首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Apolipoprotein (apo) A-I is the major protein in high density lipoproteins (HDL) and is found in two major subclasses of lipoproteins, those containing apolipoprotein A-II (termed LpA-I,A-II) and those without apoA-II (termed LpA-I). The in vivo kinetics of apoA-I on LpA-I and LpA-I,A-II were investigated in normolipidemic human subjects. In the first series of studies, radiolabeled apoA-I and apoA-II were reassociated with autologous plasma lipoproteins and injected into normal subjects. LpA-I and LpA-I,A-II were isolated from plasma at selected time points by immunoaffinity chromatography. By 24 h after injection, only 52.8 +/- 1.0% of the apoA-I in LpA-I remained, whereas 66.9 +/- 2.7% of apoA-I in LpA-I,A-II remained (P less than 0.01). In the second series of studies, purified apoA-I was labeled with either 131I or 125I and reassociated with autologous plasma. Isolated LpA-I and LpA-I,A-II particles differentially labeled with 131I-labeled apoA-I and 125I-labeled apoA-I, respectively, were simultaneously injected into study subjects. The plasma residence time of apoA-I injected on LpA-I (mean 4.39 days) was substantially shorter than that of apoA-I injected on LpA-I,A-II (mean 5.17 days), with a mean difference in residence times of 0.79 +/- 0.08 days (P less than 0.001). These data demonstrate that apoA-I injected on LpA-I is catabolized more rapidly than apoA-I injected on LpA-I,A-II. The results are consistent with the concept that LpA-I and LpA-I,A-II have divergent metabolic pathways.  相似文献   

2.
To evaluate the factors that regulate HDL catabolism in vivo, we have measured the clearance of human apoA-I from rabbit plasma by following the isotopic decay of (125)I-apoA-I and the clearance of unlabeled apoA-I using a radioimmunometric assay (RIA). We show that the clearance of unlabeled apoA-I is 3-fold slower than that of (125)I-apoA-I. The mass clearance of iodinated apoA-I, as determined by RIA, is superimposable with the isotopic clearance of (125)I-apoA-I. The data demonstrate that iodination of tyrosine residues alters the apoA-I molecule in a manner that promotes an accelerated catabolism. The clearance from rabbit plasma of unmodified apoA-I on HDL(3) and a reconstituted HDL particle (LpA-I) were very similar and about 3-4-fold slower than that for (125)I-apoA-I on the lipoproteins. Therefore, HDL turnover in the rabbit is much slower than that estimated from tracer kinetic studies. To determine the role of the kidney in HDL metabolism, the kinetics of unmodified apoA-I and LpA-I were reevaluated in animals after a unilateral nephrectomy. Removal of one kidney was associated with a 40-50% reduction in creatinine clearance rates and a 34% decrease in the clearance rate of unlabeled apoA-I and LpA-I particles. In contrast, the clearance of (125)I-labeled molecules was much less affected by the removal of a kidney; FCR for (125)I-LpA-I was reduced by <10%. The data show that the kidneys are responsible for most (70%) of the catabolism of apoA-I and HDL in vivo, while (125)I-labeled apoA-I and HDL are rapidly catabolized by different tissues. Thus, the kidney is the major site for HDL catabolism in vivo. Modification of tyrosine residues on apoA-I may increase its plasma clearance rate by enhancing extra-renal degradation pathways.  相似文献   

3.
Recent in vitro studies have provided evidence that hepatic lipase (HL) facilitates the selective uptake of HDL cholesteryl esters (CE), but the in vivo physiological relevance of this process has not been demonstrated. To evaluate the role that HL plays in facilitating the selective uptake of HDL-CE in vivo, we studied the metabolism of [(3)H]CEt, (125)I-labeled apolipoprotein (apo) A-I, and (131)I-labeled apoA-II-labeled HDL in HL-deficient mice. Kinetic analysis revealed similar catabolism of (125)I-labeled apoA-I (as well as (131)I-labeled apoA-II) in C57BL controls and HL deficient mice, with fractional catabolic rates (FCR) of 2.17 +/- 0.15 and 2.16 +/- 0.11 d(-)(1) (2.59 +/- 0.14 and 2.67 +/- 0.13 d(-)(1), respectively). In contrast, despite similar hepatic scavenger receptor BI expression, HL-deficient mice had delayed clearance of [(3)H]CEt compared to controls (FCR = 3.66 +/- 0.29 and 4.41 +/- 0.18 d(-)(1), P < 0.05). The hepatic accumulation of [(3)H]CEt in HL-deficient mice (62.3 +/- 2.1% of total) was significantly less than in controls (72.7 +/- 3.0%), while the [(3)H]CEt remaining in the plasma compartment increased (20.7 +/- 1.8% and 12.6 +/- 0.5%) (P < 0.05, all). In summary, HL deficiency does not alter the catabolism of apoA-I and apoA-II but decreases the hepatic uptake and the plasma clearance of HDL-CE. These data establish for the first time an important role for HL in facilitating the selective uptake of HDL-CE in vivo.  相似文献   

4.
We investigated the in vivo metabolic fate of pre-beta HDL particles in human apolipoprotein A-I transgenic (hA-I (Tg)) mice. Pre-beta HDL tracers were assembled by incubation of [(125)I]tyramine cellobiose-labeled apolipoprotein A-I (apoA-I) with HEK293 cells expressing ABCA1. Radiolabeled pre-beta HDLs of increasing size (pre-beta1, -2, -3, and -4 HDLs) were isolated by fast-protein liquid chromatography and injected into hA-I (Tg)-recipient mice, after which plasma decay, in vivo remodeling, and tissue uptake were monitored. Pre-beta2, -3, and -4 had similar plasma die-away rates, whereas pre-beta1 HDL was removed 7-fold more rapidly. Radiolabel recovered in liver and kidney 24 h after tracer injection suggested increased (P < 0.001) liver and decreased kidney catabolism as pre-beta HDL size increased. In plasma, pre-beta1 and -2 were rapidly (<5 min) remodeled into larger HDLs, whereas pre-beta3 and -4 were remodeled into smaller HDLs. Pre-beta HDLs were similarly remodeled in vitro with control or LCAT-immunodepleted plasma, but not when incubated with phospholipid transfer protein knockout plasma. Our results suggest that initial interaction of apoA-I with ABCA1 imparts a unique conformation that partially determines the in vivo metabolic fate of apoA-I, resulting in increased liver and decreased kidney catabolism as pre-beta HDL particle size increases.  相似文献   

5.
We have previously described a novel pathway for the metabolism of HDL subfractions in which small [2 apolipoprotein (apoA-I) molecules per particle] HDL particles are converted in a unidirectional manner outside the plasma compartment to medium (3 apoA-I molecules per particle) or large (4 apoA-I molecules per particle) HDL particles, which are subsequently removed from the circulation by the liver (Colvin et al. 1999. J. Lipid Res. 40: 1782;-1792; Huggins et al. 2000. J. Lipid Res. 41: 384;-394). The purpose of the present study was to determine whether the reduction in concentration of medium HDL in African green monkeys consuming n-3 polyunsaturated versus saturated fat diets resulted from decreased in vivo production or increased catabolism. Tracer small LpA-I (HDL containing only apoA-I) were isolated, without ultracentrifugation, by gel filtration and immunoaffinity chromatography and radiolabeled. After injection, the specific activity of apoA-I in small, medium, and large HDL was determined, and the kinetic data were analyzed using our previously published multicompartmental model for HDL subfraction metabolism. We found a significant reduction of apoA-I concentration in medium HDL in the animals fed n-3 polyunsaturated fat (31.2 +/- 0.7 mg/dl) compared with animals fed saturated fat (85.4 +/- 11.9 mg/dl; P = 0.002). The production rates of apoA-I in small, medium, and large HDL were similar in both diet groups; however, there was a significant increase in the fractional catabolic rate of apoA-I in medium HDL in the animals fed n-3 polyunsaturated fat (2.188 +/- 0.501 pools/day) compared with animals fed saturated fat (0.714 +/- 0.191 pools/day; P = 0.02).We conclude that n-3 polyunsaturated fat reduces HDL cholesterol concentration by increasing the fractional catabolic rate of medium-sized HDL particles in African green monkeys.  相似文献   

6.
Apolipoprotein A-I (apoA-I) participates in transport of plasma cholesterol. Concentrations of apoA-I depend on the balance between production and fractional clearance. To elucidate factors influencing apoA-I levels, accurate estimates of apoA-I turnover rates may be valuable. We describe a method for isolation of autologous apoA-I and its use in turnover studies. Free apoA-I was isolated from high density lipoproteins (HDL) by treatment with guanidine hydrochloride. This free apoA-I was radioiodinated with 131I and injected into eleven subjects simultaneously with HDL labeled with 125I. Plasma die-away curves of free apoA-I (131I) and HDL apoA-I (125I) were compared; fractional clearance rates averaged 0.256 +/- 0.019 (SEM) and 0.254 +/- 0.017 pools/day, respectively. Although slight differences between the two die-away curves were noted for some of the patients, the differences were relatively small; for the group as a whole, average fractional catabolic rates were not significantly different. Thus, by isolation of autologous apoA-I under the conditions described, free apoA-I seemingly provides a valid method for estimating apoA-I turnover.  相似文献   

7.
1. We compared binding characteristics of 125I-labeled high density lipoprotein (HDL) subclasses to porcine liver, adrenal and skeletal muscle plasma membranes. 2. HDL subclasses were discriminated by their buoyant densities (HDL2 and HDL3) or by their apolipoprotein (apo) content (Lp-AI (particles containing apoA-I but no apoA-II) and LpA-I/A-II (particles containing both apoA-I and apoA-II)). 3. HDL2 and HDL3 showed saturable binding to the three types of membrane preparations. 4. No differences were found in the Kds within one HDL subclass. 5. Kds and maximal binding of HDL2 were lower than these of HDL3. Unlabeled HDL2 and HDL3, but not LDL, effectively displaced 125I-HDL2 and 125I-HDL3. 6. Binding of HDL was independent of the concentration of NaCl and did not require calcium. 7. These results suggest a process mediated by a single specific receptor in porcine liver, adrenal and skeletal muscle plasma membranes. 8. We also studied binding characteristics of HDL subclasses Lp-AI and LpA-I/A-II to porcine liver membranes. LpA-I showed the highest Kd and maximal binding. 9. All types of HDL subclasses studied (i.e. HDL2, HDL3, LpA-I and LpA-I/A-II) effectively competed for binding of both Lp-AI and LpA-I/A-II, suggesting that the HDL subclasses studied bind to the same receptor by their apoA-I moiety.  相似文献   

8.
We compared the in vivo metabolism of prebeta HDL particles isolated by anti-human apolipoprotein A-I (apoA-I) immunoaffinity chromatography (LpA-I) in human apoA-I transgenic (hA-I Tg) mice with that of lipid-free apoA-I (LFA-I) and small LpA-I. After injection, prebeta LpA-I were removed from plasma more rapidly than were LFA-I and small LpA-I. Prebeta LpA-I and LFA-I were preferentially degraded by kidney compared with liver; small LpA-I were preferentially degraded by the liver. Five minutes after tracer injection, 99% of LFA-I in plasma was found to be associated with medium-sized (8.6 nm) HDL, whereas only 37% of prebeta tracer remodeled to medium-sized HDL. Injection of prebeta LpA-I doses into C57Bl/6 recipients resulted in a slower plasma decay compared with hA-I Tg recipients and a greater proportion (>60%) of the prebeta radiolabel that was associated with medium-sized HDL. Prebeta LpA-I contained one to four molecules of phosphatidylcholine per molecule of apoA-I, whereas LFA-I contained less than one. We conclude that prebeta LpA-I has two metabolic fates in vivo, rapid removal from plasma and catabolism by kidney or remodeling to medium-sized HDL, which we hypothesize is determined by the amount of lipid associated with the prebeta particle and the particle's ability to bind to medium-sized HDL.  相似文献   

9.
The kinetics of apolipoprotein A-IV associated with high density lipoproteins (HDL) of plasma from fasting human subjects was followed for 15 days in five healthy normolipidemic volunteers. Purified apoA-IV and apoA-I were radioiodinated, respectively, with 125I and 131I, incubated in vitro with normal HDL, isolated at density 1.250 g/ml, and finally reinjected intravenously as HDL-125I-labeled apoA-IV and HDL-131I-labeled apoA-I. Blood samples were withdrawn at regular intervals for 15 days, and 24-h urine samples were collected. More than 93% (93.5 +/- 0.9%) of apoA-IV was recovered in apoA-I-containing lipoprotein particles after affinity chromatography on an anti-apoA-I column and 69.7 +/- 4.8% was bound to apoA-II in apoA-I:A-II particles separated on an anti-apoA-II column. 125I-labeled apoA-IV showed a much faster decay than 131I-labeled apoA-I for the first 5 days and thereafter the curves became parallel. Urinary/plasma ratios (U/P) for the 125I-labeled parallel. Urinary/plasma ratios (U/P) for the 125I-labeled apoA-IV were much higher than those for 131I-labeled apoA-I for the first days, but the U/P curves became parallel for the last 7 days, suggesting heterogeneity of apoA-IV metabolism. A heterogeneous multicompartmental model was constructed to describe the metabolism of lipoprotein particles containing apoA-IV and apoA-I and to calculate the kinetic parameters, fitting simultaneously all plasma and urine data for both tracers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Low-density lipoprotein (LDL) labeled via direct iodination or via the radioiodinated residualizing moiety tyramine-cellobiose (TC) were compared in rabbits as potential 123I radiopharmaceuticals for imaging sites of LDL catabolism. The tissue deposition of 131I-TC-LDL after 24 h as determined by dissection was in the major catabolic organs (liver, adrenals, spleen), and its plasma clearance was slower in rabbits with dietary hypercholesterolemia than in normals. 131I-LDL was unsuitable as a metabolic tracer due to redistribution of catabolites and/or loss of the label before protein degradation, which resulted in little accumulation of radioactivity in catabolic organs and high thyroid uptake. The plasma clearance half-time was similar (ca 22 h) for the two compounds in normal rabbits, but was increased to about 36 h for 131I-TC-LDL and decreased to approximately 9 h for 131I-LDL in hypercholesterolemic animals. The were similar with dynamic imaging of control and hypercholesterolemic rabbits using 123I-labeled analogues. 123I-TC-LDL rapidly localized in the liver, with low thyroid accumulation of radioactivity. The hepatic uptake of 123I-LDL was about half that of 123I-TC-LDL, and thyroid sequestration of radioactivity was significant for 123I-LDL but not 123I-TC-LDL. These data suggest that whereas the residualizing 123I-TC-LDL has a pharmacokinetic profile representative of lipoprotein metabolism, the biodistribution of the activity from injected 123I-LDL is complicated by processes other than protein degradation. The results are discussed with regard to nuclear medicine applications in evaluating lipoprotein catabolism in man.  相似文献   

11.
The kinetics of oxidatively modified high-density lipoprotein (HDL) in vivo were investigated. 125I-labeled oxidized (Ox) I-IDL and 131I-labeled native (N) HDL were injected simultaneously into control and WHHL rabbits. The fractional catabolic rates of 125I-labeled Ox-HDL were significantly greater than those of 131I-labeled N-HDL in both control (2.52 ± 0.36/day vs 0.94 ± 0.02/day) and WHHL rabbits (4.07/day vs 1.32/day). Oxidized HDL was catabolized faster than native HDL and was taken up primarily by the liver, spleen, and kidney.  相似文献   

12.
Metabolism of high density lipoproteins by the perfused rabbit liver   总被引:2,自引:0,他引:2  
The role of the liver in the catabolism of high density lipoproteins (HDL) was examined in isolated perfused rabbit livers. Using 125I-labeled rabbit HDL the disappearance of labeled apolipoproteins from the perfusate was biphasic with 7% of the label removed after 20 min and a further 6% between 20 and 90 min. In contrast, with HDL labeled with [3H]cholesteryl esters 35% of label had been removed after 90 min. The effect of liver perfusion on HDL size and composition was further studied by recirculating rabbit HDL for 120 min. In control experiments HDL was incubated at 37 degrees C for 120 min with nonperfused media and with media that had been liver perfused. The added HDL was predominantly particles of 4.8-4.9-mm radius, and incubation with nonperfused and preperfused media produced no significant change in size. However, liver perfusion resulted in particles predominantly 4.2-4.3-mm radius. Hepatic perfusion also significantly reduced HDL cholesteryl ester composition as a percentage of lipoproteins mass from 13.3 +/- 2.2% in control incubations to 10.7 +/- 3.1% (p less than 0.001), and cholesteryl ester:protein mass ratio was reduced from 0.31 +/- 0.06 in control to 0.24 +/- 0.10 (p less than 0.001) after 120 min of liver perfusion. Thus interaction of rabbit HDL with rabbit liver results in smaller HDL particles significantly depleted of core cholesteryl esters.  相似文献   

13.
Plasma transthyretin. Tissue sites of degradation and turnover in the rat   总被引:1,自引:0,他引:1  
Transthyretin (TTR) is involved in the plasma transport of both retinol and thyroid hormones. TTR is synthesized in the liver and choroid plexus, and in small amounts in several other tissues. A study was conducted to determine the tissue sites of degradation and turnover of TTR in the rat. The study employed TTR labeled with tyramine cellobiose (TC) and the trapped ligand method. Samples of purified rat TTR were labeled either with 125I-TC or directly with 131I. A mixture of the two labeled TTRs was injected intravenously into six rats. Blood samples were collected via a venous catheter for kinetic (turnover) analysis. After 24 or 48 h, the rats were killed, and 23 different tissues/organs were assayed as possible sites of TTR degradation. Derivatization of TTR with TC did not appreciably alter TTR plasma kinetics. Plasma turnover data were best fit by a three-pool model. The mean fractional turnover of plasma TTR was 0.15/h, and of total body TTR 0.04/h. The major sites of TTR degradation were the liver (36-38% of total body TTR degradation, almost all in hepatocytes), muscle (12-15%), and skin (8-10%). Tissues that were sites of 1-8% of body TTR degradation included kidneys, adipose tissue, testes, and the gastrointestinal tract. Less than 1% of total TTR degradation occurred in the other tissues examined. A second study was conducted in which labeled TTR was injected intraventricularly into the cerebrospinal fluid in order to explore the degradation of TTR of choroid plexus origin. The kinetics of the appearance and disappearance of such labeled TTR in plasma were physiologically reasonable, with an estimated turnover of cerebrospinal fluid TTR of the order of 0.33/h. The major tissue sites of degradation of labeled TTR injected into cerebrospinal fluid and into plasma were approximately the same. No specific degradation of TTR was found in the nervous system tissues. The most active organs of TTR catabolism, per gram wet weight, were liver and kidneys. These studies demonstrate that many tissues participate in TTR turnover and degradation; the studies provide quantitative information about the tissue sites of TTR catabolism.  相似文献   

14.
Plasma metabolism of apolipoprotein A-IV in humans   总被引:5,自引:0,他引:5  
As assessed by molecular sieve chromatography and quantitation by a specific radioimmunoassay, apoA-IV is associated in plasma with the triglyceride-rich lipoproteins, to a high density lipoprotein (HDL) subfraction of smaller size than HDL3, and to the plasma lipoprotein-free fraction (LFF). In this study, the turnover of apoA-IV associated to the triglyceride-rich lipoproteins, HDL and LFF was investigated in vivo in normal volunteers. Human apoA-IV isolated from the thoracic duct lymph chylomicrons was radioiodinated and incubated with plasma withdrawn from normal volunteers after a fatty meal. Radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, HDL, and LFF were then isolated by chromatography on an AcA 34 column. Shortly after the injection of the radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, most of the radioactivity could be recovered in the HDL and LFF column fractions. On the other hand, when radioiodinated apoA-IV-labeled HDL or LFF were injected, the radioactivity remained with the originally injected fractions at all times. The residence time in plasma of 125I-labeled apoA-IV, when injected in association with HDL or LFF, was 1.61 and 0.55 days, respectively. When 125I-labeled apoA-IV was injected as a free protein, the radioactivity distributed rapidly among the three plasma pools in proportion to their mass. The overall fractional catabolic rate of apoA-IV in plasma was measured in the three normal subjects and averaged 1.56 pools per day. The mean degradation rate of apoA-IV was 8.69 mg/kg X day. The results are consistent with the conclusions that: apoA-IV is present in human plasma in three distinct metabolic pools; apoA-IV associated with the triglyceride-rich lipoproteins is a precursor to the apoA-IV HDL and LFF pools; apoA-IV in LFF is not a free protein and its turnover rate is faster than that of apoA-IV in HDL; since no transfer of apoA-IV from the HDL or the LFF occurs, these pools may represent a terminal pathway for the catabolism of apoA-IV; and the catabolism of apoA-IV in HDL is dissociated from that of apoA-I although both apoproteins may reside on the same lipoprotein particles.  相似文献   

15.
The acute-phase protein secretory phospholipase A2 (sPLA2) influences the metabolism of high-density lipoproteins (HDL). The adrenals are known to utilize HDL cholesterol as a source of sterols. The aim of the present study was to test the hypothesis that sPLA2 enhances the selective uptake of HDL into the adrenals in response to acute inflammation as a possible physiological role for the sPLA2-HDL interaction. Human sPLA2-transgenic mice, in which sPLA2 expression is upregulated by inflammatory stimuli, were used. Ten hours after induction of the acute-phase response (APR) by injection of bacterial lipopolysaccharide (LPS), plasma levels of HDL cholesterol decreased significantly in sPLA2-transgenic mice (-18%, P < 0.05) but remained unchanged in wild-type mice. The fractional catabolic rates of both 125I-labeled tyraminecellobiose (TC)-HDL and [3H]cholesteryl ether increased significantly in the sPLA2-transgenic mice after induction of the APR (0.18 +/- 0.01 vs. 0.21 +/- 0.01 pool/h, P < 0.05, and 0.31 +/- 0.02 vs. 0.42 +/- 0.05 pool/h, P < 0.05, respectively) but remained unchanged in the wild-type mice (0.10 +/- 0.01 vs. 0.22 +/- 0.02 pool/h, respectively). After induction of the APR, in both groups HDL holoparticle uptake by the liver was increased (P < 0.001). sPLA2-transgenic mice had 2.4-fold higher selective uptake into the adrenals after induction of the APR than wild-type mice (156 +/- 6 vs. 65 +/- 5%/ micro g tissue protein, P < 0.001). In summary, upregulation of sPLA2 expression during the APR specifically increases the selective uptake of HDL cholesteryl ester into the adrenals. These data suggest a novel metabolic role for sPLA2: modification of HDL during the APR to promote increased adrenal uptake of HDL cholesteryl ester to serve as source for steroid hormone synthesis.  相似文献   

16.
Apolipoprotein B (apoB) of plasma low density lipoproteins (LDL) binds to high affinity receptors on many cell types. A minor subclass of high density lipoproteins (HDL), termed HDL1, which contains apoE but lacks apoB, binds to the same receptor. Bound lipoproteins are engulfed, degraded, and regulate intracellular cholesterol metabolism and receptor activity. The HDL of many patients with liver disease is rich in apoE. We tested the hypothesis that such patient HDL would reduce LDL binding and would themselves regulate cellular cholesterol metabolism. Normal HDL had little effect on binding, uptake, and degradation of 125I-labeled LDL by cultured human skin fibroblasts. Patient HDL (d 1.063-1.21 g/ml) inhibited these processes, and in 15 of the 25 samples studied there was more than 50% inhibition at 125I-labeled LDL and HDL protein concentrations of 10 micrograms/ml and 25 micrograms/ml, respectively. There was a significant negative correlation between the percentage of 125I-labeled LDL bound and the apoE content of the competing HDL (r = -0.54, P less than 0.01). Patient 125I-labeled HDL was also taken up and degraded by the fibroblasts, apparently through the LDL-receptor pathway, stimulated cellular cholesterol esterification, increased cell cholesteryl ester content, and suppressed cholesterol synthesis and receptor activity. We conclude that LDL catabolism by the receptor-mediated pathway may be impaired in liver disease and that patient HDL may deliver cholesterol to cells.  相似文献   

17.
Exogenous hen lysozyme or endogenous rat lysozyme labeled with 131I was intravenously injected to rats with the same dosage, respectively, and the uptake and degradation of injected 131I-labeled rat lysozyme in liver and kidney were studied in comparison with those of 131I-labeled hen lysozyme. 1. Although the serum levels of both enzymes injected were almost indentical during the first 6 h, the liver uptake of 131I-labeled hen lysozyme was 2.2-fold more than that of 131I-labeled rat lysozyme at the peak time of 5 min after injection. The uptake and clearance of 131I-labeled rat lysozyme in the kidney were exclusively slow as compared with those of 131I-labeled hen lysozyme. 2. The intracellular distribution in the liver and kidney were examined by the differential centrifugation after injection of each lysozyme. The protein-bound radioactivity of each subcellular fraction was found to be the highest in the 12 000 X g (10 min) fraction in the liver and the 19 600 X g (20 min) fraction in the kidney. The relative specific activity of 12 000 X g fraction of the liver after injection increased with the time lapse. On the other hand, the relative specific activity of 105 000 X g (1 h) fraction of the liver attained a maximum within 5 min after injection and thereafter decreased. It was assumed that the mechanism of the uptake of injected 131I-labeled rat lysozyme in the liver and kidney was similar to that of 131I-labeled hen lysozyme. 3. The degradation of exogenous or endogenous lysozyme in subcellular particles was examined. From the effect of pH, activator and inhibitor on the degradation, the proteolytic enzyme to degrade the injected 131I-labeled hen lysozyme was indicated to be mainly cathepsin BL, with the optimal pH of about 5.0, and the injected 131I-labeled rate lysozyme was mainly degraded by cathepsin D, with the optimal pH of about 3.5 The in vitro degradation of exogenous and endogenous lysozymes showed a tendency similar to the in vivo clearance from the liver and kidney.  相似文献   

18.
The interaction of high-density lipoproteins (HDL) with adipocytes is important in the regulation of cellular cholesterol flux. To study the mechanisms of HDL binding and cellular processing, we incubated adipocytes isolated from epididymal and perirenal adipose tissue of male Wistar rats (300 g) with HDL1 (1.07-1.10 g/mL) and HDL2 (1.10-1.14 g/mL) fractions separated from rat plasma by gradient ultracentrifugation. Freshly isolated adipocytes were incubated with 125I-labeled HDL for 2 h at 37 degrees C to determine cell-associated uptake and degradation. Adipocytes from both fat regions showed significant cell-associated HDL1 and HDL2 uptake and very high medium degradation (2- to 6-fold higher than uptake). To assess 125I-labeled HDL binding independent of cellular metabolism, we purified adipocyte plasma membranes from isolated adipocytes and used them in binding assays. Binding of HDL1 and HDL2 in the membrane system was 85-95% specific, sensitive to high NaCl concentrations, and abolished by pronase treatment. In contrast to HDL2 binding, the maximum HDL1 binding to perirenal plasma membranes was significantly higher than its binding to epididymal membranes (7.2 +/- 1.3 vs. 4.4 +/- 0.2 micrograms/mg, n = 6, p less than 0.05). This increment in HDL1 binding to perirenal membranes represented an EDTA- sensitive, calcium-dependent component. These results indicate that HDL binding to adipocyte plasma membranes depends on both adipose tissue region and HDL subtype. The membrane binding characteristics, taken together with the cellular uptake results, suggest that adipocytes bind and metabolize HDL and that this interaction may involve a protein receptor.  相似文献   

19.
Tissue sites of degradation of apoprotein A-I in the rat   总被引:21,自引:0,他引:21  
The tissue sites of degradation of apoprotein A-I were determined in the rat in vivo using a newly developed tracer of protein catabolism, an adduct of 125I-tyramine and cellobiose. This methodology takes advantage of the fact that when a protein labeled with 125I-tyramine-cellobiose is taken up and degraded, the radiolabeled ligand remains trapped intracellularly. Thus, radio-iodine accumulation in a tissue acts as a cumulative measure of protein degradation in that tissue. In the present studies, apoprotein AI (apo-A-I) was labeled with tyramine-cellobiose (TC). The TC-labeled apo-A-I was then reassociated with high density lipoprotein (HDL) in vivo by injection into donor animals. After 30 min, serum from donor animals was recovered and then injected into recipient rats. TC-labeled apo-A-I in the donor serum was shown to be exclusively associated with HDL. The fractional catabolic rate of 125I-TC-apo-A-I was not significantly different from that of conventionally labeled apo-A-I. The kidney was the major site of degradation, accounting for 39% of the total. The liver was responsible for 26% of apo-A-I catabolism, 96% of which occurred in hepatocytes. The kidney was also the most active organ of catabolism/g of wet weight. The tissues next most active/g of wet weight were ovary and adrenal, a finding that is compatible with a special role of HDL in the rat for delivery of cholesterol for steroidogenesis. Immunofluorescence studies of frozen sections of rat kidney demonstrated the presence of apo-A-I on the brush-border and in apical granules of proximal tubule epithelial cells. Preliminary studies using HDL labeled both with 125I-TC-apo-A-I and [3H]cholesteryl ethers again demonstrated high rates of renal uptake of apo-A-I but less than 1% of total ether uptake. It is postulated that the high activity of kidney was not due to uptake of intact HDL particles, but rather, due to glomerular filtration and tubular reabsorption of free apo-A-I.  相似文献   

20.
The conversion of very low density (VLDL) to low density lipoproteins (LDL) is a two-step process. The first step is mediated by lipoprotein lipase, but the mechanism responsible for the second is obscure. In this study we examined the possible involvement of receptors at this stage. Apolipoprotein B (apoB)-containing lipoproteins were separated into three fractions, VLDL (Sf 100-400), an intermediate fraction IDL (Sf 12-100), and LDL (Sf 0-12). Autologous 125I-labeled VLDL and 131I-labeled 1,2-cyclohexanedione-modified VLDL were injected into the plasma of four normal subjects and the rate of transfer of apoB radioactivity was followed through IDL to LDL. Modification did not affect VLDL to IDL conversion. Thereafter, however, the catabolism of modified apoB in IDL was retarded and its appearance in LDL was delayed. Hence, functional arginine residues (and by implication, receptors) are required in this process. Confirmation of this was obtained by injecting 125I-labeled IDL and 131I-labeled cyclohexanedione-treated IDL into two additional subjects. Again, IDL metabolism was delayed by approximately 50% as a result of the modification. These data are consistent with the view that receptors are involved in the metabolism of intermediate density lipoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号