首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Two divalent metal ions are required for primer‐extension catalyzed by DNA polymerases. One metal ion brings the 3′‐hydroxyl of the primer terminus and the α‐phosphorus atom of incoming dNTP together for bond formation so that the catalytically relevant conformation of the triphosphate tail of the dNTP is in an α,β,γ‐tridentate coordination complex with the second metal ion required for proper substrate alignment. A probable base selectivity mechanism derived from structural studies on Dpo4 suggests that the inability of mispaired dNTPs to form a substrate‐aligned, tridentate coordination complex could effectively cause the mispaired dNTPs to be rejected before catalysis. Nevertheless, we found that mispaired dNTPs can actually form a properly aligned tridentate coordination complex. However, complementary dNTPs occasionally form misaligned complexes with mutant RB69 DNA polymerases (RB69pols) that are not in a tridentate coordination state. Here, we report finding a β,γ‐bidentate coordination complex that contained the complementary dUpNpp opposite dA in the structure of a ternary complex formed by the wild type RB69pol at 1.88 Å resolution. Our observations suggest that several distinct metal‐ion coordination states can exist at the ground state in the polymerase active site and that base selectivity is unlikely to be based on metal‐ion coordination alone.  相似文献   

2.
Zakharova E  Wang J  Konigsberg W 《Biochemistry》2004,43(21):6587-6595
Site specific mutants in the pol active center of RB69 DNA polymerase have been produced and studied using rapid chemical-quench techniques. Pre-steady-state kinetic analysis carried out with Mg(2+) and Mn(2+) has enabled us to divide the mutants into two groups. One group had greatly reduced k(pols) values in the presence of Mg(2+) but responded to Mn(2+) which restored the k(pol) values for the nucleotidyl transfer reaction to near wild-type levels. The other group of mutants also had lower k(pol) values, relative to that of the wild-type polymerase, but could not be rescued by Mn(2+). The behavior of these mutants was interpreted in terms of the crystal structures of the available RB69 pol complexes. Our results on the metal ion dependence of the D621A and E686A mutants, together with knowledge of the position of their side chains in two different RB69 pol conformations, suggest that these acidic residues serve as alternative ligands for the metal ions destined to occupy the A and B catalytic sites. We infer that this occurs prior to the conformational change that produces the ternary RB69 pol complex in which the A and B metal ions are ligated by D623 and D411 as the enzyme is poised for phosphoryl transfer.  相似文献   

3.
Xia S  Christian TD  Wang J  Konigsberg WH 《Biochemistry》2012,51(21):4343-4353
Minor groove hydrogen bonding (HB) interactions between DNA polymerases (pols) and N3 of purines or O2 of pyrimidines have been proposed to be essential for DNA synthesis from results obtained using various nucleoside analogues lacking the N3 or O2 contacts that interfered with primer extension. Because there has been no direct structural evidence to support this proposal, we decided to evaluate the contribution of minor groove HB interactions with family B pols. We have used RB69 DNA pol and 3-deaza-2'-deoxyadenosine (3DA), an analogue of 2-deoxyadenosine, which has the same HB pattern opposite T but with N3 replaced with a carbon atom. We then determined pre-steady-state kinetic parameters for the insertion of dAMP opposite dT using primer/templates (P/T)-containing 3DA. We also determined three structures of ternary complexes with 3DA at various positions in the duplex DNA substrate. We found that the incorporation efficiency of dAMP opposite dT decreased 10(2)-10(3)-fold even when only one minor groove HB interaction was missing. Our structures show that the HB pattern and base pair geometry of 3DA/dT is exactly the same as those of dA/dT, which makes 3DA an optimal analogue for probing minor groove HB interactions between a DNA polymerase and a nucleobase. In addition, our structures provide a rationale for the observed 10(2)-10(3)-fold decrease in the rate of nucleotide incorporation. The minor groove HB interactions between position n - 2 of the primer strand and RB69pol fix the rotomer conformations of the K706 and D621 side chains, as well as the position of metal ion A and its coordinating ligands, so that they are in the optinal orientation for DNA synthesis.  相似文献   

4.
G D Markham 《Biochemistry》1984,23(3):470-478
The structure of the divalent metal ion binding site of S-adenosylmethionine synthetase from Escherichia coli has been studied by using the vanadyl(IV) ion (VO2+) as probe. VO2+ binds at a single site per subunit in the presence or absence of substrates. Single turnover experiments measuring S-adenosylmethionine (AdoMet) formation from methionine and the ATP analogue 5'-adenylyl imidodiphosphate show that complexes containing VO2+ and either Mg2+ or Ca2+ as a second metal ion are catalytically active, while a complex containing VO2+ alone is inactive. Electron paramagnetic resonance spectra of the enzyme-VO2+ complex, as well as complexes also containing AdoMet or methionine, indicate the coordination of two water molecules and at least two protein ligands to the VO2+. In complexes with polyphosphate substrates or products (e.g., enzyme-VO2+-ATP-methionine, enzyme-VO2+-PPi-Mg2+), EPR spectral changes reveal ligand substitutions on the VO2+, and 8.5-G isotropic superhyperfine coupling to two 31P nuclei can be resolved. 17O superhyperfine coupling from [17O]pyrophosphate indicates coordination of two oxygen atoms of PPi to the VO2+ ion. Thus the polyphosphate compounds are bidentate ligands to the VO2+, demonstrating that the VO2+ binds at the active site and suggesting a catalytic role for the protein-bound metal ion.  相似文献   

5.
Xia S  Eom SH  Konigsberg WH  Wang J 《Biochemistry》2012,51(7):1476-1485
We have recently challenged the widely held view that 2,4-difluorotoluene (dF) is a nonpolar isosteric analogue of the nucleotide dT, incapable of forming hydrogen bonds (HBs). To gain a further understanding for the kinetic preference that favors dAMP insertion opposite a templating dF, a result that mirrors the base selectivity that favors dAMP insertion opposite dT by RB69 DNA polymerase (RB69pol), we determined presteady-state kinetic parameters for incorporation of four dNMPs opposite dF by RB69pol and solved the structures of corresponding ternary complexes. We observed that both the F2 and F4 substituent of dF in these structures serve as HB acceptors forming HBs either directly with dTTP and dGTP or indirectly with dATP and dCTP via ordered water molecules. We have defined the shape and chemical features of each dF/dNTP pair in the RB69pol active site without the corresponding phosphodiester-linkage constraints of dF/dNs when they are embedded in isolated DNA duplexes. These features can explain the kinetic preferences exhibited by the templating dF when the nucleotide incorporation is catalyzed by wild type RB69pol or its mutants. We further show that the shapes of the dNTP/dF nascent base pair differ markedly from the corresponding dNTP/dT in the pol active site and that these differences have a profound effect on their incorporation efficiencies.  相似文献   

6.
Wang CX  Zakharova E  Li J  Joyce CM  Wang J  Konigsberg W 《Biochemistry》2004,43(13):3853-3861
DNA polymerases from the A and B families with 3'-5' exonucleolytic activity have exonuclease domains with similar three-dimensional structures that require two divalent metal ions for catalysis. B family DNA polymerases that are part of a replicase generally have a more potent 3'-5' exonuclease (exo) activity than A family DNA polymerases that mainly function in DNA repair. To investigate the basis for these differences, we determined pH-activity profiles for the exonuclease reactions of T4, RB69, and phi29 DNA polymerases as representatives of B family replicative DNA polymerases and the Klenow fragment (KF) as an example of a repair DNA polymerase in the A family. We performed exo assays under single-turnover conditions and found that excision rates exhibited by the B family DNA polymerases were essentially independent of pH between pH 6.5 and 8.5, whereas the exo activity of KF increased 10-fold for each unit increase in pH. Three exo domain mutants of RB69 polymerase had much lower exo activities than the wild-type enzyme and exhibited pH-activity profiles similar to that of KF. On the basis of pH versus activity data and elemental effects obtained using short double-stranded DNA substrates terminating in phosphorothioate linkages, we suggest that the rate of the chemical step is reduced to the point where it becomes limiting with RB69 pol mutants K302A, Y323F, and E116A, in contrast to the wild-type enzyme where chemistry is faster than the rate-determining step that precedes it.  相似文献   

7.
Bacteriophage RB69 DNA polymerase (RB69 pol) has served as a model for investigating how B family polymerases achieve a high level of fidelity during DNA replication. We report here the structure of an RB69 pol ternary complex at 1.8 ? resolution, extending the resolution from our previously reported structure at 2.6 ? [Franklin, M. C., et al. (2001) Cell 105, 657-667]. In the structure presented here, a network of five highly ordered, buried water molecules can be seen to interact with the N3 and O2 atoms in the minor groove of the DNA duplex. This structure reveals how the formation of the closed ternary complex eliminates two ordered water molecules, which are responsible for a kink in helix P in the apo structure. In addition, three pairs of polar-nonpolar interactions have been observed between (i) the Cα hydrogen of G568 and the N3 atom of the dG templating base, (ii) the O5' and C5 atoms of the incoming dCTP, and (iii) the OH group of S565 and the aromatic face of the dG templating base. These interactions are optimized in the dehydrated environment that envelops Watson-Crick nascent base pairs and serve to enhance base selectivity in wild-type RB69 pol.  相似文献   

8.
The 2.25 A resolution crystal structure of a pol alpha family (family B) DNA polymerase from the hyperthermophilic marine archaeon Thermococcus sp. 9 degrees N-7 (9 degrees N-7 pol) provides new insight into the mechanism of pol alpha family polymerases that include essentially all of the eukaryotic replicative and viral DNA polymerases. The structure is folded into NH(2)- terminal, editing 3'-5' exonuclease, and polymerase domains that are topologically similar to the two other known pol alpha family structures (bacteriophage RB69 and the recently determined Thermococcus gorgonarius), but differ in their relative orientation and conformation.The 9 degrees N-7 polymerase domain structure is reminiscent of the "closed" conformation characteristic of ternary complexes of the pol I polymerase family obtained in the presence of their dNTP and DNA substrates. In the apo-9 degrees N-7 structure, this conformation appears to be stabilized by an ion pair. Thus far, the other apo-pol alpha structures that have been determined adopt open conformations. These results therefore suggest that the pol alpha polymerases undergo a series of conformational transitions during the catalytic cycle similar to those proposed for the pol I family. Furthermore, comparison of the orientations of the fingers and exonuclease (sub)domains relative to the palm subdomain that contains the pol active site suggests that the exonuclease domain and the fingers subdomain of the polymerase can move as a unit and may do so as part of the catalytic cycle. This provides a possible structural explanation for the interdependence of polymerization and editing exonuclease activities unique to pol alpha family polymerases.We suggest that the NH(2)-terminal domain of 9 degrees N-7 pol may be structurally related to an RNA-binding motif, which appears to be conserved among archaeal polymerases. The presence of such a putative RNA- binding domain suggests a mechanism for the observed autoregulation of bacteriophage T4 DNA polymerase synthesis by binding to its own mRNA. Furthermore, conservation of this domain could indicate that such regulation of pol expression may be a characteristic of archaea. Comparion of the 9 degrees N-7 pol structure to its mesostable homolog from bacteriophage RB69 suggests that thermostability is achieved by shortening loops, forming two disulfide bridges, and increasing electrostatic interactions at subdomain interfaces.  相似文献   

9.
Structure of the replicating complex of a pol alpha family DNA polymerase   总被引:10,自引:0,他引:10  
Franklin MC  Wang J  Steitz TA 《Cell》2001,105(5):657-667
We describe the 2.6 A resolution crystal structure of RB69 DNA polymerase with primer-template DNA and dTTP, capturing the step just before primer extension. This ternary complex structure in the human DNA polymerase alpha family shows a 60 degrees rotation of the fingers domain relative to the apo-protein structure, similar to the fingers movement in pol I family polymerases. Minor groove interactions near the primer 3' terminus suggest a common fidelity mechanism for pol I and pol alpha family polymerases. The duplex product DNA orientation differs by 40 degrees between the polymerizing mode and editing mode structures. The role of the thumb in this DNA motion provides a model for editing in the pol alpha family.  相似文献   

10.
2'-5'-Oligoadenylate (2-5(A)) synthetases are a family of interferon-induced enzymes that are activated by double-stranded RNA. To understand why, unlike other DNA and RNA polymerases, they catalyze 2'-5' instead of 3'-5' phosphodiester bond formation, we used molecular modeling to compare the structure of the catalytic domain of DNA polymerase beta (pol beta) to that of a region of the P69 isozyme of 2-5(A) synthetase. Although the primary sequence identity is low, like pol beta, P69 can assume an alphabetabetaalphabetabetabeta structure in this region. Moreover, mutation of the three Asp residues of P69, which correspond to the three catalytic site Asp residues of pol beta, inactivated the enzyme without affecting its substrate and activator binding capacity, providing further credence to the concept that this region is the catalytic domain of P69. This domain is highly conserved among all 2-5(A) synthetase isozymes. Biochemical and mutational studies demonstrated that dimerization of the P69 protein is required for its enzyme activity. However, a dimer containing a wild type subunit and an inactive catalytic domain mutant subunit was also active. The rate of catalysis of the heterodimer was half of that of the wild type homodimer, although the two proteins bound double-stranded RNA and ATP equally well.  相似文献   

11.
Nowotny M  Yang W 《The EMBO journal》2006,25(9):1924-1933
In two-metal catalysis, metal ion A has been proposed to activate the nucleophile and metal ion B to stabilize the transition state. We recently reported crystal structures of RNase H-RNA/DNA substrate complexes obtained at 1.5-2.2 Angstroms. We have now determined and report here structures of reaction intermediate and product complexes of RNase H at 1.65-1.85 Angstroms. The movement of the two metal ions suggests how they may facilitate RNA hydrolysis during the catalytic process. Firstly, metal ion A may assist nucleophilic attack by moving towards metal ion B and bringing the nucleophile close to the scissile phosphate. Secondly, metal ion B transforms from an irregular coordination in the substrate complex to a more regular geometry in the product complex. The exquisite sensitivity of Mg(2+) to the coordination environment likely destabilizes the enzyme-substrate complex and reduces the energy barrier to form product. Lastly, product release probably requires dissociation of metal ion A, which is inhibited by either high concentrations of divalent cations or mutation of an assisting protein residue.  相似文献   

12.
We have previously observed that stepwise replacement of amino acid residues in the nascent base-pair binding pocket of RB69 DNA polymerase (RB69pol) with Ala or Gly expanded the space in this pocket, resulting in a progressive increase in misincorporation. However, in vivo results with similar RB69pol nascent base-pair binding pocket mutants showed that mutation rates, as determined by the T4 phage rI forward assay and rII reversion assay, were significantly lower for the RB69pol S565G/Y567A double mutant than for the Y567A single mutant, the opposite of what we would have predicted. To investigate the reasons for this unexpected result, we have determined the pre-steady-state kinetic parameters and crystal structures of relevant ternary complexes. We found that the S565G/Y567A mutant generally had greater base selectivity than the Y567A mutant and that the kinetic parameters for dNMP insertion, excision of the 3′-terminal nucleotide residue, and primer extension beyond a mispair differed not only between these two mutants but also between the two highly mutable sequences in the T4 rI complementary strand. Comparison of the crystal structures of these two mutants with correct and incorrect incoming dNTPs provides insight into the unexpected increase in the fidelity of the S565G/Y567A double mutant. Taken together, the kinetic and structural results provide a basis for integrating and interpreting in vivo and in vitro observations.  相似文献   

13.
Several variants of RB69 DNA polymerase (RB69 pol) with single-site replacements in the nascent base-pair binding pocket are less discriminating with respect to noncomplementary dNMP incorporation than the wild-type enzyme. To quantify the loss in base selectivity, we determined the transient-state kinetic parameters for incorporation of correct and all combinations of incorrect dNMPs by the exonuclease-deficient form of one of these RB69 pol variants, L561A, using rapid chemical quench assays. The L561A variant did not significantly alter the k(pol) and K(D) values for incorporation of correct dNMPs, but it showed increased incorporation efficiency (k(pol)/K(D)) for mispaired bases relative to the wild-type enzyme. The incorporation efficiency for mispaired bases by the L561A variant ranged from 1.5 x 10(-)(5) microM(-)(1) s(-)(1) for dCMP opposite templating C to 2 x 10(-)(3) microM(-)(1) s(-)(1) for dAMP opposite templating C. These k(pol)/K(D) values are 3-60-fold greater than those observed with the wild-type enzyme. The effect of the L561A replacement on the mutation frequency in vivo was determined by infecting Escherichia coli harboring a plasmid encoding the L561A variant of RB69 pol with T4 phage bearing a mutant rII locus, and the rates of reversions to rII(+) were scored. The exonuclease-proficient RB69 pol L561A displayed a weak mutator phenotype. In contrast, no progeny phage were produced after infection of E. coli, expressing an exonuclease-deficient RB69 pol L561A, with either mutant or wild-type T4 phage. This dominant-lethal phenotype was attributed to error catastrophe caused by the high rate of mutation expected from combining the pol L561A and exo(-) mutator activities.  相似文献   

14.
J Liang  W N Lipscomb 《Biochemistry》1989,28(25):9724-9733
Self-consistent field molecular orbital (SCF MO) calculations at both 4-31G and STO-3G levels have been used to examine the binding conformations of sulfonamide and acetamide compounds to the active site of carbonic anhydrase. The results are as follows: (1) sulfonamide binds to the Zn2+ ion in its deprotonated form through the sulfonamide nitrogen to the fourth coordination site of the metal ion; (2) acetamide as neutral species binds to the basic form of the enzyme through the carbonyl oxygen to the fifth coordination site of the metal ion; and (3) the acetamidate ion binds to the acid form of the enzyme through the amide nitrogen to form a tetracoordinated metal complex with three histidine ligands. Analysis of the effects of individual active-site residues on the binding conformations of these inhibitors suggests that metal alone favors bidentate coordination of sulfonamidate and acetamidate complexes and that electron donation from three histidine ligands to the metal ion determines the formation of a tetracoordinated metal complex, which is further stabilized by the presence of Thr 199, as it receives one hydrogen bond from the sulfonamide NH- or from the acetamide NH- and donates a backbone NH hydrogen bond to a sulfonamide oxygen. The calculated binding conformation of sulfonamide and the hydrogen-bonding interactions between sulfonamide and the enzyme are consistent with the X-ray diffraction study of the AMSulf-HCA II complex. However, no X-ray structures are available for amide-HCA II complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Yang G  Wang J  Konigsberg W 《Biochemistry》2005,44(9):3338-3346
To investigate the molecular basis for the selective utilization of nucleoside triphosphates complementary to templating bases, by RB69 DNA polymerase (RB69 pol), we constructed a set of mutants that we predicted would perturb the "floor" of the nascent base-pairing interface in the enzyme. We then determined the pre-steady-state kinetic parameters for the incorporation of complementary and noncomplementary dNTPs by the exo(-) form of RB69 pol and its mutants. We found that the Y567A mutant had the same K(d) and k(pol) values for incorporation of C versus G as the wild-type exo(-) enzyme; however, the k(pol)/K(d) ratio for G versus G incorporation with the Y567A mutant was 10 times higher than the k(pol)/K(d) efficiency of G versus G incorporation using the exo(-) RB69 pol. The reduced level of discrimination by the Y567A mutant against incorporation of mismatched bases was also seen with the Y391A mutant. Stopped-flow fluorescence was also employed to monitor rates of putative conformational changes with the exo(-) RB69 pol and its mutants using a primer-template complex containing 2-aminopurine. The rates of fluorescence changes were equal to or greater than the rates of the rapid chemical quench, indicating that we were monitoring a process occurring before or during the phosphoryl transfer reaction. We have interpreted our results within the context of the crystal structure of the RB69 pol ternary complex [Franklin, M. C., et al. (2001) Cell 105, 657-667].  相似文献   

16.
Gennadios HA  Christianson DW 《Biochemistry》2006,45(51):15216-15223
LpxC is a zinc metalloenzyme that catalyzes the first committed step in the biosynthesis of lipid A, a vital component of the outer membrane of Gram-negative bacteria. Accordingly, the inhibition of LpxC is an attractive strategy for the treatment of Gram-negative bacterial infections. Here, we report the 2.7 A resolution X-ray crystal structure of LpxC from Aquifex aeolicus complexed with uridine 5'-diphosphate (UDP), and the 3.1 A resolution structure of LpxC complexed with pyrophosphate. The X-ray crystal structure of the LpxC-UDP complex provides the first view of interactions likely to be exploited by the substrate UDP group in the "basic patch" of the active site. The diphosphate group of UDP makes hydrogen bond interactions with strictly conserved residue K239 as well as solvent molecules. The ribose moiety of UDP interacts with partially conserved residue E197. The UDP uracil group hydrogen bonds with both the backbone NH group and the backbone carbonyl group of E160, and with the backbone NH group of K162 through an intervening water molecule. Finally, the alpha-phosphate and uracil groups of UDP interact with R143 and R262 through intervening water molecules. The structure of LpxC complexed with pyrophosphate reveals generally similar intermolecular interactions in the basic patch. Unexpectedly, diphosphate binding in both complexes is accompanied by coordination to an additional zinc ion, resulting in the identification of a new metal-binding site termed the E-site. The structures of the LpxC-UDP and LpxC-pyrophosphate complexes provide new insights with regard to substrate recognition in the basic patch and metal ion coordination in the active site of LpxC.  相似文献   

17.
Poly(A)-specific ribonuclease (PARN) is a highly poly(A)-specific 3'-exoribonuclease that efficiently degrades mRNA poly(A) tails. PARN belongs to the DEDD family of nucleases, and four conserved residues are essential for PARN activity, i.e. Asp-28, Glu-30, Asp-292, and Asp-382. Here we have investigated how catalytically important divalent metal ions are coordinated in the active site of PARN. Each of the conserved amino acid residues was substituted with cysteines, and it was found that all four mutants were inactive in the presence of Mg2+. However, in the presence of Mn2+, Zn2+, Co2+, or Cd2+, PARN activity was rescued from the PARN(D28C), PARN(D292C), and PARN(D382C) variants, suggesting that these three amino acids interact with catalytically essential metal ions. It was found that the shortest sufficient substrate for PARN activity was adenosine trinucleotide (A3) in the presence of Mg2+ or Cd2+. Interestingly, adenosine dinucleotide (A) was efficiently hydrolyzed in the presence of Mn2+, Zn2+, or Co2+, suggesting that the substrate length requirement for PARN can be modulated by the identity of the divalent metal ion. Finally, introduction of phosphorothioate modifications into the A substrate demonstrated that the scissile bond non-bridging phosphate oxygen in the pro-R position plays an important role during cleavage, most likely by coordinating a catalytically important divalent metal ion. Based on our data we discuss binding and coordination of divalent metal ions in the active site of PARN.  相似文献   

18.
The structures of human arylsulfatase A crystals soaked in solutions containing 4-methylumbelliferyl phosphate and O-phospho-DL-tyrosine have been determined at 2.7- and 3.2-A resolution, respectively. The formylglycine in position 69, a residue crucial for catalytic activity, was unambiguously identified in both structures as forming a covalent bond to the phosphate moiety. A hydroxyl group is present at the Cbeta of residue 69 and the formation of one out of two possible stereomeric forms is strongly favoured. The structures confirm the importance of the gem-diol intermediate in the arylsulfatase's catalytic mechanism. The presence of an apparently stable covalent bond is consistent with the weak phosphatase activity observed for human arylsulfatase A. The structures of the complexes suggest that phosphate ions and phosphate esters inhibit arylsulfatase in non-covalent and covalent modes, respectively. The metal ion present in the active site of arylsulfatase A isolated from human placenta is Ca(2+) and not Mg(2+) as was found in the structure of the recombinant enzyme.  相似文献   

19.
GTP cyclohydrolase I catalyses the hydrolytic release of formate from GTP followed by cyclization to dihydroneopterin triphosphate. The enzymes from bacteria and animals are homodecamers containing one zinc ion per subunit. Replacement of Cys110, Cys181, His112 or His113 of the enzyme from Escherichia coli by serine affords catalytically inactive mutant proteins with reduced capacity to bind zinc. These mutant proteins are unable to convert GTP or the committed reaction intermediate, 2-amino-5-formylamino-6-(beta-ribosylamino)-4(3H)-pyrimidinone 5'-triphosphate, to dihydroneopterin triphosphate. The crystal structures of GTP complexes of the His113Ser, His112Ser and Cys181Ser mutant proteins determined at resolutions of 2.5A, 2.8A and 3.2A, respectively, revealed the conformation of substrate GTP in the active site cavity. The carboxylic group of the highly conserved residue Glu152 anchors the substrate GTP, by hydrogen bonding to N-3 and to the position 2 amino group. Several basic amino acid residues interact with the triphosphate moiety of the substrate. The structure of the His112Ser mutant in complex with an undefined mixture of nucleotides determined at a resolution of 2.1A afforded additional details of the peptide folding. Comparison between the wild-type and mutant enzyme structures indicates that the catalytically active zinc ion is directly coordinated to Cys110, Cys181 and His113. Moreover, the zinc ion is complexed to a water molecule, which is in close hydrogen bond contact to His112. In close analogy to zinc proteases, the zinc-coordinated water molecule is suggested to attack C-8 of the substrate affording a zinc-bound 8R hydrate of GTP. Opening of the hydrated imidazole ring affords a formamide derivative, which remains coordinated to zinc. The subsequent hydrolysis of the formamide motif has an absolute requirement for zinc ion catalysis. The hydrolysis of the formamide bond shows close mechanistic similarity with peptide hydrolysis by zinc proteases.  相似文献   

20.
The 3' --> 5' exonuclease activity of proofreading DNA polymerases requires two divalent metal ions, metal ions A and B. Mutational studies of the 3' --> 5' exonuclease active center of the bacteriophage T4 DNA polymerase indicate that residue Asp-324, which binds metal ion A, is the single most important residue for the hydrolysis reaction. In the absence of a nonenzymatic source of hydroxide ions, an alanine substitution for residue Asp-324 reduced exonuclease activity 10-100-fold more than alanine substitutions for the other metal-binding residues, Asp-112 and Asp-219. Thus, exonuclease activity is reduced 10(5)-fold for the D324A-DNA polymerase compared with the wild-type enzyme, while decreases of 10(3)- to 10(4)-fold are detected for the D219A- and D112A/E114A-DNA polymerases, respectively. Our results are consistent with the proposal that a water molecule, coordinated by metal ion A, forms a metal-hydroxide ion that is oriented to attack the phosphodiester bond at the site of cleavage. Residues Glu-114 and Lys-299 may assist the reaction by lowering the pK(a) of the metal ion-A coordinated water molecule, whereas residue Tyr-320 may help to reorient the DNA from the binding conformation to the catalytically active conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号