首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pulmonary respiration of molluscs (spontaneous and mediated by intracavital injection of monoamines) was studied at different environmental temperatures (5, 15, and 25 degrees C). It was established that monoamines (dopamine, serotonin, adrenalin) did not enlarge the temperature diapason, in which the respiratory behavior was realized. Microelectrode studies of spontaneous electrical activity of neurons from the respiratory network of Lymnaea stagnalis (RPeD1, VD4, cells of the Vi cluster) have shown that the respiratory program, both spontaneous and the monoamine-induced, is terminated in hypothermia. The indicated effects are suggested to be due to temperature dependence of the chemical, predominantly peptidergical, transmission of signal between neurons of the central pattern generator of respiratory pattern in Lymnaea.  相似文献   

2.
Temperature dependence of lung respiration, defensive behavior and locomotion of Lymnaea stagnalis snail was studied. At the temperature in the range of 4-6 degrees C the rates of locomotion and respiration were reduced (as compared to control temperature of 14-16 degrees C), whereas defensive reactions were much more intense. Vice versa, the temperature rise to 24-26 degrees C activates respiration and locomotion but inhibits defensive behavior. It is suggested that the observed changes in Lymnaea behavior result from temperature-dependent reactions of neurons underlying these activities.  相似文献   

3.
Summary This study describes the neural basis of respiratory behavior in a pulmonate mollusc, Lymnaea stagnalis. We describe and identify muscles of the respiratory orifice (pneumostome) and mantle cavity as well as relevant motor neurons innervating these muscles. All of these identified motor neurons are active during spontaneously occurring respiratory behavior and a sporadically occurring synaptic input, termed Input 3, controls the activities of these motor neurons. This spontaneous input can also be recorded from isolated brain preparations, suggesting that the respiratory motor program is generated centrally. However, evidence is also presented that in semi-intact preparations the role of peripheral feedback is important for the initiation and termination of respiratory behavior in Lymnaea.  相似文献   

4.
  • 1.Temperature-dependent effects on respiratory behaviour as well as the corresponding temperature-dependent activities of identified neurons within the respiratory network of the pulmonate snail Lymnaea stagnalis were investigated.
  • 2.Lymnaea lung ventilation terminated at low temperatures (under 10 °C) while temperature elevation increased ventilation rates. The respiratory central pattern generator (CPG) functioning was relatively quiescent at temperatures under 12.5±0.44 °C.
  • 3.Identified CPG neurons (RPeD1, VD4, VD1/RPaD2) and the respiratory network motor neurons (Vi- and RPa-cells) were found to exhibit varied temperature-dependent electrophysiological parameters (action potential frequency and amplitude, resting potential value) between cell types.
  • 4.The observed alterations in the electrical activity of the Lymnaea respiratory network neurons underlie the marked changes of respiratory behaviour observed in the intact animal during temperature changes.
  相似文献   

5.
1. The effects of met-enkephalin (10−6-10−4m) on electrical activity of identified neurons in the isolated CNS and semi-intact preparations of Lymnaea stagnalis have been investigated.2. Met-enkephalin (in concentrations up to 10−4M) induced very weak hyperpolarisation or depolarisation (1–4 mV) on the majority of neurons tested here.3. Met-enkephalin inhibited the 5-HT-induced respiratory rhythm during the first few minutes of its action.4. Met-enkephalin later (5–30 min after its administration) induced slow oscillations of the membrane potential in central neurons related to respiratory and locomotory programmes as well as in electrically coupled neurosecretory cells.  相似文献   

6.
The distribution and neuroanatomy of Mytilus inhibitory peptides (MIP)-containing neurons in the central nervous system and their innervation pattern in the peripheral nervous system of the pulmonate snail species, Lymnaea stagnalis and Helix pomatia, have been investigated immunocytochemically, by applying an antibody raised to GSPMFVamide. A significant number of immunoreactive neurons occurs in the central nervous system of both species (Lymnaea: ca 600-700, Helix: ca 400-500), but their distribution is different. In Lymnaea, labeled neurons are found in all central ganglia where a number of large and giant neurons, previously identified physiologically, reveal MIP immunoreactivity. In Helix, most of the immunolabeled neurons are small (12-30 microm) and concentrated in the buccal and cerebral ganglia; the parietal ganglia are free of labeled cells. In both species, the ganglionic neuropils, peripheral nerves, connectives, and commissures are richly supplied with immunolabeled fibers. The MIP-immunoreactive innervation pattern in the heart, intestine, buccal mass and radula, and foot is similar in both species, with labeled axonal bundles and terminal-like arborizations (buccal mass, foot) or a network of varicose fibers (heart, intestine). Intrinsic neurons are not present in these tissues. The application of GSPYFVamide inhibits the spontaneous contractions of the esophageal longitudinal musculature in Helix, indicating the bioactivity of the peptide. An outside-out patch-clamp technique has demonstrated that GSPYFVamide opens the K+ channels in central nerve cells of Helix. Injection of GSPYFVamide into the body cavity inhibits the feeding of starved Helix. A wide modulatory role of MIP at central and peripheral levels is suggested in Lymnaea and Helix, including the participation in intercellular signalling processes and remote neurohormonal-like control effects.  相似文献   

7.
8.
Electrophysiological properties of P neurons localized in the medullary dorsal respiratory cellular group and of vagal afferent fibers innervating these neurons were studied in acute experiments on nembutal-anesthetized cats with preserved spontaneous respiration. P neurons were shown to form a non-homogeneous cellular population. They generated phasic discharges during the whole inspiration period, but differed in their responses to lung inflation. These findings allowed us to classify P neurons as slowly adapting and rapidly adapting units, probably activated by slowly and rapidly adapting pulmonary receptors, respectively. Sensitivity of the slowly adapting P neurons to activation by the corresponding receptors and the mechanisms underlying the participation of the two types of P neurons in the reflex feedback between the respiratory center and lungs are discussed.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 211–217, May–June, 1994.  相似文献   

9.
Spontaneous firing of olfactory receptor neurons (ORNs) was recently shown to be required for the survival of ORNs and the maintenance of their appropriate synaptic connections with mitral cells in the olfactory bulb. ORN spontaneous activity has never been described or characterized quantitatively in mammals. To do so we have made extracellular single unit recordings from ORNs of freely breathing (FB) and tracheotomized (TT) rats. We show that the firing behavior of TT neurons was relatively simple: they tended to fire spikes at the same average frequency according to purely random (Poisson) or simple (Gamma or Weibull) statistical laws. A minority of them were bursting with relatively infrequent and short bursts. The activity of FB neurons was less simple: their firing rates were more diverse, some of them showed trends or were driven by breathing. Although more of them were regular, only a minority could be described by simple laws; the majority displayed random bursts with more spikes than the bursts of TT neurons. In both categories bursts and isolated spikes (outside bursts) occurred completely at random. The spontaneous activity of ORNs in rats resembles that of frogs, but is higher, which may be due to a difference in body temperature. These results suggest that, in addition to the intrinsic thermal noise, spontaneous activity is provoked in part by mechanical, thermal, or chemical (odorant molecules) effects of air movements due to respiration, this extrinsic part being naturally larger in FB neurons. It is suggested that spontaneous activity may be modulated by respiration. Because natural sampling of odors is synchronized with breathing, such modulation may prepare and keep olfactory bulb circuits tuned to process odor stimuli.  相似文献   

10.
In this study, we attempted to determine the role of GABA neurotransmission in augmentation of hypoxic respiration by antecedent hyperoxic breathing. The experiments were performed in anesthetized, paralyzed and vagotomized cats divided into control and bicuculline (a GABAA receptor blocker)-injected groups. The experimental protocol consisted of exposing the animals to successive hypoxic-hyperoxic-hypoxic conditions. Respiration was assessed using phrenic electroneurograms, from which the peak phrenic height, a surrogate of the tidal volume component, and respiratory rate were obtained, and their product, the respiratory minute output, was calculated. We found that prior hyperoxic ventilation increased the subsequent respiratory response to hypoxia by an average of 23.5%, compared with the preoxygen response. This increase was driven by volume respiration. The biphasic character of the hypoxic respiratory response, consisting of stimulatory and depressant phases, was sustained. Bicuculline abolished the augmentative effect on hypoxic respiration of prior hyperoxia, which suggests that oxygenation induces GABAA-mediated hyperexcitability of respiratory neurons, possibly by the liberation of reactive oxygen species. We concluded that GABA neurotransmission is pertinent to the effect of hyperoxia on hypoxic respiratory reactivity.  相似文献   

11.
The central representation of intero- and exteroreceptors located in visceral organs and the osphradium were compared in the CNS of Helix pomatia L. (Gastropoda, Stylommatophora) and Lymnaea stagnalis L. (Gastropoda, Basommatophora), two pulmonate snail species inhabiting a terrestrial and anaquatic environment, respectively. Semi-intact preparations were used comprising the CNS connected by the corresponding nerves either to the cardio-renal, respiratory and genital systems or to the osphradium. Spike discharges of central neurons and the nerves were recorded simultaneously. The central representation of intero- and exteroreceptors was found to be distributed throughout the CNS and involved about 300 neurons. The majority of the neurons received sensory information from all the studied visceral organs and the osphradium. Among the neurons responding to intero- and exteroreceptors a multimodal reaction to tactile, chemical and osmotic stimuli prevailed while in the osphradium specific reactions also were demonstrated. Central neurons receiving sensory information from visceral organs and the osphradium form overlapping and reorganizing neural circuits using the same neurons in the regulation of heart activity, respiration or reproduction producing the appropriate behaviour. In the selection of sensory information the firing pattern appears to be the main determining factor as bursting neurons do not receive sensory information. The central representation of intero- and exteroreceptors and its variability can be a model system for cellular studies of motivational state and self-perception.  相似文献   

12.
In experiments on mollusc Lymnaea stagnalis, the state of antioxidative protection is studied in central nervous ganglia during a long-term activation (inhibition) of synthesis of nitrogen monoxide (NO) in the body. The effect of the blocker of NO-synthase NG-nitro-L-arginine (L-NNA) at the background of enhancement of pulmonary respiration has been found to be associated with a rise of levels of reduced glutathione and TBK-active products in the nervous tissue at preservation of a relatively high superoxide dismutase activity and a low glutathione peroxidase activity compared with the control group and the animals treated with the metabolic precursor of NO synthesis L-arginine. In spite of the revealed disturbances of balance of the body proand antioxidative system, DNA electrophoresis detected no products of its degradation, which can indicate the absence of massive programmed death of the nervous tissue cells in Lymnaea stagnalis during modulation of activity of the NO-ergic system.  相似文献   

13.
Hydrogen peroxide at a concentration of 100 μM was found to exert a pronounced modulatory effect on motor (R/L cells in B1–B4 clusters) and modulatory (R/L cerebral giant cells) neurons in the feeding neural network of the mollusc Lymnaea stagnalis as manifested in changes in the firing rate, membrane potential level and spike amplitude in these cells. The observed effects were reversible, transient, and reached their peak values in 1 min since application of the preparation. Injection of hydrogen peroxide into the cavity of the cephalopedal sinus resulted in no statistically significant changes in the parameters of mollusc feeding behavior. Hydrogen peroxide is assumed to act as a rapid neuromodulator towards neurons of the central feeding rhythm generator in Lymnaea stagnalis.  相似文献   

14.
We used instantaneous temperature responses of CO2‐respiration to explore temperature acclimation dynamics for Eucalyptus grandis grown with differing nitrogen supply. A reduction in ambient temperature from 23 to 19 °C reduced light‐saturated photosynthesis by 25% but increased respiratory capacity by 30%. Changes in respiratory capacity were not reversed after temperatures were subsequently increased to 27 °C. Temperature sensitivity of respiration measured at prevalent ambient temperature varied little between temperature treatments but was significantly reduced from ~105 kJ mol?1 when supply of N was weak, to ~70 kJ mol?1 when it was strong. Temperature sensitivity of respiration measured across a broader temperature range (20–40 °C) could be fully described by 2 exponent parameters of an Arrhenius‐type model (i.e., activation energy of respiration at low reference temperature and a parameter describing the temperature dependence of activation energy). These 2 parameters were strongly correlated, statistically explaining 74% of observed variation. Residual variation was linked to treatment‐induced changes in respiration at low reference temperature or respiratory capacity. Leaf contents of starch and soluble sugars suggest that respiratory capacity varies with source‐sink imbalances in carbohydrate utilization, which in combination with shifts in carbon‐flux mode, serve to maintain homeostasis of respiratory temperature sensitivity at prevalent growth temperature.  相似文献   

15.
Lu TZ  Feng ZP 《PloS one》2011,6(4):e18745
The resting membrane potential of the pacemaker neurons is one of the essential mechanisms underlying rhythm generation. In this study, we described the biophysical properties of an uncharacterized channel (U-type channel) and investigated the role of the channel in the rhythmic activity of a respiratory pacemaker neuron and the respiratory behaviour in adult freshwater snail Lymnaea stagnalis. Our results show that the channel conducts an inward leak current carried by Na(+) (I(Leak-Na)). The I(Leak-Na) contributed to the resting membrane potential and was required for maintaining rhythmic action potential bursting activity of the identified pacemaker RPeD1 neurons. Partial knockdown of the U-type channel suppressed the aerial respiratory behaviour of the adult snail in vivo. These findings identified the Na(+) leak conductance via the U-type channel, likely a NALCN-like channel, as one of the fundamental mechanisms regulating rhythm activity of pacemaker neurons and respiratory behaviour in adult animals.  相似文献   

16.
It has been shown in experiments on conscious rabbits that beta-endorphine, enkephalins and their synthetic analogs as well as morphine suppress respiration depending on the dose. Naloxone completely reverses this effect of the drugs. While studying the mechanism of the suppressing action of morphine-like substances on respiration in experiments on anesthesized rabbits and cats, opioid peptides and morphine were applied microiontophoretically to the neurons of the bulbar respiratory center. These cells were found to be highly sensitive to the drugs (about 60% of both respiratory and reticular neurons were suppressed by microiontophoretic application of the drugs). Naloxone prevented the effects of opioids and morphine. It is assumed that the suppressing effect of endogenous opioid peptides and their synthetic analogs on respiration is determined to a considerable degree by direct influence of morphine-like substances on the neurons of the bulbar respiratory center.  相似文献   

17.
In the normal as well as in the oxygen deficiency conditions the research has been conducted to study the influence of associative mediodorsal (MD) nucleus of thalamus on impulsive activity of respiratory neurons of medulla oblongata of respiration. In conditions of normal atmospheric pressure, before the uplift of the animals, the electrical stimulation of MD of nucleus of thalamus has had mainly inhibiting influence. In the initial phase, on 4-5 thousand meter altitude, activation of frequent discharge of neurons occurred, the respiration has become frequent as well. In this situation the inhibiting influence of stimulation of MD nucleus of thalamus was more accentuated than in conditions of normoxia. In the second phase, 7.5-8 thousand meters, the opposite occurred, i.e. reduction of respiratory center activity of medulla oblongata and thalamus. In this difficult conditions of hypoxia, a reduction of impulsive activity of neurons has been observed; the respiration was becoming slower and surface. Meanwhile, the inhibiting influence of thalamus was not significant.  相似文献   

18.
Odor perception depends on the odorant-evoked changes on Mitral/Tufted cell firing pattern within the olfactory bulb (OB). The OB exhibits a significant "ongoing" or spontaneous activity in the absence of sensory stimulation. We characterized this ongoing activity by simultaneously recording several single neurons in the mitral cell layer (MCL) of anesthetized rats and determined the extent of synchrony and oscillations under nasal and tracheal breathing. We recorded 115 neurons and found no significant differences in the mean firing rates between both breathing conditions. Surprisingly, nearly all single units exhibited a long refractory period averaging 14.4 ms during nasal respiration that was not different under tracheal breathing. We found a small incidence (2% of neurons) of gamma band oscillations and a low incidence (8.1%) of correlated firing between adjacent MCL cells. During nasal respiration, a significant oscillation at the respiratory rate was observed in 12% of cells that disappeared during tracheal breathing. Thus, in the absence of odorants, MCL cells exhibit a long refractory period, probably reflecting the intrinsic OB network properties. Furthermore, in the absence of sensory stimulation, MCL cell discharge does not oscillate in the gamma band and the respiratory cycle can modulate the firing of these cells.  相似文献   

19.
Control of respiration has largely been studied with growing and/or photosynthetic tissues or organs, but has rarely been examined in harvested and stored plant products. As nongrowing, heterotrophic organs that are reliant on respiration to provide all of their metabolic needs, harvested plant products differ dramatically in their metabolism and respiratory needs from growing and photosynthetically active plant organs, and it cannot be assumed that the same mechanism controls respiration in both actively growing and harvested plant organs. To elucidate mechanisms of respiratory control for a harvested and stored plant product, sugarbeet (Beta vulgaris L.) root respiration was characterized with respect to respiratory capacity, adenylate levels and cellular energy status in roots whose respiration was altered by wounding or cold treatment (1 degrees C) and in response to potential effectors of respiration. Respiration rate was induced by wounding in roots stored at 10 degrees C and by cold temperature in roots stored at 1 degrees C for 11-13d. Alterations in respiration rate due to wounding or storage temperature were unrelated to changes in total respiratory capacity, the capacities of the cytochrome c oxidase (COX) or alternative oxidase (AOX) pathways, adenylate concentrations or cellular energy status, measured by the ATP:ADP ratio. In root tissue, respiration was induced by exogenous NADH indicating that respiratory capacity was capable of oxidizing additional electrons fed into the electron transport chain via an external NADH dehydrogenase. Respiration was not induced by addition of ADP or a respiratory uncoupler. These results suggest that respiration rate in stored sugarbeet roots is not limited by respiratory capacity, ADP availability or cellular energy status. Since respiration in plants can be regulated by substrate availability, respiratory capacity or energy status, it is likely that a substrate, other than ADP, limits respiration in stored sugarbeet roots.  相似文献   

20.
The requirement for trophic factors in neurite outgrowth is well established, though their role in synapse formation is yet to be determined. Moreover, the issue of whether the trophic factors mediating neurite outgrowth are also responsible for synapse specification has not yet been resolved. To test whether trophic factors mediating neurite outgrowth and synapse formation between identified neurons are conserved in two molluscan species and whether these developmental processes are differentially regulated by different trophic factors, we used soma-soma and neurite-neurite synapses between identified Lymnaea neurons. We demonstrate here that the trophic factors present in Aplysia hemolymph, although sufficient to induce neurite outgrowth from Lymnaea neurons, do not promote specific synapse formation between excitatory partners. Specifically, the identified presynaptic neuron visceral dorsal 4 (VD4) and postsynaptic neuron left pedal dorsal 1 (LPeD1) were either paired in a soma-soma configuration or plated individually to allow neuritic contacts. Cells were cultured in either Lymnaea brain-conditioned medium (CM) or on poly-L-lysine dishes that were pretreated with Aplysia hemolymph (ApHM), but contained only Lymnaea defined medium (DM; does not promote neurite outgrowth). In ApHM-coated dishes containing DM, Lymnaea neurons exhibited extensive neurite outgrowth, but appropriate excitatory synapses failed to develop between the cells. Instead, inappropriate reciprocal inhibitory synapses formed between VD4 and LPeD1. Similar inappropriate inhibitory synapses were observed in Aplysia hemolymph-pretreated dishes that contained dialyzed Aplysia hemolymph. These inhibitory synapses were novel and inappropriate, because they do not exist in vivo. A receptor tyrosine kinase inhibitor (Lavendustin A) blocked neurite outgrowth induced by both Lymnaea CM and ApHM. However, it did not affect inappropriate inhibitory synapse formation between the neurons. These data demonstrate that neurite outgrowth but not inappropriate inhibitory synapse formation involves receptor tyrosine kinases. Together, our data provide direct evidence that trophic factors required for neurite outgrowth are conserved among two different molluscan species, and that neurite extension and synapse specification between excitatory partners are likely mediated by different trophic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号