首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.

A net, leaf net CO2 assimilation
ca, CO2 concentration of air surrounding a leaf
ci, leaf intercellular CO2 concentration
Δ, 13C isotope discrimination
δ13C, relative stable carbon isotope content
?, ratio of Anet at ca = 560μmol mol–1 to Anet at ca = 360 μmol mol–1
FACE, free-air CO2 enrichment
gw, stomatal conductance to water vapour
Πi, initial leaf osmotic potential
Rt, relative water content at incipient turgor loss
Ψl, xylem water potential of leaves
Ψm, soil matric potential

Elevated CO2 is expected to reduce forest water use as a result of CO2-induced stomatal closure, which has implications for ecosystem-scale phenomena controlled by water availability. Leaf-level CO2 and H2O exchange responses and plant and soil water relations were examined in a maturing loblolly pine (Pinus taeda L.) stand in a free-air CO2 enrichment (FACE) experiment in North Carolina, USA to test if these parameters were affected by elevated CO2. Current-year foliage in the canopy was continuously exposed to elevated CO2 (ambient CO2+200μmol mol–1) in free-air during needle growth and development for up to 400 d. Photosynthesis in upper canopy foliage was stimulated by 50–60% by elevated CO2 compared with ambient controls. This enhancement was similar in current-year, ambient-grown foliage temporarily measured at elevated CO2 compared with long-term elevated CO2 grown foliage. Significant photosynthetic enhancement by CO2 was maintained over a range of conditions except during peak drought. There was no evidence of water savings in elevated CO2 plots in FACE compared to ambient plots under drought and non-drought conditions. This was supported by evidence from three independent measures. First, stomatal conductance was not significantly different in elevated CO2 versus ambient trees of P. taeda. Calculations of time-integrated ci/ca ratios from analysis of foliar δ13C showed that these ratios were maintained in foliage under elevated CO2. Second, soil moisture was not significantly different between ambient and elevated CO2 plots during drought. Third, pre-dawn and mid-day leaf water potentials were also unaffected by the seasonal CO2 exposure, as were tissue osmotic potentials and turgor loss points. Together the results strongly support the hypothesis that maturing P. taeda trees have low stomatal responsiveness to elevated CO2. Elevated CO2 effects on water relations in loblolly pine-dominated forest ecosystems may be absent or small apart from those mediated by leaf area. Large photosynthetic enhancements in the upper canopy of P. taeda by elevated CO2 indicate that this maturing forest may have a large carbon sequestration capacity with limiting water supply.  相似文献   

2.
A study was conducted in 21-year-old loblolly pine (Pinus taeda L.) trees growing in plantation in north central Georgia, USA. The experiment used branch chambers to impose treatments of ambient, ambient +165 and ambient + 330 μmol mol?1 CO2. After one growing season there was no indication of acclimation to elevated CO2. In August and September, carbon assimilation, measured by two different methods, was twice as high at ambient +330 μmol mol?1 CO2 than at ambient. Dark respiration was suppressed by 6% at ambient +165 and by 14% at ambient + 330 μmol mol?1 CO2. This suppression was immediate, and not an effect of exposure to elevated CO2 during growth, since respiration was reduced by the same amount in all treatments when measured at a high CO2 concentration. Elevated CO2 increased the growth of foliage and woody tissue. It also increased instantaneous transpiration efficiency, but it had no effect on stomatal conductance. Since the soil at the study site had low to moderate fertility, these results suggest that the growth potential of forests on many sites may be enhanced by global increases in atmospheric CO2, concentration.  相似文献   

3.
This study investigates effects of climate warming (+ 2.5°C ubove ambient) and elevated CO2 concentration (600 μmol mol?1) on the stomatal functioning and the water relations of Lolium perenne, using Free Air Temperature Increase (FATI) and Free Air CO2 Enrichment (FACE). Compared to growth at ambient temperature, whole-season temperature increase reduced leaf stomatal conductance, but only at the top of the canopy (-14.6 and -8.8% at ambient and elevated CO2, respectively). However, because higher canopy temperature raised the leaf-to-air vapour pressure difference, leaf transpiration rate increased (+28% at ambient and +48% at elevated CO2) and instantaneous leaf water use efficiency, derived from short-term measurements of assimilation and transpiration rate, declined (-11% at ambient and -13% at elevated CO2). Nevertheless, at the stand level, growth at + 2.5°C reduced transpiration due to fewer tillers per plant and a smaller leaf area per tiller. This sparser vegetation was also more closely coupled to the atmosphere and maintained a drier internal microclimate. To assess whether the stomatal behaviour observed in this experiment could be explained by prevailing concepts of stomatal functioning, three models were applied (Cowan 1977; Ball, Woodrow & Berry 1987; Leuning 1995). The latter model accounted for the highest proportion of variability in the data (58%) and was insensitive to CO2 and temperature regime, which suggests that the principles of stomatal regulation are not affected by changes in CO2 or climate.  相似文献   

4.
We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leaf‐ and stand‐level CO2 exchange in model 3‐year‐old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large‐scale, controlled environments of the Biosphere 2 Laboratory. A short‐term experiment was imposed on top of continuing, long‐term CO2 treatments (43 and 120 Pa), at the end of the growing season. For the experiment, the plantations were exposed for 6–14 days to low and high VPD (0.6 and 2.5 kPa) at low and high volumetric soil moisture contents (25–39%). When system gross CO2 assimilation was corrected for leaf area, system net CO2 exchange (SNCE), integrated daily SNCE, and system respiration increased in response to elevated CO2. The increases were mainly as a result of the larger leaf area developed during growth at high CO2, before the short‐term experiment; the observed decline in responses to SMS and high VPD treatments was partly because of leaf area reduction. Elevated CO2 ameliorated the gas exchange consequences of water stress at the stand level, in all treatments. The initial slope of light response curves of stand photosynthesis (efficiency of light use by the stand) increased in response to elevated CO2 under all treatments. Leaf‐level net CO2 assimilation rate and apparent quantum efficiency were consistently higher, and stomatal conductance and transpiration were significantly lower, under high CO2 in all soil moisture and VPD combinations (except for conductance and transpiration in high soil moisture, low VPD). Comparisons of leaf‐ and stand‐level gross CO2 exchange indicated that the limitation of assimilation because of canopy light environment (in well‐irrigated stands; ratio of leaf : stand=3.2–3.5) switched to a predominantly individual leaf limitation (because of stomatal closure) in response to water stress (leaf : stand=0.8–1.3). These observations enabled a good prediction of whole stand assimilation from leaf‐level data under water‐stressed conditions; the predictive ability was less under well‐watered conditions. The data also demonstrated the need for a better understanding of the relationship between leaf water potential, leaf abscission, and stand LAI.  相似文献   

5.
Stomatal conductance of plants exposed to elevated CO2 is often reduced. Whether this leads to water savings in tall forest‐trees under future CO2 concentrations is largely unknown but could have significant implications for climate and hydrology. We used three different sets of measurements (sap flow, soil moisture and canopy temperature) to quantify potential water savings under elevated CO2 in a ca. 35 m tall, ca. 100 years old mixed deciduous forest. Part of the forest canopy was exposed to 540 ppm CO2 during daylight hours using free air CO2 enrichment (FACE) and the Swiss Canopy Crane (SCC). Across species and a wide range of weather conditions, sap flow was reduced by 14% in trees subjected to elevated CO2, yielding ca. 10% reduction in evapotranspiration. This signal is likely to diminish as atmospheric feedback through reduced moistening of the air comes into play at landscape scale. Vapour pressure deficit (VPD)‐sap flow response curves show that the CO2 effect is greatest at low VPD, and that sap flow saturation tends to occur at lower VPD in CO2‐treated trees. Matching stomatal response data, the CO2 effect was largely produced by Carpinus and Fagus, with Quercus contributing little. In line with these findings, soil moisture at 10 cm depth decreased at a slower rate under high‐CO2 trees than under control trees during rainless periods, with a reversal of this trend during prolonged drought when CO2‐treated trees take advantage from initial water savings. High‐resolution thermal images taken at different heights above the forest canopy did detect reduced water loss through altered energy balance only at <5 m distance (0.44 K leaf warming of CO2‐treated Fagus trees). Short discontinuations of CO2 supply during morning hours had no measurable canopy temperature effects, most likely because the stomatal effects were small compared with the aerodynamic constraints in these dense, broad‐leaved canopies. Hence, on a seasonal basis, these data suggest a <10% reduction in water consumption in this type of forest when the atmosphere reaches 540% ppm CO2.  相似文献   

6.
We measured the short‐term direct and long‐term indirect effects of elevated CO2 on leaf dark respiration of loblolly pine (Pinus taeda) and sweetgum (Liquidambar styraciflua) in an intact forest ecosystem. Trees were exposed to ambient or ambient + 200 µmol mol?1 atmospheric CO2 using free‐air carbon dioxide enrichment (FACE) technology. After correcting for measurement artefacts, a short‐term 200 µmol mol?1 increase in CO2 reduced leaf respiration by 7–14% for sweetgum and had essentially no effect on loblolly pine. This direct suppression of respiration was independent of the CO2 concentration under which the trees were grown. Growth under elevated CO2 did not appear to have any long‐term indirect effects on leaf maintenance respiration rates or the response of respiration to changes in temperature (Q10, R0). Also, we found no relationship between mass‐based respiration rates and leaf total nitrogen concentrations. Leaf construction costs were unaffected by growth CO2 concentration, although leaf construction respiration decreased at elevated CO2 in both species for leaves at the top of the canopy. We conclude that elevated CO2 has little effect on leaf tissue respiration, and that the influence of elevated CO2 on plant respiratory carbon flux is primarily through increased biomass.  相似文献   

7.
We analysed the impact of elevated CO2 on water relations, water use efficiency and photosynthetic gas exchange in barley (Hordeum vulgare L.) under wet and drying soil conditions. Soil moisture was less depleted under elevated compared to ambient [CO2]. Elevated CO2 had no significant effect on the water relations of irrigated plants, except on whole plant hydraulic conductance, which was markedly decreased at elevated compared to ambient CO2 concentrations. The values of relative water content, water potential and osmotic potential were higher under elevated CO2 during the entire drought period. The better water status of water-limited plants grown at elevated CO2 was the result of stomatal control rather than of osmotic adjustment. Despite the low stomatal conductance produced by elevated CO2, net photosynthesis was higher under elevated than ambient CO2 concentrations. With water shortage, photosynthesis was maintained for longer at higher rates under elevated CO2. The reduction of stomatal conductance and therefore transpiration, and the enhancement of carbon assimilation by elevated CO2, increased instantaneous and whole plant water use efficiency in both irrigated and droughted plants. Thus, the metabolism of barley plants grown under elevated CO2 and moderate or mild water deficit conditions is benefited by increased photosynthesis and lower transpiration. The reduction in plant water use results in a marked increase in soil water content which delays the onset and severity of water deficit.  相似文献   

8.
Stomatal conductance (g s) of mature trees exposed to elevated CO2 concentrations was examined in a diverse deciduous forest stand in NW Switzerland. Measurements of g s were carried out on upper canopy foliage before noon, over four growing seasons, including an exceptionally dry summer (2003). Across all species reductions in stomatal conductance were smaller than 25% most likely around 10%, with much variation among species and trees. Given the large heterogeneity in light conditions within a tree crown, this signal was not statistically significant, but the responses within species were surprisingly consistent throughout the study period. Except during a severe drought, stomatal conductance was always lower in trees of Carpinus betulus exposed to elevated CO2 compared to Carpinus trees in ambient air, but the difference was only statistically significant on 2 out of 15 days. In contrast, stomatal responses in Fagus sylvatica and Quercus petraea varied around zero with no consistent trend in relation to CO2 treatment. During the 2003 drought in the third treatment year, the CO2 effect became reversed in Carpinus, resulting in higher g s in trees exposed to elevated CO2 compared to control trees, most likely due to better water supply because of the previous soil water savings. This was supported by less negative predawn leaf water potential in CO2 enriched Carpinus trees, indicating an improved water status. These findings illustrate (1) smaller than expected CO2-effects on stomata of mature deciduous forest trees, and (2) the possibility of soil moisture feedback on canopy water relations under elevated CO2. An erratum to this article can be found at  相似文献   

9.
Reduced stomatal conductance under elevated CO2 results in increased soil moisture, provided all other factors remain constant. Whether this results in increased runoff critically depends on the interaction of rainfall patterns, soil water storage capacity and plant responses. To test the sensitivity of runoff to these parameters under elevated CO2, we combine transpiration and soil moisture data from the Swiss Canopy Crane FACE experiment (SCC, 14 30–35 m tall deciduous broad‐leaved trees under elevated CO2) with 104 years of daily precipitation data from an adjacent weather station to drive a three‐layer bucket model (mean yearly precipitation 794 mm). The model adequately predicts the water budget of a temperate deciduous forest and runoff from a nearby gauging station. A simulation run over all 104 years based on measured sap flow responses resulted in only 5.5 mm (2.9%) increased ecosystem runoff under elevated CO2. Out of the 37 986 days (1 January 1901–31 December 2004), only 576 days produce higher runoff in the elevated CO2 scenario. Only 1 out of 17 years produces a CO2‐signal >20 mm a?1, which mostly depends on a few single days when runoff under elevated CO2 exceeds runoff under ambient conditions. The maximum signal for a double preindustrial CO2‐concentration under the past century daily rainfall regime is an additional runoff of 46 mm. More than half of all years produce a signal of <5 mm a?1, because trees consume the ‘extra’ moisture during prolonged dry weather. Increased runoff under elevated CO2 is nine times more sensitive to variations in rain pattern than to the applied reduction in transpiration under elevated CO2. Thus the key driver of increased runoff under future CO2‐concentration is the day by day rainfall pattern. We argue that increased runoff due to a first‐order plant physiological CO2‐effect will be very small (<3%) in a landscape dominated by temperate deciduous forests, and will hardly increase flooding risk in forest catchments. Monthly rainfall sums are unsuitable to realistically model such CO2 effects. These findings may apply to other ecosystems with comparable soil water storage capacity.  相似文献   

10.
The effect of elevated atmospheric CO2 on water distribution in the intact roots of Vicia faba L. bean seedlings grown in natural soil was studied noninvasively with proton (1H) nuclear magnetic resonance (NMR) imaging. Exposure of 24-d-old plants to atmospheric CO2-enriched air at 650 cm3 m?3 produced significant increases in water imaged in upper roots, hypogeal cotyledons and lower stems in response to a short-term drying-stress cycle. Above ground, drying produced negligible stem shrinkage and stomatal resistance was unchanged. In contrast, the same drying cycle caused significant depletion of water imaged in the same upper root structures in control plants subject to ambient CO2 (350 m3 m?3), and stem shrinkage and increased stomatal resistance. The results suggest that inhibition of transpiration caused by elevated CO2 does not necessarily result in attenuation of water transport from lower root structures. Inhibition of water loss from upper roots and lower stem in elevated CO2 environments may be a mitigating factor in assessing deleterious effects of greenhouse changes on crops during periods of dry climate.  相似文献   

11.
Physiological processes that modulate photosynthetic acclimation to rising atmospheric CO2 concentration are subjects of intense discussion recently. Apparently, the down-regulation of photosynthesis under elevated CO2 is not understood clearly. In the present study, the response of soybean (Glycine max L.) to CO2 enrichment was examined in terms of nitrogen partitioning and water relation. The plants grown under potted conditions without combined N application were exposed to either ambient air (38 Pa CO2) or CO2 enrichment (100 Pa CO2) for short (6 days) and long (27 days). Plant biomass, apparent photosynthetic rate, transpiration rate and 15N uptake and partitioning were measured consecutively after elevated CO2 treatment. Long-term exposure reduced photosynthetic rate, stomatal conductance and transpiration rate. In contrast, short-term exposure increased biomass production of soybean due to increase in dry weight of leaves. Leaf N concentration tended to decrease with CO2 enrichment, however such difference was not true for stem and roots.A close correlation was observed between transpiration rate and 15N partitioned into leaves, suggesting that transpiration plays an important role on nitrogen partitioning to leaves. In conclusion existence of a feed back mechanism for photosynthetic acclimation has been proposed. Down-regulation of photosynthetic activity under CO2 enrichment is caused by decreasing leaf N concentration, and reduced rate of transpiration owing to decreased stomatal conductance is partially responsible for poor N translocation.  相似文献   

12.
Elevated atmospheric carbon dioxide (CO2e) increases soil respiration rates in forest, grassland, agricultural and wetland systems as a result of increased growth, root biomass and enhanced biological activity of soil microorganisms. Less is known about how forest floor fluxes respond to the combined effects of elevated CO2 and nutrient amendments; until now no experiments have been in place with large forest trees to allow even preliminary investigations. We investigated changes in forest floor respiration (Sff) in a Pinus taeda L. plantation fumigated with CO2 by using free‐air CO2 enrichment (FACE) technology and given nutrient amendments. The prototype FACE apparatus (FACEp; 707 m2) was constructed in 1993, 10 years after planting, on a moderate fertility site in Duke Forest, North Carolina, USA, enriching the stand to 55 Pa (CO2e). A nearby ambient CO2 (CO2a) plot (117 m2) was designated at the inception of the study as a reference (Ref). Both FACEp and Ref plot were divided in half and urea fertilizer was applied to one half at an annual rate of 11.2 g N m?2 in the spring of 1998, 1999 and 2000. Forest floor respiration was monitored continuously for 220 days – March through November 2000 – by using two Automated Carbon Efflux Systems. Thirty locations (491 cm2 each) were sampled in both FACEp and Ref, about half in each fertility treatment. Forest floor respiration was strongly correlated with soil temperature at 5 cm. Rates of Sff were greater in CO2e relative to CO2a (an enhancement of ~178 g C m?2) during the measurement period. Application of fertilizer resulted in a statistically significant depression of respiration rates in both the CO2a and CO2e plots (a reduction of ~186 g C m?2). The results suggest that closed canopy forests on moderate fertility sites cycle back to the atmosphere more assimilated carbon (C) than similar forests on sites of high fertility. We recognize the limitations of this non‐replicated study, but its clear results offer strong testable hypotheses for future research in this important area.  相似文献   

13.
Although elevated atmospheric CO2 has been shown to increase growth of tree seedlings and saplings, the response of intact forest ecosystems and established trees is unclear. We report results from the first large-scale experimental system designed to study the effects of elevated CO2 on an intact forest with the full complement of species interactions and environmental stresses. During the first year of exposure to ^ 1.5 Ë ambient CO2, canopy loblolly pine (Pinus taeda, L.) trees increased basal area growth rate by 24% but understorey trees of loblolly pine, sweetgum (Liquidambar styraciflua L.), and red maple (Acer rubrum L.) did not respond. Winged elm (Ulmus alata Michx.) had a marginally significant increase in growth rate (P = 0.069). These data suggest that this ecosystem has the capacity to respond immediately to a step increase in atmospheric CO2; however, as exposure time increases, nutrient limitations may reduce this initial growth stimulation.  相似文献   

14.

Background and Aims

Global climate models predict decreases in leaf stomatal conductance and transpiration due to increases in atmospheric CO2. The consequences of these reductions are increases in soil moisture availability and continental scale run-off at decadal time-scales. Thus, a theory explaining the differential sensitivity of stomata to changing atmospheric CO2 and other environmental conditions must be identified. Here, these responses are investigated using optimality theory applied to stomatal conductance.

Methods

An analytical model for stomatal conductance is proposed based on: (a) Fickian mass transfer of CO2 and H2O through stomata; (b) a biochemical photosynthesis model that relates intercellular CO2 to net photosynthesis; and (c) a stomatal model based on optimization for maximizing carbon gains when water losses represent a cost. Comparisons between the optimization-based model and empirical relationships widely used in climate models were made using an extensive gas exchange dataset collected in a maturing pine (Pinus taeda) forest under ambient and enriched atmospheric CO2.

Key Results and Conclusion

In this interpretation, it is proposed that an individual leaf optimally and autonomously regulates stomatal opening on short-term (approx. 10-min time-scale) rather than on daily or longer time-scales. The derived equations are analytical with explicit expressions for conductance, photosynthesis and intercellular CO2, thereby making the approach useful for climate models. Using a gas exchange dataset collected in a pine forest, it is shown that (a) the cost of unit water loss λ (a measure of marginal water-use efficiency) increases with atmospheric CO2; (b) the new formulation correctly predicts the condition under which CO2-enriched atmosphere will cause increasing assimilation and decreasing stomatal conductance.  相似文献   

15.
Few studies have evaluated elevated CO2 responses of trees in variable light despite its prevalence in forest understories and its potential importance for sapling survival. We studied two shade-tolerant species (Acer rubrum, Cornus florida) and two shade-intolerant species (Liquidambar styraciflua, Liriodendron tulipifera) growing in the understory of a Pinus taeda plantation under ambient and ambient+200 ppm CO2 in a free air carbon enrichment (FACE) experiment. Photosynthetic and stomatal responses to artificial changes in light intensity were measured on saplings to determine rates of induction gain under saturating light and induction loss under shade. We expected that growth in elevated CO2 would alter photosynthetic responses to variable light in these understory saplings. The results showed that elevated CO2 caused the expected enhancement in steady-state photosynthesis in both high and low light, but did not affect overall stomatal conductance or rates of induction gain in the four species. Induction loss after relatively short shade periods (<6 min) was slower in trees grown in elevated CO2 than in trees grown in ambient CO2 despite similar decreases in stomatal conductance. As a result leaves grown in elevated CO2 that maintained induction well in shade had higher carbon gain during subsequent light flecks than was expected from steady-state light response measurements. Thus, when frequent sunflecks maintain stomatal conductance and photosynthetic induction during the day, enhancements of long-term carbon gain by elevated CO2 could be underestimated by steady-state photosynthetic measures. With respect to species differences, both a tolerant, A. rubrum, and an intolerant species, L. tulipifera, showed rapid induction gain, but A. rubrum also lost induction rapidly (c. 12 min) in shade. These results, as well as those from independent studies in the literature, show that induction dynamics are not closely related to species shade tolerance. Therefore, it cannot be concluded that shade-tolerant species necessarily induce faster in the variable light conditions common in understories. Although our study is the first to examine dynamic photosynthetic responses to variable light in contrasting species in elevated CO2, studies on ecologically diverse species will be required to establish whether shade-tolerant and -intolerant species show different photosynthetic responses in elevated CO2 during sunflecks. We conclude that elevated CO2 affects dynamic gas exchange most strongly via photosynthetic enhancement during induction as well as in the steady state. Received: 1 April 1999 / Accepted: 16 August 1999  相似文献   

16.
Elevated atmospheric CO2 concentration (eCa) might reduce forest water‐use, due to decreased transpiration, following partial stomatal closure, thus enhancing water‐use efficiency and productivity at low water availability. If evapotranspiration (Et) is reduced, it may subsequently increase soil water storage (ΔS) or surface runoff (R) and drainage (Dg), although these could be offset or even reversed by changes in vegetation structure, mainly increased leaf area index (L). To understand the effect of eCa in a water‐limited ecosystem, we tested whether 2 years of eCa (~40% increase) affected the hydrological partitioning in a mature water‐limited Eucalyptus woodland exposed to Free‐Air CO2 Enrichment (FACE). This timeframe allowed us to evaluate whether physiological effects of eCa reduced stand water‐use irrespective of L, which was unaffected by eCa in this timeframe. We hypothesized that eCa would reduce tree‐canopy transpiration (Etree), but excess water from reduced Etree would be lost via increased soil evaporation and understory transpiration (Efloor) with no increase in ΔS, R or Dg. We computed Et, ΔS, R and Dg from measurements of sapflow velocity, L, soil water content (θ), understory micrometeorology, throughfall and stemflow. We found that eCa did not affect Etree, Efloor, ΔS or θ at any depth (to 4.5 m) over the experimental period. We closed the water balance for dry seasons with no differences in the partitioning to R and Dg between Ca levels. Soil temperature and θ were the main drivers of Efloor while vapour pressure deficit‐controlled Etree, though eCa did not significantly affect any of these relationships. Our results suggest that in the short‐term, eCa does not significantly affect ecosystem water‐use at this site. We conclude that water‐savings under eCa mediated by either direct effects on plant transpiration or by indirect effects via changes in L or soil moisture availability are unlikely in water‐limited mature eucalypt woodlands.  相似文献   

17.
The impact of anthropogenic CO2 emissions on climate change may be mitigated in part by C sequestration in terrestrial ecosystems as rising atmospheric CO2 concentrations stimulate primary productivity and ecosystem C storage. Carbon will be sequestered in forest soils if organic matter inputs to soil profiles increase without a matching increase in decomposition or leaching losses from the soil profile, or if the rate of decomposition decreases because of increased production of resistant humic substances or greater physical protection of organic matter in soil aggregates. To examine the response of a forest ecosystem to elevated atmospheric CO2 concentrations, the Duke Forest Free‐Air CO2 Enrichment (FACE) experiment in North Carolina, USA, has maintained atmospheric CO2 concentrations 200 μL L?1 above ambient in an aggrading loblolly pine (Pinus taeda) plantation over a 9‐year period (1996–2005). During the first 6 years of the experiment, forest‐floor C and N pools increased linearly under both elevated and ambient CO2 conditions, with significantly greater accumulations under the elevated CO2 treatment. Between the sixth and ninth year, forest‐floor organic matter accumulation stabilized and C and N pools appeared to reach their respective steady states. An additional C sink of ~30 g C m?2 yr?1 was sequestered in the forest floor of the elevated CO2 treatment plots relative to the control plots maintained at ambient CO2 owing to increased litterfall and root turnover during the first 9 years of the study. Because we did not detect any significant elevated CO2 effects on the rate of decomposition or on the chemical composition of forest‐floor organic matter, this additional C sink was likely related to enhanced litterfall C inputs. We also failed to detect any statistically significant treatment effects on the C and N pools of surface and deep mineral soil horizons. However, a significant widening of the C : N ratio of soil organic matter (SOM) in the upper mineral soil under both elevated and ambient CO2 suggests that N is being transferred from soil to plants in this aggrading forest. A significant treatment × time interaction indicates that N is being transferred at a higher rate under elevated CO2 (P=0.037), suggesting that enhanced rates of SOM decomposition are increasing mineralization and uptake to provide the extra N required to support the observed increase in primary productivity under elevated CO2.  相似文献   

18.
We linked a leaf-level CO2 assimilation model with a model that accounts for light attenuation in the canopy and measurements of sap-flux-based canopy conductance into a new canopy conductance-constrained carbon assimilation (4C-A) model. We estimated canopy CO2 uptake (AnC) at the Duke Forest free-air CO2 enrichment (FACE) study. Rates of AnC estimated from the 4C-A model agreed well with leaf gas exchange measurements (Anet) in both CO2 treatments. Under ambient conditions, monthly sums of net CO2 uptake by the canopy (AnC) were 13% higher than estimates based on eddy-covariance and chamber measurements. Annual estimates of AnC were only 3% higher than carbon (C) accumulations and losses estimated from ground-based measurements for the entire stand. The C budget for the Pinus taeda component was well constrained (within 1% of ground-based measurements). Although the closure of the C budget for the broadleaf species was poorer (within 20%), these species are a minor component of the forest. Under elevated CO2, the C used annually for growth, turnover, and respiration balanced only 80% of the AnC. Of the extra 700 g C m−2 a−1 (1999 and 2000 average), 86% is attributable to surface soil CO2 efflux. This suggests that the production and turnover of fine roots was underestimated or that mycorrhizae and rhizodeposition became an increasingly important component of the C balance. Under elevated CO2, net ecosystem production increased by 272 g C m−2 a−1: 44% greater than under ambient CO2. The majority (87%) of this C was sequestered in a moderately long-term C pool in wood, with the remainder in the forest floor–soil subsystem.  相似文献   

19.
Physiological responses to elevated CO2 at the leaf and canopy-level were studied in an intact pine (Pinus taeda) forest ecosystem exposed to elevated CO2 using a free-air CO2 enrichment (FACE) technique. Normalized canopy water-use of trees exposed to elevated CO2 over an 8-day exposure period was similar to that of trees exposed to current ambient CO2 under sunny conditions. During a portion of the exposure period when sky conditions were cloudy, CO2-exposed trees showed minor (7%) but significant reductions in relative sap flux density compared to trees under ambient CO2 conditions. Short-term (minutes) direct stomatal responses to elevated CO2 were also relatively weak (5% reduction in stomatal aperture in response to high CO2 concentrations). We observed no evidence of adjustment in stomatal conductance in foliage grown under elevated CO2 for nearly 80 days compared to foliage grown under current ambient CO2, so intrinsic leaf water-use efficiency at elevated CO2 was enhanced primarily by direct responses of photosynthesis to CO2. We did not detect statistical differences in parameters from photosynthetic responses to intercellular CO2 (A net-C i curves) for Pinus taeda foliage grown under elevated CO2 (550 mol mol–1) for 50–80 days compared to those for foliage grown under current ambient CO2 from similar-sized reference trees nearby. In both cases, leaf net photosynthetic rate at 550 mol mol–1 CO2 was enhanced by approximately 65% compared to the rate at ambient CO2 (350 mol mol–1). A similar level of enhancement under elevated CO2 was observed for daily photosynthesis under field conditions on a sunny day. While enhancement of photosynthesis by elevated CO2 during the study period appears to be primarily attributable to direct photosynthetic responses to CO2 in the pine forest, longer-term CO2 responses and feedbacks remain to be evaluated.  相似文献   

20.
半干旱区城市环境下油松林分蒸腾特征及其影响因子   总被引:2,自引:0,他引:2  
在城市环境下,由于不透水地面面积的增加,土壤-植物-大气之间水汽循环减弱,水汽调节能力差,因而研究城市树木蒸腾对环境因子的响应对于城市进行合理的水汽调节具有重要意义。于2017年生长季,在内蒙古呼和浩特市区树木园内选择58年生油松(Pinus tabulaeformis Carr.)作为研究树种,采用热扩散法测定其树干液流,并同步监测气象因子和土壤含水量变化,利用彭曼公式计算冠层气孔导度。结果表明:(1)生长季内,油松林分蒸腾存在明显日、月变化,晴天天气下林分蒸腾日变化呈单峰曲线,月林分蒸腾量5月最大,其次是7月、8月、6月和9月,分别为20.96、19.89、18.09、17.25 mm和7.49 mm。(2)油松林分蒸腾与饱和水汽压差、太阳总辐射、土壤含水量和风速均存在极显著相关关系(P0.01),太阳总辐射、饱和水汽压差和土壤含水量是影响林分蒸腾的主要环境因子(R~2=0.47、R~2=0.31和R~2=0.16),风速对林分蒸腾的影响程度最小(R~2=0.12);不同降雨量对林分蒸腾的影响作用不同,10 mm以上的日降雨量对油松林分蒸腾作用明显。(3)除环境因子外,油松叶片气孔通过响应环境变化控制蒸腾作用,当饱和水汽压差1.5 kPa时,叶片气孔对饱和水汽压差的响应更敏感;当太阳总辐射250 W/m~2时,叶片气孔对蒸腾起促进作用,超过该阈值,叶片气孔关闭从而抑制树木蒸腾。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号