesions are less repairable. Studies correlating the particle inactivation dose of radioresistant cells with intact DNA analyzed with pulse field gel electrophoresis and other techniques may be useful, but more experiments are also needed to assess the fidelity of repair. For particle irradiations between 40-100 keV/microns there is however evidence for particle-induced activation of specific genes in mammalian cells, and certain repair processes in bacteria. New data are available on the inactivation of developmental processes in several systems including seeds, and cells of the nematode C. elegans. Future experimental and theoretical modeling research emphasis should focus on exploring particle-induced inactivation of endpoints assessing functionality and not just lethality, and on analyzing molecular damage and genetic effects arising in damaged but non-inactivated survivors. The discrete nature of selective types of particle damage as a function of radiation quality indicates the value of accelerated ions as probes of normal and aberrant biological processes. Information obtained from molecular analyses of damage and repair must however be integrated into the context of cellular and tissue functions of the organism.  相似文献   

10.
Clejan I  Boerckel J  Ahmed S 《Genetics》2006,173(3):1301-1317
Homologous recombination and nonhomologous end joining (NHEJ) are important DNA double-strand break repair pathways in many organisms. C. elegans strains harboring mutations in the cku-70, cku-80, or lig-4 NHEJ genes displayed multiple developmental abnormalities in response to radiation-induced DNA damage in noncycling somatic cells. These phenotypes did not result from S-phase, DNA damage, or mitotic checkpoints, apoptosis, or stress response pathways that regulate dauer formation. However, an additional defect in him-10, a kinetochore component, synergized with NHEJ mutations for the radiation-induced developmental phenotypes, suggesting that they may be triggered by mis-segregation of chromosome fragments. Although NHEJ was an important DNA repair pathway for noncycling somatic cells in C. elegans, homologous recombination was used to repair radiation-induced DNA damage in cycling somatic cells and in germ cells at all times. Noncycling germ cells that depended on homologous recombination underwent cell cycle arrest in G2, whereas noncycling somatic cells that depended on NHEJ arrested in G1, suggesting that cell cycle phase may modulate DNA repair during development. We conclude that error-prone NHEJ plays little or no role in DNA repair in C. elegans germ cells, possibly ensuring homology-based double-strand break repair and transmission of a stable genome from one generation to the next.  相似文献   

11.
12.
Repair of bulky DNA lesions deriving from polycyclic aromatic hydrocarbons   总被引:1,自引:0,他引:1  
Genomic DNA is damaged by a variety of factors exerting an adverse effect on human health, such as environmental pollution, UV light, ionizing radiation, and toxic compounds. Air pollution with products of incomplete combustion of hydrocarbon fuels and wastes of various industries are main sources of polycyclic aromatic hydrocarbons, whose metabolites can damage DNA by forming bulky DNA adducts, which potentially lead to mutations and cancer. Nucleotide excision repair is the main pathway that eliminates these lesions in eukaryotic cells. The excision efficiency of bulky adducts depends on many factors, including the structure of a bulky substituent and the degree of DNA double helix distortion induced by a lesion. Clustered DNA lesions are the most dangerous for the cell. Several DNA repair systems cooperate to recognize and remove such lesions. The review focuses on the mechanisms that repair DNA with single and clustered bulky lesions, taking the natural carcinogen benzo[a]pyrene as an example.  相似文献   

13.
DNA repair in Mycobacterium tuberculosis revisited   总被引:1,自引:1,他引:0  
Our understanding of Mycobacterium tuberculosis DNA repair mechanisms is still poor compared with that of other bacterial organisms. However, the publication of the first complete M. tuberculosis genome sequence 10 years ago boosted the study of DNA repair systems in this organism. A first step in the elucidation of M. tuberculosis DNA repair mechanisms was taken by Mizrahi and Andersen, who identified homologs of genes involved in the reversal or repair of DNA damage in Escherichia coli and related organisms. Genes required for nucleotide excision repair, base excision repair, recombination, and SOS repair and mutagenesis were identified. Notably, no homologs of genes involved in mismatch repair were identified. Novel characteristics of the M. tuberculosis DNA repair machinery have been found over the last decade, such as nonhomologous end joining, the presence of Mpg, ERCC3 and Hlr – proteins previously presumed to be produced exclusively in mammalian cells – and the recently discovered bifunctional dCTP deaminase:dUTPase. The study of these systems is important to develop therapeutic agents that can counteract M. tuberculosis evolutionary changes and to prevent adaptive events resulting in antibiotic resistance. This review summarizes our current understanding of the M. tuberculosis DNA repair system.  相似文献   

14.
Franco S  Alt FW  Manis JP 《DNA Repair》2006,5(9-10):1030-1041
Guarding the genome against internal and external assaults requires the coordinated interaction of multiple cellular networks to sense, respond to, and repair breaks in chromosomal DNA. Both external factors such as ionizing radiation or internal events like oxidative damage can cause DNA double stranded breaks (DSBs). DSBs are also part of the normal lymphocyte developmental program where they are an integral element of the mechanisms that generate a diverse immune repertoire in the context of V(D)J and immunoglobulin heavy chain (IgH) class switch recombination (CSR). DSBs initiate a cascade of cellular events that direct cells to pause and properly repair potentially lethal chromosomal breaks. Errors in the repair of both general and lymphocyte-specific DSBs can lead to oncogenic chromosomal translocations . Here, we review recent advances in understanding factors and protein complexes involved in the response to DNA DSBs with a focus on the B lymphocyte specific process of CSR.  相似文献   

15.
In response to DNA damage, cells activate checkpoint signaling cascades to control cell-cycle progression and elicit DNA repair in order to maintain genomic integrity. The sensing and repair of lesions is critical for Bacillus subtilis cells entering the developmental process of sporulation as damaged DNA may prevent the cells from completing spore morphogenesis. We report the identification of the protein DisA (DNA integrity scanning protein, annotated YacK), which is required to delay the initiation of sporulation in response to chromosomal damage. DisA is a nonspecific DNA binding protein that forms a single focus, which moves rapidly within the bacterial cell, pausing at sites of DNA damage. We propose that the DisA focus scans along the chromosomes searching for lesions. Upon encountering a lesion, DisA delays entry into sporulation until the damage is repaired.  相似文献   

16.
We have examined the suitability of the continuous rat hepatoma cell line 2sFou for testing the genotoxicity of chemicals in comparison with that of primary rat hepatocyte cultures (HPC). The capacity of the cells for metabolic activation was assessed by measuring induction of DNA-repair synthesis and inhibition of replicative DNA synthesis by the test compounds dimethylnitrosamine (DMN), diethylnitrosamine (DEN), hydroxyurea (HU) and benzo[a]pyrene (BaP), which are substrates for major hepatic and extrahepatic forms of cytochrome P-450 dependent monooxygenases. The cellular capacity for DNA-repair synthesis was assessed using UV-light as a DNA-damaging agent. Repair-specific incorporation of [3H]deoxycytidine (3H-dCyd) caused by UV-light was higher in 2sFou cells than in HPC. In contrast, background repair incorporation of 3H-dCyd in 2sFou cells was only 1/3 that found in HPC. All the test agents induced DNA repair and inhibited DNA synthesis in both 2sFou cells and HPC. The two nitrosamines were more effective in HPC than in 2sFou cells. HU and BaP affected DNA repair and DNA synthesis in the two cell systems at a similar range of concentrations. In general, DNA repair in the 2sFou cells increased near linearly with the concentrations of the test compounds. The data indicate that 2sFou cells are capable of activating hepatotropic pro-mutagens/carcinogens such as dialkylnitrosamines, and are sensitive indicators of DNA damage. In contrast, BaP, a non-hepatotoxic compound, caused only little DNA repair in these cells. Thus, continuously growing cells, such as 2sFou, show a qualitatively similar response to genotoxic chemicals as HPC and offer a potential alternative to HPC for genotoxicity testing.  相似文献   

17.
The defenses against free radical damage include specialized repair enzymes that correct oxidative damage in DNA and detoxification systems such as superoxide dismutases (SODs). These defenses may be coordinated genetically as global responses. We hypothesized that the expression of SOD and DNA repair genes would inhibit DNA damage under oxidative stress. Therefore, protection of Escherichia coli mutants deficient in SOD and DNA repair genes (sod-, xth-, and nfo-) was demonstrated by transforming the mutant strain with a plasmid pYK9 that encoded Photobacterium leiognathi CuZnSOD and human AP endonuclease. The results show that survival rates were increased in sod+ xth- nfo+ cells compared with sod- xth- ape-, sod- xth- ape-, and sod+ xth- ape- cells under oxidative stress generated with 0.1 mM paraquat or 3 mM H2O2. The data suggest that, at the least, SOD and DNA repair enzymes may collaborate on protection and repair of damaged DNA. Additionally, both enzymes are required for protection against free radicals.  相似文献   

18.
DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells.  相似文献   

19.
Enzymatic studies of DNA repair in Drosophila melanogaster   总被引:1,自引:0,他引:1  
Thus far, our studies in Drosophila have concentrated primarily on the various enzymes involved in the in vitro repair of modified or nonconventional DNA substrates. In some cases, our findings have led us to investigate events that may not have a bearing on DNA repair, but rather may be associated with developmental signals important to the maturation of the organism. As appealing as some of these models seem, however, they must await confirmation through detailed genetic studies before any substantial conclusions can be drawn. This combination of genetic and biochemical knowledge makes Drosophila an exciting organism for an eventual detailed understanding of the developmental expression and cellular location of DNA-repair systems.  相似文献   

20.
Fanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status. Senescence is a programme leading to proliferation arrest that is involved in different physiological contexts, such as embryogenesis, tissue remodelling and repair and guarantees tumour suppression activity. However, senescence can become a driving force for developmental abnormalities, aging and cancer. Herein, we summarise the current knowledge in the field to highlight the mutual relationships between FA and senescence that lead us to consider FA not only as a DNA repair and chromosome fragility syndrome but also as a “senescence syndrome”.Subject terms: Cancer genetics, Disease genetics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号