首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work we provide evidence for the potential presence of a potassium channel in skeletal muscle mitochondria. In isolated rat skeletal muscle mitochondria, Ca(2+) was able to depolarize the mitochondrial inner membrane and stimulate respiration in a strictly potassium-dependent manner. These potassium-specific effects of Ca(2+) were completely abolished by 200 nM charybdotoxin or 50 nM iberiotoxin, which are well-known inhibitors of large conductance, calcium-activated potassium channels (BK(Ca) channel). Furthermore, NS1619, a BK(Ca)-channel opener, mimicked the potassium-specific effects of calcium on respiration and mitochondrial membrane potential. In agreement with these functional data, light and electron microscopy, planar lipid bilayer reconstruction and immunological studies identified the BK(Ca) channel to be preferentially located in the inner mitochondrial membrane of rat skeletal muscle fibers. We propose that activation of mitochondrial K(+) transport by opening of the BK(Ca) channel may be important for myoprotection since the channel opener NS1619 protected the myoblast cell line C2C12 against oxidative injury.  相似文献   

2.
Calcium-activated potassium channels from cultured rat skeletal muscle were treated with the protein-modifying reagent N-bromoacetamide (NBA) (0.3-1 mM) and studied in excised patches using patch-clamp techniques. After NBA treatment, channels opened only occasionally, and, in contrast to untreated channels, the open probability was no longer sensitive to intracellular surface calcium ions (1 nM to 100 microM). Channel activity did, however, exhibit a voltage dependence similar in direction and magnitude to that shown before NBA treatment (increasing e-fold with 19 mV depolarization). Distributions of open channel lifetimes revealed that NBA treatment virtually abolished openings of long duration, which suggests that this class of openings requires calcium sensitivity. These effects were not reversed by subsequent washing. Quantitatively similar open probability, voltage dependence, and open-interval distributions were observed in untreated channels in calcium-free medium. These results suggest that NBA removed a calcium-dependent component of channel opening, and that normal channels are able to open in the absence of significant intracellular calcium concentrations.  相似文献   

3.
Single channel recordings from cultured rat skeletal muscle have revealed a large conductance (230 pS) channel with a high selectivity for K+ over Na+. In excised patches of membrane, the probability of channel opening is sensitive to micromolar concentrations of calcium ions at the intracellular surface of the patch. Channel openings appear grouped together into bursts whose duration increases with Ca2+ and membrane depolarization. Statistical analysis of the individual open times during each burst showed that there are two distinct open states of similar conductance but dissimilar average lifetimes. These channels might contribute to a macroscopic calcium-activated potassium conductance in rat skeletal muscle and other preparations.  相似文献   

4.
The objective of this study was to detect ATP-sensitive K+ uptake in rat uterine smooth muscle mitochondria and to determine possible effects of its activation on mitochondrial physiology. By means of fluorescent technique with usage of K+-sensitive fluorescent probe PBFI (potassium-binding benzofuran isophthalate) we showed that accumulation of K ions in isolated mitochondria from rat myometrium is sensitive to effectors of KATP-channel (ATP-sensitive K+-channel) – ATP, diazoxide, glibenclamide and 5HD (5-hydroxydecanoate). Our data demonstrates that K+ uptake in isolated myometrium mitochondria results in a slight decrease in membrane potential, enhancement of generation of ROS (reactive oxygen species) and mitochondrial swelling. Particularly, the addition of ATP into incubation medium led to a decrease in mitochondrial swelling and ROS production, and an increase in membrane potential. These effects were eliminated by diazoxide. If blockers of KATP-channel were added along with diazoxide, the effects of diazoxide were removed. So, we postulate the existence of KATP-channels in rat uterus mitochondria and assume that their functioning may regulate physiological conditions of mitochondria, such as matrix volume, ROS generation and polarization of mitochondrial membrane.  相似文献   

5.
We modeled changes in contractile element kinetics derived from the cyclic relationship between myoplasmic [Ca(2+)], measured by indo 1 fluorescence, and left ventricular pressure (LVP). We estimated model rate constants of the Ca(2+) affinity for troponin C (TnC) on actin (A) filament (TnCA) and actin and myosin (M) cross-bridge (A x M) cycling in intact guinea pig hearts during baseline 37 degrees C perfusion and evaluated changes at 1) 20 min 17 degrees C pressure, 2) 30-min reperfusion (RP) after 30-min 37 degrees C global ischemia during 37 degrees C RP, and 3) 30-min RP after 240-min 17 degrees C global ischemia during 37 degrees C RP. At 17 degrees C perfusion versus 37 degrees C perfusion, the model predicted: A x M binding was less sensitive; A x M dissociation was slower; Ca(2+) was less likely to bind to TnCA with A x M present; and Ca(2+) and TnCA binding was less sensitive in the absence of A x M. Model results were consistent with a cold-induced fall in heart rate from 260 beats/min (37 degrees C) to 33 beats/min (17 degrees C), increased diastolic LVP, and increased phasic Ca(2+). On RP after 37 degrees C ischemia vs. 37 degrees C perfusion, the model predicted the following: A x M binding was less sensitive; A x M dissociation was slower; and Ca(2+) was less likely to bind to TnCA in the absence of A. M. Model results were consistent with reduced myofilament responsiveness to [Ca(2+)] and diastolic contracture on 37 degrees C RP. In contrast, after cold ischemia versus 37 degrees C perfusion, A x M association and dissociation rates, and Ca(2+) and TnCA association rates, returned to preischemic values, whereas the dissociation rate of Ca(2+) from A x M was ninefold faster. This cardiac muscle kinetic model predicted a better-restored relationship between Ca(2+) and cross-bridge function on RP after an eightfold longer period of 17 degrees C than 37 degrees C ischemia.  相似文献   

6.
Insulin binding, insulin degradation, and 2-deoxyglucose uptake were examined at 18 and 37 degrees C in soleus and extensor digitorum longus muscles of mice. Insulin binding and degradation were greater in the soleus than in the extensor digitorum longus at both temperatures (p less than 0.05). At 37 degrees C, binding was decreased in both muscles while percentage degradation was increased in comparison with 18 degrees C (p less than 0.05). Dose--response curves (percentage of binding at 4 nM of insulin) remained the same for both muscles at the two temperatures. Basal (no insulin) 2-deoxyglucose uptake was increased at 37 degrees C in the extensor digitorum longus but not the soleus. Insulin responsiveness in terms of the amount of 2-deoxyglucose taken up per femtomole of insulin bound was almost identical for the two muscles at 18 degrees C, whereas at 37 degrees C it was increased more in the soleus than in the extensor digitorum longus. The results indicate that in the presence of physiological concentrations of insulin (0.2-4 nM), insulin binding trends are minimally affected by increased temperature. In contrast, the ability of insulin to stimulate 2-deoxyglucose uptake varies between the two temperatures, and at the higher temperature between fast- and slow-twitch muscle.  相似文献   

7.
The Ca(2+) mobilizing metabolite cyclic ADP-ribose has been shown to release Ca(2+) from intracellular ryanodine sensitive stores in many cells. However, the activation of the ryanodine receptor of skeletal muscle by cADP-ribose (cADPr) and its precursor and metabolite (beta-NAD(+) and ADPr) remains to be discussed. We studied the effect of ADPr on the Ca(2+) release channel of skeletal muscle RyR1 after incorporation of microsomes isolated from fast muscles of rat in planar lipid bilayers. We observed an increase in the electrophysiological activity of the channel after addition of ADPr (10 microM) at micromolar Ca(2+) concentrations, characterized by a time-lag. The increase in P(o) is mainly due to an increase in the open frequency. The long time course observed for the development of the ADPr effect may indicate that this activation induces a change in the conformation of the RyR1 channel, which increases its sensitivity to calcium.  相似文献   

8.
To find out whether the decrease in muscle performance of isolated mammalian skeletal muscle associated with the increase in temperature toward physiological levels is related to the increase in muscle superoxide (O2) production, O2 released extracellularly by intact isolated rat and mouse extensor digitorum longus (EDL) muscles was measured at 22, 32, and 37°C in Krebs-Ringer solution, and tetanic force was measured in both preparations at 22 and 37°C under the same conditions. The rate of O2 production increased marginally when the temperature was increased from 22 to 32°C, but increased fivefold when the temperature was increased from 22 to 37°C in both rat and mouse preparations. This increase was accompanied by a marked decrease in tetanic force after 30 min incubation at 37°C in both rat and mouse EDL muscles. Tetanic force remained largely depressed after return to 22°C for up to 120 min. The specific maximum Ca2+-activated force measured in mechanically skinned fibers after the temperature treatment was markedly depressed in mouse fibers but was not significantly depressed in rat muscle fibers. The resting membrane and intracellular action potentials were, however, significantly affected by the temperature treatment in the rat fibers. The effects of the temperature treatment on tetanic force, maximum Ca2+-activated force, and membrane potential were largely prevented by 1 mM Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a membrane-permeable superoxide dismutase mimetic, indicating that the increased O2 production at physiological temperatures is largely responsible for the observed depression in tetanic force at 37°C by affecting the contractile apparatus and plasma membrane. intact mammalian muscle; physiological temperature; superoxide; excitation-contraction coupling; maximum Ca2+-activated force; muscle excitability; cytochrome c assay  相似文献   

9.
To find out whether the decrease in muscle performance of isolated mammalian skeletal muscle associated with the increase in temperature toward physiological levels is related to the increase in muscle superoxide (O(2)(*-)) production, O(2)(*-) released extracellularly by intact isolated rat and mouse extensor digitorum longus (EDL) muscles was measured at 22, 32, and 37 degrees C in Krebs-Ringer solution, and tetanic force was measured in both preparations at 22 and 37 degrees C under the same conditions. The rate of O(2)(*-) production increased marginally when the temperature was increased from 22 to 32 degrees C, but increased fivefold when the temperature was increased from 22 to 37 degrees C in both rat and mouse preparations. This increase was accompanied by a marked decrease in tetanic force after 30 min incubation at 37 degrees C in both rat and mouse EDL muscles. Tetanic force remained largely depressed after return to 22 degrees C for up to 120 min. The specific maximum Ca(2+)-activated force measured in mechanically skinned fibers after the temperature treatment was markedly depressed in mouse fibers but was not significantly depressed in rat muscle fibers. The resting membrane and intracellular action potentials were, however, significantly affected by the temperature treatment in the rat fibers. The effects of the temperature treatment on tetanic force, maximum Ca(2+)-activated force, and membrane potential were largely prevented by 1 mM Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a membrane-permeable superoxide dismutase mimetic, indicating that the increased O(2)(*-) production at physiological temperatures is largely responsible for the observed depression in tetanic force at 37 degrees C by affecting the contractile apparatus and plasma membrane.  相似文献   

10.
Single K channels from skeletal muscle sarcoplasmic reticulum were incorporated into artificial membranes. Ryanodine applied to either side of the membrane did not affect the gating nor the conductance properties of those channels. These results suggest that the site of action of ryanodine is limited only to the calcium channels present in the membrane of sarcoplasmic reticulum (1).  相似文献   

11.
12.
The kinetics of potassium tail currents have been studied in the omohyoid muscle of the rat using the three-microelectrode voltage-clamp technique. The currents were elicited by a two-pulse protocol in which a conditioning pulse to open channels was followed by a test step to varying levels. The tail currents reversed at a single well-defined potential (VK). At hyperpolarized test potentials (-100 mV and below), tail currents were inward and exhibited two clearly distinguishable phases of decay, a fast tail with a time constant of 2-3 ms and a slow tail with a time constant of approximately 150 ms. At depolarized potentials (-60 mV and above), tail currents were outward and did not show two such easily separable phases of decay, although a slow kinetic component was present. The slow kinetic phase of outward tail currents appeared to be functionally distinct from the slow inward tail since the channels responsible for the latter did not allow significant outward current. Substitution of Rb for extracellular K abolished current through the anomalous (inward-going) rectifier and at the same time eliminated the slow inward tail, which suggests that the slow inward tail current flows through anomalous rectifier channels. The amplitude of the slow inward tail was increased and VK was shifted in the depolarizing direction by longer conditioning pulses. The shift in VK implies that during outward currents potassium accumulates in a restricted extracellular space, and it is suggested that this excess K causes the slow inward tail by increasing the inward current through the anomalous rectifier. By this hypothesis, the tail current slowly decays as K diffuses from the restricted space. Consistent with such a hypothesis, the decay of the slow inward tail was not strongly affected by changing temperature. It is concluded that a single delayed K channel is present in the omohyoid. Substitution of Rb for K has little effect on the magnitude or time course of outward current tails, but reduces the magnitude and slows the decay of the fast component of inward tails. Both effects are consistent with a mechanism proposed for squid giant axon (Swenson and Armstrong, 1981): that (a) the delayed potassium channel cannot close while Rb is inside it, and (b) that Rb remains in the channel longer than K.  相似文献   

13.
The kinetic parameters for transport of the nonmetabolizable glucose analogue 3-O-methyl-D-glucose and the relationship between transport and metabolism of D-glucose and D-fructose were determined in isolated rat hepatocytes at 37 degrees C and pH 7.4. 3-O-Methylglucose at a very low concentration (0.1 mM) equilibrated with the intracellular water with a rate constant of 0.41 s-1. Km for equilibrium exchange entry was 5.5 mM and Vmax was 2.2 mM X s-1 and similar results were obtained when using the zero-trans entry protocol. The rate constant for entry of tracer D-glucose was 0.15 s-1 and Km for glucose was about 20 mM. The phosphorylation rate for D-glucose was much slower than the transport rate. The rate constant for D-fructose entry was about 0.04 s-1, the apparent Km was about 100 mM and Vmax about 5 mM X s-1. The concentration dependence of 3-O-methylglucose inhibition of labelled fructose transport revealed biphasic kinetics indicating that fructose was transferred by both the glucose transporter and a fructose transporter. At concentrations lower than 1 mM, fructose metabolism appeared to be limited by the transport step.  相似文献   

14.
We have developed a method for rapidly computing gating currents from a multiparticle ion channel model. Our approach is appropriate for energy landscapes that can be characterized by a network of well-defined activation pathways with barriers. To illustrate, we represented the gating apparatus of a channel subunit by an interacting pair of charged gating particles. Each particle underwent spatial diffusion along a bistable potential of mean force, with electrostatic forces coupling the two trajectories. After a step in membrane potential, relaxation of the smaller barrier charge led to a time-dependent reduction in the activation barrier of the principal gate charge. The resulting gating current exhibited a rising phase similar to that measured in voltage-dependent ion channels. Reduction of the two-dimensional diffusion landscape to a circular Markov model with four states accurately preserved the time course of gating currents on the slow timescale. A composite system containing four subunits leading to a concerted opening transition was used to fit a series of gating currents from the Shaker potassium channel. We end with a critique of the model with regard to current views on potassium channel structure.  相似文献   

15.
Using the isolated perfused rat hindlimb and the fluorocarbon-transfused rat, we have examined the optical characteristics of the rat skeletal muscle in the near-infrared region. The total contribution of myoglobin and cytochromes to the overall absorbance change was less than 10%. Analyzing transmitted light at 700, 730, and 805 nm, we found linear relationships between the absorbance and the hemoglobin concentrations at hematocrit values from 15 to 50% in the inflowing perfusate. Based on the relationship, we determined the ratio of absorption coefficients at 700, 730, and 805 nm of oxy- and deoxy-hemoglobins of blood in the thigh muscle. The values in thigh muscle were significantly smaller than those in hemoglobin solutions for deoxygenated blood. On the other hand, the values in thigh muscle were larger than those in hemoglobin solutions for oxygenated blood. Solving simultaneous equations by the use of these absorption coefficients, we calculated the changes in the contents of oxy-, deoxy-, and total hemoglobins in the anesthetized rat hindlimb under various conditions. The oxygen saturation of blood determined by our optical method in the thigh muscle was very close to that in the vena cava measured directly with a gas analyzer.  相似文献   

16.
17.
We have investigated the presence of diazoxide- and nicorandil-activated K+ channels in rat skeletal muscle. Activation of potassium transport in the rat skeletal muscle myoblast cell line L6 caused a stimulation of cellular oxygen consumption, implying a mitochondrial effect. Working with isolated rat skeletal muscle mitochondria, both potassium channel openers (KCOs) stimulate respiration, depolarize the mitochondrial inner membrane and lead to oxidation of the mitochondrial NAD-system in a strict potassium-dependent manner. This is a strong indication for KCO-mediated stimulation of potassium transport at the mitochondrial inner membrane. Moreover, the potassium-specific effects of both diazoxide and nicorandil on oxidative phosphorylation in skeletal muscle mitochondria were completely abolished by the antidiabetic sulfonylurea derivative glibenclamide, a well-known inhibitor of ATP-regulated potassium channels (K(ATP) channels). Since both diazoxide and nicorandil facilitated swelling of de-energised mitochondria in KSCN buffer at the same concentrations, our results implicate the presence of a mitochondrial ATP-regulated potassium channel (mitoK(ATP) channel) in rat skeletal muscle which can modulate mitochondrial oxidative phosphorylation.  相似文献   

18.
The gating of ion channels has widely been modeled by assuming that the transitions between open and closed states are a memoryless process. Nevertheless, analysis of records of unitary current events suggests that the kinetic process presents long lags (antipersistent correlation). Here, using the patch-voltage clamp technique and the rescaled range method, activity of single-channel delayed rectifier K(+) channels was studied. The experiment result showed that reversal potential was -73.3 mV in cell-attached mode. For the sequences of alternating open and shut time intervals, the Hurst coefficients were calculated for four different pipette potentials in rat dorsal root ganglion neurons. H=0.34169+/-0.00672 (n=4) for V=-30 mV; H=0.34632+/-0.0142 (n=3) for V=-40 mV; H=0.39237+/-0.0113 (n=4) for V=-50 mV; H=0.3954+/-0.0012 (n=4) for V=-60 mV. When the Hurst method was applied to the results from a simulated four-state Markovian model, it showed that it had different experimental data H coefficient, the distribution of the data values had no correlations between them, in particular, H=0.2531+/-0.00403 (n=50) for V=-40 mV. This indicates that open-dwell times and closed-dwell times are long lag (namely, antipersistent correlation) and do not change with the pipette potential applied to the patch.  相似文献   

19.
20.
A high-molecular-weight cysteine endopeptidase from rat skeletal muscle   总被引:2,自引:0,他引:2  
A cytosolic enzyme of high molecular weight (about 500 000), which attacks native or denatured proteins (inter alia, casein, globin and hexokinase) was purified about 1000-fold from mixed rat skeletal muscles, including muscles freed of mast cells by prior treatment of the animals with the degranulator, compound 48/80. Peptides of varying size were generated from radioactively labelled globin, but no free amino acids were formed; free tyrosine was also not released from azocasein. The pH optimum was 7.5 and the presence of an essential cysteine group was suggested because dithiothreitol (1 mM) stimulated the activity and N-ethylmaleimide (5 mM) and p-chloromercuriphenylsulphonic acid (1 mM) were inhibitors. The activity was markedly inhibited by Zn2+ but not by leupeptin, chymostatin or pepstatin. The enzyme was stabilized by ATP, at concentrations as low as 0.1 mM, against inactivation at 42 degrees C. The endopeptidase was clearly separated on gel chromatography from another large protease, also sensitive to Zn2+, but with marked aminopeptidase activity and the properties of hydrolase H. The activity levels of the protease, assayed after chromatography on Sepharose 6B of high-speed supernatant fractions, did not vary significantly in skeletal muscle samples which were derived from denervated, starved, diabetic or hyperthyroid animals, in all of which the abnormal physiological states expressed themselves as enhanced rates of tyrosine released by incubated soleus and extensor digitorum longus muscles. Nevertheless, the enzyme described here may be part of an ATP-dependent, multi-component proteolytic system similar to that already known to be present in reticulocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号