首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P. E. Hertz 《Oecologia》1992,90(1):127-136
Summary The field thermal biology of sympatric Anolis cooki and A. cristatellus were evaluated in January and in August in desert scrub forest at Playa de Tamarindo near Guanica, Puerto Rico. Data on randomly positioned copper models of lizards, each equipped with a built-in thermocouple, established null hypotheses about basking frequency and operative temperatures (T e) against which the behavior and body temperatures (T b) of live lizards were evaluated. Both species exhibited non-random hourly basking rates (more marked in cristatellus than in cooki), and cristatellus was virtually inactive during the warm mid-day hours. The relationship between lizards' T b and randomly sampled T e differed between the species: cristatellus's mean T b was 2° to 3° C lower than randomly sampled mean T e in both months, whereas cooki's mean T b was slightly higher than mean T e in January and slightly lower in August. Although cooki's mean T b was higher than that of cristatellus in both months, the T b's of the two species overlapped substantially over an annual cycle. Given the similarities in their field active T b and the low thermal heterogeneity among microsites at Playa de Tamarindo, these species appear not to partition the thermal environment there in a coarse-grained way. Instead, the relatively small differences in their field active T b probably result from small differences in their use of similar microhabitats within their mutually exclusive territories. Thermal resource partitioning by territorial animals is unlikely unless thermal heterogeneity is coarse-grained in relation to territory size.  相似文献   

2.
L. Clark 《Oecologia》1987,71(2):233-238
Summary The operative temperature of the environment was estimated for starlings using hollow, unheated taxidermic mounts. On average, adults foraging in full sun were characterized by shorter foraging bouts than those adults foraging in full shade. Simultaneous observations of air temperature, operative temperature, and the foraging duration of adults indicated that air temperature was a poor predictor of the maximum length of a foraging bout. The operative temperature of the environment was not correlated to the maximum and mean length of foraging bouts for temperatures below 31.5°C, but was negatively related to maximum and mean foraging duration for values above 31.5°C. I also found that foraging adults experiencing high thermal loads (T e31.5°C) were less likely to return to the nest with food. These results raise the possibility that adults may be limited in their utilization of foraging sites due to an inability to cope with heat load, and that much of the loafing behavior observed for breeding birds may be behavior to avoid heat stress. The implication for seasonal variation of clutch size is discussed.  相似文献   

3.
The oxygen consumption of European finches, the siskin (Carduelis spinus), the brambling (Fringilla montifringilla), the bullfinch (Pyrhulla pyrhulla), the greenfinch (Carduelis chloris) and the hawfinch (Coccothraustes coccothraustes), was recorded continuously while ambient temperature was decreased stepwise from +30 down to-75°C. The oxygen consumption, body temperature (telemetrically), and shivering (integrated pectoral electromyography) of greenfinches were measured simultaneously at ambient temperatures between +30 and-75°C. Maximum heat production, cold limit, lower critical temperature, basal metabolic rate and thermal conductance (of the greenfinch) were determined. The diurnal variation of oxygen consumption of siskins and greenfinches was recorded at thermoneutrality and below the thermoneutral zone in winter- and summer-acclimatized birds. The diurnal variation of body temperature and thermal conductance of greenfinches were also determined. The diurnal variation of heat production was not seasonal or temperature dependent in the siskin and in the greenfinch. Nocturnal reduction of oxygen consumption saved 15–33% energy in the siskin and greenfinch. Body temperature of the greenfinch was lowered by 2.5–3.4°C. The nocturnal reduction of thermal conductance in the greenfinch was 39–48%. The basal metabolic rate was lowest in the largest bird (hawfinch) and highest in the smallest bird (siskin). The values were in the expected range. The heat production capacity of finches in winter was 4.7 times basal metabolic rate in the siskin, 4.2 times in the brambling, 3.5 times in the greenfinch and 2.9 times in the bullfinch and hawfinch. The heat production capacity of the siskin and greenfinch was not significantly lower in summer. The cold limit temperatures (°C) in winter were-61.2 in the siskin,-41.3 in the greenfinch,-37.0 in the bullfinch,-35.7 in the brambling and-28.9 in the hawfinch. The cold limit was 14.3°C higher in summer than in winter in the siskin and 8.7°C in the greenfinch. Thermal insulation of the greenfinch was significantly better in winter than in summer. The shivering of the greenfinch increased linearly when ambient temperature was decreased down to-40°C. Maintenance of shivering was coincident with season. In severe cold integrated pectoral electromyography did not correlate with oxygen consumption as expected. The possible existence of non-shivering thermogenesis in birds is discussed. It is concluded that the acclimatization of European finches is primarily metabolic and only secondly affected by insulation.Abbreviations AAT avian adipose tissue - bm body mass - BMR basal metabolic rate - C t thermal conductance - EMG electromyogram - HP heat production - HP max maximum heat production - MR metabolic rate - NST non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - T a ambient temperature - T b body temperature - T c colonic temperature - T 1c lower critical temperature - TNZ thermoneutral zone - T st shivering threshold temperature - V oxygen consumption  相似文献   

4.
Summary Polar bears (Ursus maritimus) regulate their body temperatures both physiologically and behaviourally proportional to their level of activity while within the thermoneutral zone. Core temperatures (T c=36.9±0.5°C at rest) varied with the 4th power of walking speed for the two subadult (220 kg) bears tested, whereas subcutaneous temperatures (T sk=35.3±2.2°C at rest) were closely correlated withT c but also varied with wind speed (v a) and ambient temperature (T a). Radiative fur temperatures (T r) were closely correlated withT a and negligibly withT sk. Predictive equations for these temperature relationships were derived by regression analysis. Maximum rates of heat storage (S max) were above that predicted from the literature implying that the polar bear is an energetically costly walker. Radiative heat losses of a resting polar bear amount to between 36–67% of the metabolism and assuming a respiratory heat loss of 7–10%, convective heat losses (by difference) would thus range from 33–64%. When walking, the cooling of the fur surface by forced convection and the pendulum effect of the moving legs of the bear lead to estimated convective heat losses on the order of 75% of the heat production while radiative losses are reduced to 13–22%. Increasing wind speeds enhance further this reciprocal effect.  相似文献   

5.
Summary We measured meteorological conditions and estimated the energy costs of thermoregulation for young and adult Adélie Penguins (Pygoscelis adeliae) at a breeding colony near the Antarctic Peninsula. Air temperatures averaged < 5°C and strong winds were frequent. Operative temperatures (Te) for adults ranged from –8 to 28°C, averaging 5–6°C, for the period from courtship to fledging of chicks. The average energy cost of thermoregulation (Cth) for adult penguins was equivalent to 10–16% of basal metabolism. Cth comprised about 15% of the estimated daily energy budget (DEB) of incubating adults, but only about 1% of the DEB of adults feeding chicks. The Te's for chicks older than 14 days ranged from 0 to 31°C, averaging 8.0 C. The Cth for downy chicks ranged from about 31% of minimal metabolic rate (MMR) in 1 kg chicks to about 10% of MMR in 3 kg chicks. Between initial thermal independence (age 12–14 days) and the cessation of parental feeding (age 35–40 days), chicks use about 10–11% of assimilated energy for thermoregulation. Cth is equivalent to about 17% of the MMR of fledglings during their 2–3 week fast. We observed no indication of thermal stress (i.e., conditions in which birds cannot maintain stable Tb) in adults and no indication of cold stress in any age class. However, on clear, calm days when air temperature exceeds 7–10°C for several hours, downy chicks are vulnerable to lethal hyperthermia.  相似文献   

6.
Endotherms must warm ingested food to body temperature. Food warming costs may be especially high for nectar-feeding birds, which can ingest prodigious volumes. We formulated a mathematical model to predict the cost of warming nectar as a function of nectar temperature and sugar concentration. This model predicts that the cost of warming nectar should: (1) decrease as a power function of nectar concentration, and (2) increase linearly with the difference between body temperature and nectar temperature. We tested our model on rufous hummingbirds (Selasphorus rufus). A typical experiment consisted of feeding birds nectar of a given concentration at 39°C (equivalent to body temperature) and then at 4°C, and vice versa. We used the percentage change in metabolic rate between the two food temperatures to estimate the cost of warming nectar. The model's predictions were accurately met. When birds had to hover rather than perch during feeding bouts, estimated food-warming costs were only slightly lower. The cost of warming nectar to body temperature appears to be an important yet overlooked aspect of the energy budgets of nectar-feeding birds. Hummingbirds feeding on 5% sucrose solutions at 4oC have to increase their metabolic rate by an amount equivalent to that elicited by a 15°C drop in ambient temperature.Abbreviations AE assimilation efficiency - C nectar concentration - H' cost of warming food to body temperature - SDA specific dynamic action - Ta ambient temperature - Tb body temperature - Tn nectar temperatureCommunicated by: G. Heldmaier  相似文献   

7.
We examined the thermoregulatory behaviour (TRB) of roosting Humboldt penguins (Spheniscus humboldti) in north central Chile during summer and winter, when ambient temperatures (Ta) are most extreme. Each body posture was considered to represent a particular TRB, which was ranked in a sequence that reflected different degrees of thermal load and was assigned an arbitrary thermoregulatory score. During summer, birds exhibited eight different TRBs, mainly oriented to heat dissipation, and experienced a wide range of Ta (from 14 to 31°C), occasionally above their thermoneutral zone (TNZ, from 2 to 30°C), this being evident by observations of extreme thermoregulatory responses such as panting. In winter, birds exhibited only three TRBs, mainly oriented to heat retention, and experienced a smaller range of Ta (from 11 to 18°C), always within the TNZ, even at night. The components of behavioural responses increased directly with the heat load which explains the broader behavioural repertoire observed in summer. Since penguins are primarily adapted in morphology and physiology to cope with low water temperatures, our results suggest that behavioural thermoregulation may be important in the maintenance of the thermal balance in Humboldt penguins while on land.  相似文献   

8.
Thermoregulatory responses to egg cooling in incubating bantam hens   总被引:1,自引:1,他引:0  
Summary O2 consumption, electromyographic activity (EMG), heart rate (HR), cloacal temperature (T b) and broodpatch temperature (T sb) were measured in bantam hens incubating eggs of different temperatures (T e). For comparison, the metabolic response to low ambient temperature (T a) was measured in non-incubating hens.O2 consumption increased nearly linearly with decreasingT e down to 30°C. At this temperature O2 consumption was about 3.5 x the resting level. Below 30°C O2 consumption increased non-linearly, and reached 4.6 x the resting consumption at 15°C. Eggs of 10 and 0°C gave no further increase. Pectoral muscle EMG and HR also increased in response to egg cooling. The onset of egg cooling was associated with a decrease inT b andT sb. Hens exposed to lowT a showed a lower critical temperature of about 24°C.It is concluded that heat loss from the brood-patch during incubation of cold eggs is compensated by shivering thermogenesis. AtT e below 15°C heat production is at a maximum level, corresponding to the expected O2 consumption at exposure to an ambient temperature of –65°C.Abbrevations EMG electromyography - T a ambient temperature - T b cloacal temperature - T e egg temperature - T sb brood-patch skin temperature  相似文献   

9.
Summary During the month of February 1979, several hundred hatchling land iguanas (Conolophus pallidus) were observed emerging from their natal burrows in a 2 ha communal nesting area on Isla Santa Fe, Galapagos Islands. During this emergence, as many as nine Galapagos hawks were observed to patrol the nesting area and attack hatchling iguanas.The hypothesis that the ability of hatchling land iguanas to escape predation could be influenced by the interaction of the physiological state of the lizards and the thermal environment was analyzed using (1) empirical data on the effect of body temperature (T b) on locomotory ability of iguanas and (2) biophysical modeling of the T b's of hatchlings under natural conditions. This hypothesis was tested by assessing the success of natural hawk attacks on lizards exposed to different thermal environments.During those periods when predicted T b's of hatchlings were always <32°C, (at which temperatures land iguanas were shown to have less than maximal ability to sprint rapidly) hawks were successful in 67% of the observed attacks. However, when T b's of hatchlings were always 32° C, hawks were successful on only 19% of observed attacks. During periods when hatchling T b's could be <32° C or 32–40° C (depending upon which microhabitat the hatchling occupied before the attack), the hawks were successful in 46% of the observed attacks.These data indicate that the physical environment, as mediated through the physiological state of the lizards and to correlated locomotary abilities, significantly affects the ability of hatchling land iguanas to escape predation.  相似文献   

10.
Summary Behavioural activity, and core and surface temperatures of 4 unrestrained Galapagos fur seals were recorded in the natural habitat during their first weeks of life. Climatic variables were registered simultaneously. Pup behaviours were divided into bouts of resting (55% of total time), sucking (23%) and other activities (22%). Pups maintained a constant body temperature from their first day. Core temperature (T e ) was 37.7° C±0.3° C (x ± SD) over 39 pup-days and 8 pup-nights. Skin temperature was correlated with T c , but flipper temperature was not. No daily T c rhythm was detected. Microclimate data were used to calculate operative temperature T e . Environmental temperatures can be very high, with T e above T c 6–9 h a day for animals exposed to the sun, but below it in the shade. T c is about 22° C at night. Pups avoid overheating mainly by withdrawing into the shade and reducing activity to a minimum during the hot hours of the day. Sun-exposed pups could be active at any time during the day if they had access to water, which was usually around high tide.  相似文献   

11.
M. A. Chappell 《Oecologia》1981,49(3):397-403
Summary Body temperatures (T b) and daily activity patterns of free-living arctic ground squirrells (Spermophilus undulatus) were determined via telemetry at a field site in northern Alaska. Simultaneous measurements were made of ambient temperature (T a), wind speed (V), and incident solar radiation. The operative environmental temperature (T e) for ground squirrels was obtained from fur-covered, thin metal taxidermic models of the animals. Standard operative temperature (T es), a comparative index of heat flow, was calculated from T e, V, and laboratory measurements of thermal conductivity.During the period of the study (August), S. undulatus were active for about 14 h per day (06.00 to 20.00 h). T b was high throughout the daily cycle, averaging 38–39°C. Circadian variations in T b were slight; average T b values dropped <1°C at night. Daytime T b fluctuations were not closely correlated to activity or to changes in environmental conditions. Air temperatures during the study were low, usually between 10 and 15°C during the day. However, T es in exposed areas was normally higher, even though skies were generally overcast. During periods of sunshine, T es may be as high as 34°C. The absence of nocturnal activity may result from increased costs of thermoregulation at night, which sharply reduces foraging efficiency. The high and stable body temperatures of S. undulatus probably result from thermoneutral daytime T es, low activity levels, and the use of well-insulated nests.  相似文献   

12.
Thermoregulatory responses at ambient temperatures of 20 and 10° C in six male subjects wearing two different kinds of clothing were compared between summer and winter. The two different kinds of clothing were one insulating the upper half of the body lightly and the lower half of the body heavily (clothing A, the weight in the upper and lower halves of the body being, respectively, 489 g and 1278 g) and the other insulating the upper half of the body heavily and the lower half of the body lightly (clothing B: 1212 g and 559 g). The major findings are summarized as follow. (i) Rectal temperature was kept significantly higher in clothing B than in clothing A both in summer and winter. (ii) The fall of rectal temperature was significantly greater in summer than in winter in both types of clothing. (iii) Mean skin temperatures and skin temperatures in the face, chest, thigh and leg were significantly lower atT a of 10° C in summer than in winter in clothing A, while skin temperatures in the face and thigh were also significantly lower atT a of 10° C in summer than in winter in clothing B. (iv) Metabolic heat production was higher in summer than in winter at 20 and 10° C in both types of clothing. (v) The subjects felt cooler and colder toT a of 10° C in summer than in winter in both types of clothing. These different responses occurring between summer and winter are discussed mainly in terms of total conductance and dry heat loss.  相似文献   

13.
Basal metabolic rate (BMR) of birds is beginning to be viewed as a highly flexible physiological trait influenced by environmental fluctuations, and in particular changes in ambient temperatures (Ta). Southern Africa is characterized by an unpredictable environment with daily and seasonal variation. This study sought to evaluate the effects of seasonal changes in Ta on mass-specific resting metabolic rate (RMR), BMR and body temperature (Tb) of Red-winged Starlings (Onychognathus morio). They have a broad distribution, from Ethiopia to the Cape in South Africa and are medium-sized frugivorous birds. Metabolic rate (VO2) and Tb were measured in wild caught Red-winged Starlings after a period of summer and winter acclimatization in outdoor aviaries. RMR and BMR were significantly higher in winter than summer. Body mass of Starlings was significantly higher in winter compared with summer. The increased RMR and BMR in winter indicate improved ability to cope with cold and maintenance of a high Tb. These results show that the metabolism of Red-winged Starlings are not constant, but exhibit a pronounced seasonal phenotypic flexibility with maintenance of a high Tb.  相似文献   

14.
Timothy M. Casey 《Oecologia》1981,50(2):199-204
Summary Energy metabolism of brown lemmings in summer pelage was measured over long periods at several air temperatures, with and without a real nest or artificial nest material. Resting metabolism of lemmings at T a=-16°C was 43% higher than that of lemmings in nests. As T a increased, the difference between resting metabolism of animals with and without nests decreased and was similar at T a=20°C. The energy saved at rest is equivalent to a reduction of approximately 40% in the thermal conductance. Independent estimates of energy savings due to nest insulation by analysis of cooling curves of a lemming model with and without a nest suggest a 46% reduction in thermal conductance due to the nest. At T a=0°C, baby lemmings huddled in a nest had equilibrium temperature excesses (T b-T a) four to five times higher than isolated nestlings outside the nest. These data indicate that there is a substantial energy savings at ecologically relevant air temperatures, and that energy savings increase as T a decreases. If the insulative value of the nest is similar whether the animal is in summer or winter pelage, these data suggest that heat production of a resting lemming would be 0.88 W (about 1.6 times BMR), while in nests at subnivean air temperatures typical of Barrow, Alaska, during the winter.  相似文献   

15.
Heated taxidermic mounts of the gray squirrel were used to analyze the thermal environment of a small arboreal endotherm. Changes in the standard operative temperature (T es) calculated from the temperatures of heated and unheated mounts agreed well with the power consumption (M–E) of mounts on the ground and on the wind-ward side of a 48-cm diameter tree trunk. As wind speed (u) rose and sky solar radiation (Q r) decreased, the windward side of the tree trunk became an increasingly more stressful thermal environment than the leeward side of the trunk or the ground, producingM–E differences of more than 30%. Although theM–E of a ground mount and a limb mount 4 m in the air are dependent onQ ras well asu, the ratio of the two value ofM–E is independent ofQ r, poorly predicted byu and well predicted byu 1/2.  相似文献   

16.
Summary Body temperature (T b), oxygen consumption , thermal conductance (C) and evaporative water loss (EWL) were measured at various air temperatures (T a) in two starlings which evolved in the tropics: a migratory species from a temperate climate,Sturnus vulgaris, and a resident, desert species,Onychognathus tristrami (Aves, Passeriformes, Sturnidae).AtT a's of 4–35°C both birds hadT b of 40.6°C. At 44°C,T b ofSturnus was 45.8°C and that ofOnychognathus 43.3°C.T a of 44°C was tolerated only byOnychognathus. The thermoneutral zone (TNZ) ofSturnus was in theT a range of 29.5°C–36.5°C, that ofOnychognathus 21.5–36.5°C. ofSturnus within its TNZ (BMR) was 2.37 ml O2 g–1 h–1, which is close to the expected BMR; that ofOnychognathus, 1.67 ml O2 g–1 h–1, is only 74% of the expected. AtT a'sNZ,C ofSturnus was twice as high as that ofOnychognathus and 1.68 times the expected value, whereasC ofOnychognathus was only 94% of the expected. At highT a'sOnychognathus had higherC thanSturnus. At either low or highT a's EWL ofSturnus was greater than ofOnychognathus.The responses shown bySturnus are typical of a tropical bird living in a moderate environment. This indicates that neither in USSR where it spends the summer, nor in Israel where it spends the winter, is this starling exposed to extreme temperatures.Onychognathus is better adapted not only to high but also to the low temperatures prevailing in mountainous regions of the desert.Symbols and abbreviations BMR basal metabolic rate - C thermal conductance - EWL evaporative water loss - HE evaporative heat loss - HP heat production - TNZ thermoneutral zone  相似文献   

17.
Summary The effect of clustering behaviour on metabolism, body temperature, thermal conductance and evaporative water loss was investigated in speckled mousebirds at temperatures between 5 and 36°C. Within the thermal neutral zone (approximately 30–35 °C) basal metabolic rate of clusters of two birds (32.5 J·g-1·h-1) and four birds (28.5 J·g-1·h-1) was significantly lower by about 11% and 22%, respectively, than that of individuals (36.4 J·g-1·h-1). Similarly, below the lower critical temperature, the metabolism of clusters of two and four birds was about 14% and 31% lower, respectively, than for individual birds as a result of significantly lower total thermal conductance in clustered birds. Body temperature ranged from about 36 to 41°C and was positively correlated with ambient temperature in both individuals and clusters, but was less variable in clusters. Total evaporative water loss was similar in individuals and clusters and averaged 5–6% of body weight per day below 30°C in individuals and below 25°C in clusters. Above these temperatures total evaporative water loss increased and mousebirds could dissipate between 80 and 90% of their metabolic heat production at ambient temperatures between 36 and 39°C. Mousebirds not only clustered to sleep between sunset and sunrise but were also observed to cluster during the day, even at high ambient temperature. Whereas clustering at night and during cold, wet weather serves a thermoregulatory function, in that it allows the brrds to maintain body temperature at a reduced metabolic cost, clustering during the day is probably related to maintenance of social bonds within the flock.Abbreviations BMR basal metabolic rate - bw body weight - C totab total thermal conductance - EWI evaporative water loss - M metabolism - RH relative humidity - T a ambient temperature - T b body temperature - T ch chamber temperature - T cl cluster temperature - TEWL total evaporative water loss - LCT lower critical temperature - TNZ thermal neutral zone  相似文献   

18.
Summary Resting metabolic rates of Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) and pine siskins (Carduelis pinus) were evaluated at thermoneutral temperatures before and after administration of corticosterone (B) at physiological doses. There was no effect of B on basal metabolic rate of either species, but nocturnal metabolic rate varied significantly less over the 3-h period of measurement in B-treated sparrows and siskins than in control birds. These results, coupled with observations of caged birds, suggest that corticosterone has no direct effect on avian resting metabolism but does reduce the responsiveness of birds to external stimuli and thus promotes nocturnal restfulness.Abbreviations B corticosterone - VO 2 rate of oxygen consumption - T 3 tri-iodothyromine - T 4 tetra-iodothyronine, thyroxine  相似文献   

19.
Summary At low air temperatures (2.3–13.9°C), Wedge-tailed Shearwaters (Puffinus pacificus) shivered and their oxygen consumption increased to as much as 283% of the mean value (0.77 ml O2/g·h) within the thermoneutral zone of air temperature (23–34°C). The minimal thermal conductance of the tissues and plumage was similar to the value predicted from the body mass (320.5 g). The oxygen consumption of the birds within their thermoneutral zone was lower than predictions based on body mass. At elevated air temperatures, the shearwaters panted at respiratory frequencies as high as 260 respirations/min; maximal respiratory frequencies were not invoked until the birds had become hyperthermic. During exposure to a hot environment, the oxygen consumption of the birds increased and in most instances the shearwaters were not able to lose heat equivalent to their concurrent metabolic heat production.Symbols and abbreviations BMR basal metabolic rate - C total total thermal conductance - f respiratory frequency - TEWL total evaporative water loss - T st stomach temperature - T re rectal temperature  相似文献   

20.
A. Türk  W. Arnold 《Oecologia》1988,76(4):544-548
Summary The body temperature (T b) of free-living alpine marmots rose with activity; the higher the effective environmental temperature (T e), the higher the rise. Maximum T bof 40° C was reached at the time of greatest activity in late afternoon or evening. The activity pattern was strongly influenced by the microclimate. Up to an T eof 25° C the animals spent more time above ground and were more active the higher T ewas, but above 25° C this trend was reversed, and the animals withdrew increasingly into their burrows. On warm days the activity pattern was therefore bimodal and above ground presence was reduced, in contrast to cool days. Hence behavioural thermoregulation limits the available time for above ground activity on days with high T ein this strictly diurnal species. We suggest that the alpine marmots' preference for south oriented slopes is due to the better conditions for hibernation there, the microclimate during summer is more favourable on northerly slopes. Thermoregulatory constraints could also keep alpine marmots away from lower elevations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号