首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monospecific polyclonal antibodies against Paramecium tetraurelia calmodulin were prepared and labeled for calmodulin localization on different levels of resolution: by microinjection into living cells; with isolated cell surface complexes (cortices); on the ultrastructural level, using Lowicryl sections of non-permeabilized cells (with colloidal gold-protein A labeling of antibodies bound); or using permeabilized and gently fixed cells for incubation with peroxidase- or microperoxidase-tagged antibodies. Sites selectively labeled above cytoplasmic background largely coincided, irrespective of the method used, although sensitivity, resolution, and liability to redistribution of antigen were quite different. (The methodological diversification applied allowed for their mutual control.) Nonspecific binding can be largely excluded, since all these methods gave negative results with pre-immune sera. We reached the following conclusions on sites with selective calmodulin binding (above cytoplasmic background level) in P. tetraurelia cells. A pool of calmodulin co-localized with F-actin, not only in the cortex (including fibrous materials around ciliary basal bodies) but also around food vacuoles (phagosomes) and, to a lesser degree, around the buccal cavity. Trichocyst docking sites on the cell membrane, and coated pits also displayed calmodulin labeling, thus indicating the potential involvement of calmodulin in exo-endocytosis processes. Calmodulin was also enriched on membranes of compartments with presumable ion (possibly Ca2+) transport capacity, such as trichocysts and the osmoregulatory system. Not selectively labeled were nuclei, mitochondria, and some small lysosomal organelles (as identified in vivo by rhodamine 123 or acridine orange fluorescence, respectively).  相似文献   

2.
The presence of phosphorylated proteins associated with microtubule organizing centers in tissue culture cells during mitosis has been demonstrated by the use of monoclonal antibodies raised against mitotic HeLa cells [Vandre et al., Proc. Natl. Acad. Sci. U.S.A. 81:4439-4443, 1984]. We report here that in Paramecium two of the mitosis specific antibodies, MPM-1 and MPM-2, decorate throughout the cell cycle all the microtubule organizing centers (MTOCs) located in the cortex and in the oral apparatus (gullet). Immuno-electron microscopy showed that these antibodies labeled the electron-dense material surrounding basal bodies from which several microtubule networks as well as kinetodesmal fibers originate. During mitosis, these antibodies also stained other cortical cytoskeletal structures, the kinetodesmal fibers (MPM-1 and MPM-2) and the epiplasm (MPM-1). Among the different polypeptides recognized by the antibodies on immunoblots, three major ones of 60, 63, and 116 kDa were found to be common to the cortex (where several thousand ciliary basal bodies are anchored) and the oral apparatus (which comprises several hundred basal bodies around which various arrays of cytoplasmic microtubules are organized). Alkaline phosphatase treatment abolished the immunoreactivity of the polypeptides and the labeling observed by immunofluorescence. These results demonstrate that phosphorylated proteins are associated with all the known active microtubule organizing centers present in the cortex throughout the cell cycle of Paramecium. Furthermore they indicate that in Paramecium phosphorylation of proteins could also be involved in the cell cycle dependent dynamics of cortical cytoskeletal structures other than microtubules.  相似文献   

3.
In the ciliate Paramecium tetraurelia, 3',5'-cyclic GMP (cGMP) is one of the second messengers involved in several signal transduction pathways. The enzymes for its production and degradation are well established for these cells, whereas less is known about the potential effector proteins. On the basis of a current Paramecium genome project, we have identified a multigene family with at least 35 members, all of which encode cGMP-dependent protein kinases (PKGs). They can be classified into 16 subfamilies with several members each. Two of the genes, PKG1-1 and PKG2-1, were analyzed in more detail after molecular cloning. They encode monomeric enzymes of 770 and 819 amino acids, respectively, whose overall domain organization resembles that in higher eukaryotes. The enzymes contain a regulatory domain of two tandem cyclic nucleotide-binding sites flanked by an amino-terminal region for intracellular localization and a catalytic domain with highly conserved regions for ATP binding and catalysis. However, some Paramecium PKGs show a different structure. In Western blots, PKGs are detected both as cytosolic and as structure-bound forms. Immunofluorescence labeling shows enrichment in the cell cortex, notably around the dense-core secretory vesicles (trichocysts), as well as in cilia. Immunogold electron microscopy analysis reveals consistent labeling of ciliary membranes, of the membrane complex composed of cell membrane and cortical Ca2+ stores, and of regions adjacent to ciliary basal bodies, trichocysts, and trafficking vesicles. Since PKGs (re)phosphorylate the exocytosis-sensitive phosphoprotein pp63/pf upon stimulation, the role of PKGs during stimulated exocytosis is discussed, in addition to a role in ciliary beat regulation.  相似文献   

4.
In this paper we demonstrate the presence and localization of calmodulin, a calcium-dependent regulatory protein, in the ciliated protozoan Paramecium tetraurelia. Calmodulin is demonstrated by several criteria: (a) the ability of whole cell Paramecium extracts to stimulate mammalian phosphodiesterase activity, (b) the presence of an acidic, thermostable, 17,000-dalton polypeptide whose mobility shifts in SDS polyacrylamide gel electrophoresis in the presence of Ca2+, and (c) the affinity of antibodies against mammalian calmodulin for a Paramecium component as demonstrated by both indirect immunofluorescent localization and radioimmunoassay. Indirect immunofluorescence studies reveal that Paramecium calmodulin is distributed in three distinct regions of the cell, i.e., (a) large, spherical cytoplasmic organelles representing perhaps the food vacuoles or other vacuolar inclusions of the cell, (b) along the entire length of oral and somatic cilia, and (c) along a linear punctate pattern corresponding to the kinetics (basal bodies) of the cell.  相似文献   

5.
Sertoli cells of lizards are characterized by variable size, abundant smooth and rough endoplasmic reticulum, multivesicular bodies, lipid vacuoles probably related to the spermatogenic cycle, and mitochondria of normal size. The cytoskeleton contains actin, particularly abundant in the cell periphery, vimentin all around the nucleus and throughout the rest of the cytoplasm. Moreover, microtubules are distributed in the cell periphery. The junctional complexes demonstrate the presence of a very efficient blood-testis barrier, containing tight, gap, tight-gap, septate-like, desmosome-like, and "Sertoli-Sertoli" junctions. In the last, the actin layer interposed between the plasma membrane and the subsurface cistern is absent. The desmosome-like junctions are surrounded by 7-nm filaments and not by intermediate filaments.  相似文献   

6.
Summary The columnar cells in regions 3 and 4 of the ductus epididymidis in rabbits display ultrastructural features characteristic of absorbing cells. The stereocilia show basal anastomoses and often a fibrillar core continuous with a fibrillar web in the apical cytoplasm. Numerous invaginations of the slightly downy apical cell membrane and many thick-walled apical vesicles and vacuoles contain an opaque substance similar to that seen in the lumen. The vacuoles often contain small vesicles or bodies, probably formed from the vacuolar wall by budding. Numerous bodies or vacuoles with moderately dense contents are seen in the Golgi area and in the supranuclear and intranuclear cytoplasm in region 3. In region 4 they are denser and mainly seen above the nucleus. A high acid phosphatase activity was demonstrated in most dense and some light bodies. India ink introduced by way of the rete testis was taken up from the lumen into apical invaginations, vesicles and vacuoles and slowly transferred to denser bodies below the Golgi apparatus.These observations are interpreted as evidence for a resorption of substances from the lumen by a pinocytotic process, and for their storage and perhaps digestion in the dense bodies, which appear to have a lysosomal character. The Golgi apparatus is large with many vesicles of two types and empty cisternae but few typical Golgi vacuoles. The partly granular endoplasmic reticulum is very well developed and has opaque contents. Microtubules run from the terminal bar region into the Golgi area. Thick-walled vesicles occur throughout the cytoplasm, sometimes in continuity with the cell membrane. The basal parts of the cell borders often interdigitate.Supported by a grant from the Swedish State Medical Research Council.  相似文献   

7.
In living Paramecium cells, microinjected rhodaminyl (R)-phalloidin rapidly labels a thin cortical layer. This can be more clearly resolved with microinjected and fixed cells (allowing for better resolution) as well as with isolated pellicles (surface membrane complexes with trichocysts, microfilaments, and mitochondria attached). Labeling of a longitudinal and perpendicular pattern, reflecting the relief of the cell surface, and labeling of ciliary basal bodies then becomes clearly visible. Other structures labeled by R-phalloidin are the surfaces of food vacuoles of different sizes and, although inconsistently, the borders of the buccal cavity. Small acidic compartments (as identified by acridine orange fluorescence vital staining), probably representing acidosomes and small lysosomes, were not labeled. F-actin on food vacuole surfaces may somehow be involved in intracellular transport or fusion processes. No labeling was observed in association with the osmoregulatory system (contractile vacuoles and their ampullae and radial canals). The specificity of in vivo labeling obtained was supported by the abolition of R-phalloidin labeling when isolated pellicles were pretreated with unlabeled phalloidin or with DNAse I. It was also possible to discriminate among different layers of R-phalloidin binding in the cortex by detaching different layers of the surface complex from each other. Since localization of F-actin in ciliates has raised a considerable amount of dispute in the past, we also repeated all these experiments with RITC-labeled HMM, but we obtained essentially the same labeling pattern as with R-phalloidin. Ciliary basal bodies therefore clearly contain some F-actin. Our data shed some light on aspects of surface structuring and motility in these cells.  相似文献   

8.
We have identified an F-actin cytoskeletal network that remains throughout interphase, mitosis, and cytokinesis of higher plant endosperm cells. Fluorescent labeling was obtained using actin monoclonal antibodies and/or rhodamine-phalloidin. Video-enhanced microscopy and ultrastructural observations of immunogold-labeled preparations illustrated microfilament-microtubule co-distribution and interactions. Actin was also identified in cell crude extract with Western blotting. During interphase, microfilament and microtubule arrays formed two distinct networks that intermingled. At the onset of mitosis, when microtubules rearranged into the mitotic spindle, microfilaments were redistributed to the cell cortex, while few microfilaments remained in the spindle. During mitosis, the cortical actin network remained as an elastic cage around the mitotic apparatus and was stretched parallel to the spindle axis during poleward movement of chromosomes. This suggested the presence of dynamic cross-links that rearrange when they are submitted to slow and regular mitotic forces. At the poles, the regular network is maintained. After midanaphase, new, short microfilaments invaded the equator when interzonal vesicles were transported along the phragmoplast microtubules. Colchicine did not affect actin distribution, and cytochalasin B or D did not inhibit chromosome transport. Our data on endosperm cells suggested that plant cytoplasmic actin has an important role in the cell cortex integrity and in the structural dynamics of the poorly understood cytoplasm-mitotic spindle interface. F-actin may contribute to the regulatory mechanisms of microtubule-dependent or guided transport of vesicles during mitosis and cytokinesis in higher plant cells.  相似文献   

9.
All the lectin-FITC conjugates tested (ConA, RCA II, WGA) bind to the surface of Paramecium cells. Yet only WGA yields a distinct fluorescent pattern; it contours the basis of cilia and in some cells it brilliantly stains a few neighbouring rows of the regular surface fields in the anterioventral region (a region known to contain extensive fields of linear aggregates of freeze-fracture particles and to be engaged in conjugation). Incubation in vivo with WGA-FITC resulted in the selective labeling of the cytopharyngeal region as well as of the cytoproct. On Lowicryl K4M sections, WGA-gold probes concomitantly labeled disk-shaped vesicles that are assumed in the literature to serve as shuttle vesicles between these two cell regions and, thus, to connect forming and defecating digesting vacuoles (stages DV I and DV IV). On K4M sections WGA-Au stains also most other components of the lysosomal system. Also on K4M sections RCA II-Au labeled the walls of bacteria contained in DV I and II type digesting vacuoles (but not lysosomes identified bona fide by their size and shape and by their frequent vicinity to or continuity with digesting vacuoles). The WGA data largely support previous conclusions on the possible functional connection of all these elements (DV I-IV, smaller lysosomes, disk-shaped vesicles etc.) of the lysosomal system in Paramecium, as proposed by Allen and his group on the basis of other lines of evidence. As shown in the accompanying paper, ConA-FITC stained ghosts (formed after massive trichocyst exocytosis) also abut into DV-like structures. The different results obtained with the three lectins tested reflect the complex sorting machinery contained in the elaborate lysosomal system of a Paramecium cell. In the cytosol, finally, there occurs a particularly intense staining with ConA-gold, applied to Lowicryl sections, that probably represents glycogen-like particles. The same procedure reveals some weak staining of secretory contents and of nuclear structures.  相似文献   

10.
Thin sections of Lowicryl K4M-embedded materials were labeled with protein A-gold complex. Gold particles representing the antigen sites for cathepsin B were exclusively confined to lysosomes of each segment of the nephron. The heaviest labeling was noted in the lysosomes of the S1 segment of the proximal tubules. Labeling intensity varied considerably with the individual lysosomes. Lysosomes of the other tubular segments, such as the S2 and S3 segments of the proximal tubules, distal convoluted tubules, and collecting tubules were weakly labeled by gold particles. Quantitative analysis of labeling density also confirmed that lysosomes in the S1 segment have the highest labeling density and that approximately 65% of labeling in the whole renal segments, except for the glomerulus, was found in the S1 segment. These results indicate that in rat kidney the lysosomes of the S1 segment are a main location of cathepsin B. Further precise observations on lysosomes of the S1 segment revealed that apical vesicles, tubules, and vacuoles were devoid of gold particles, but when the vacuoles contained fine fibrillar materials, gold labeling was detectable in such vacuoles. As the lysosomal matrix becomes denser, the labeling density is increased. Some small vesicles around the Golgi complex were also labeled. These results indicate that the endocytotic apparatus including the apical vesicles, tubules, and vacuoles contains no cathepsin B. When the vacuoles develop into phagosomes, they acquire this enzyme to digest the absorbed proteins.  相似文献   

11.
The characterization of the two Paramecium gamma-tubulin genes, gammaPT1 and gammaPT2, allowed us to raise Paramecium-specific antibodies, directed against their most divergent carboxy-terminal peptide and to analyze the localization and dynamics of gamma-tubulin throughout the cell cycle. As in other cell types, a large proportion of the protein was found to be cytosolic, but in contrast to the general situation, gamma-tubulin was found to be permanently associated to four types of sites: basal bodies, the micronuclear compartment--within which mitotic and meiotic spindles develop without membrane breakdown, the pores of the contractile vacuoles and the cytoproct which are cortical microtubular organelles fulfilling excretory functions. In addition, a transient site of gamma-tubulin and microtubule assembly was observed at the site of nuclear exchange during conjugation. This complexity accounts for the nucleation of most of the numerous and diverse microtubule arrays present in Paramecium. The sites and mode of nucleation of the microtubule bundles formed in the macronuclear compartment during division remain unclear. These observations lead us to discuss the relationships between microtubules, gamma-tubulin and MTOCs.  相似文献   

12.
In Paramecium, several kinds of the oral networks of fine filaments are defined at the ultrastructural level. Using the sodium chloride-treated oral apparatus of Paramecium as an antigen to produce monoclonal antibodies, we have begun to identify the proteins constituting these networks. Immunoblotting showed that all positive antibodies were directed against three bands (70-, 75-and 83-kD), which corresponded to quantitatively minor components of the antigen; there was no antibody specific for the quantitatively major components (58- and 62-kD). Immunolocalization with four of these antibodies directed against one or several of these three bands showed that these proteins are components of the fine filaments supporting the oral area; a decoration of the basal bodies and the outer lattice was also observed on the cortex. Immunofluorescence on interphase cells suggested that the three proteins colocalized on the left side of the oral apparatus, whereas only the 70-kD band was detected on the right side. During division, the antigens of the antibodies were detected at different stages after oral basal body assembly. The antibodies cross-reacted with the tetrins, which are oral filament-forming proteins in Tetrahymena, demonstrating that tetrin-related proteins are quantitatively minor components of the oral and the somatic cytoskeleton of Paramecium.  相似文献   

13.
Ten years of research on digestive vacuoles (phagosomes) of Paramecium caudatum have revealed sequential changes both within the vacuole lumen as well as within the surrounding membrane. Four vacuole stages can be recognized by a combination of thin section and freeze-fracture ultrastructural features. Three sets of vesicles (discoidal vesicles, acidosomes, and lysosomes) fuse with the vacuole, each at a predetermined stage, to bring about these membrane and physiological changes. At various times membrane is removed as vesicles from the vacuole surface, which has the effect of regulating vacuole size. Membrane recycling, membrane replacement, and specific membrane to membrane recognition all appear to be operating during the digestive cycle. Details of these events are summarized in this address and a number of unanswered questions suggest areas for future research.  相似文献   

14.
In Paramecium, the morphogenesis of the cortex at cell division, which assures reconstruction of shape and surface pattern, has been shown to involve transcellular signals which spread across the cortex like a wave, originating principally from the oral apparatus. One of the events these signals control is the reorganization of the ciliary rootlets through a cycle of regression and regrowth. The ciliary rootlets are nucleated on the ciliary basal bodies and form a scaffold extending over the entire cell surface that is important in aligning the basal bodies and the unit territories organized around them in longitudinal rows. We present evidence that the mechanism underlying their reorganization is cell-cycle-dependent phosphorylation of the structural proteins which compose the ciliary rootlets. We have isolated the rootlets and prepared a polyclonal antibody against them. In situ immunofluorescence of dividing cells with the anti rootlet antibody, and with the monoclonal antibody MPM-2 specific for phosphoproteins shows that a wave of phosphorylation of the ciliary rootlets spreads across the cell at division and just precedes their regression. Two-dimensional Western blot analysis of cytoskeleton and isolated rootlets along with alkaline phosphatase treatment demonstrates that the rootlets are composed of phosphoproteins, while experiments with interphase and dividing cells provide direct evidence that hyperphosphorylation of these proteins at division brings about disassembly of the structure.  相似文献   

15.
For immunogold EM labeling analysis, we fixed Paramecium cells in 4% formaldehyde and 0.125% glutaraldehyde, followed by low-temperature embedding in unicryl and UV polymerization. We first quantified some obvious but thus far neglected side effects of section staining on immunogold labeling, using mono- or polyclonal antibodies (Abs) against defined secretory and cell surface components, followed by F(ab)(2)- or protein A-gold conjugates. Use of alkaline lead staining resulted in considerable rearrangement and loss of label unless sections were postfixed by glutaraldehyde after gold labeling. This artifact is specific for section staining with lead. It can be avoided by staining sections with aqueous uranyl acetate only to achieve high-resolution immunogold localization of a protein phosphatase on unicryl sections. In general, phosphatases are assumed to be closely, although loosely, associated with their targets. Because the occurrence of protein phosphatase 2B (calcineurin) in Paramecium has been previously established by biochemical and immunological work, as well as by molecular biology, we have used Abs against mammalian CaN or its subunits, CaN-A and CaN-B, for antigen mapping in these cells by quantitative immunogold labeling analysis. Using ABs against whole CaN, four structures are selectively labeled (with slightly decreasing intensity), i.e., infraciliary lattice (centrin-containing contractile cortical filament network), parasomal sacs (coated pits), and outlines of alveolar sacs (subplasmalemmal calcium stores, tightly attached to the cell membrane), as well as rims of chromatin-containing nuclear domains. In other subcellular regions, gold granules reached densities three to four times above background outside the cell but there was no selective enrichment, e.g., in cilia, ciliary basal bodies, cytosol, mitochondria, trichocysts (dense-core secretory organelles), and non-chromatin nuclear domains. Their labeling density was 4- to 8.5-fold (average 6.5-fold) less than that on selectively labeled structures. Labeling tendency was about the same with Abs against either subunit. Our findings may facilitate the examination of molecular targets contained in the selectively labeled structures. (J Histochem Cytochem 48:1269-1281, 2000)  相似文献   

16.
Rhodaminylated (R)-phalloidin microinjected into Paramecium tetraurelia cells at a final concentration of greater than or equal to 20 micrograms/ml produces considerable functional and structural changes. F-actin bundles (with 20 micrograms/ml phalloidin within 15 min) are formed, which subsequently (greater than 30 min) are sequestered into autophagic vacuoles; simultaneously, the originally intense fluorescence of a narrow cortical layer becomes more and more diminished. When such microinjected cells are processed for electron microscopy, they display concomitant ultrastructural alterations, namely, the formation of transcellular bundles of 5-7 nm-thick filaments, which subsequently appear in autophagosomes, as well as a considerable reduction of filamentous materials in the cortex. This, in turn, entails a considerable restructuring of the cortex, enabling free access of various structural components to the cortex. Higher doses of R-phalloidin abolish cytoplasmic streaming (e.g., 50 micrograms/ml after 20-30 min); although the cells may survive, new secretory organelles (trichocysts) are no longer docked to the cell membrane. In contrast, exocytosis of docked trichocysts (as well as subsequent membrane resealing and retrieval) is not impaired under any conditions. Cortical F-actin may account for the cytoplasmic streaming that may normally guarantee the delivery of new trichocysts to free docking sites at the cell membrane. When docking is inhibited by high R-phalloidin doses, excess free trichocysts are sequestered into autophagosomes (crinophagy). One of the most sensitive cell functions is food vacuole formation (assayed by prelabeling with India ink), which correlates with the presence of R-phalloidin labeling in the cytostomal region and around food vacuoles. The main conclusions from this work are that filamentous actin may be involved in structuring of the cortex and in cytoplasmic streaming, and may therefore influence the formation, and possibly the transcellular transport (cyclosis), of food vacuoles, as well as the docking of trichocysts, whereas it does not play a role in exocytosis per se or in the steps immediately following.  相似文献   

17.
Phagosome maturation is characterized by the sequential acquisition and loss of proteins by the phagocytic vacuole during the formation of an acidic and hydrolytic compartment where degradation of the phagocytosed particle occurs. Transfer of proteins to the maturing phagosome occurs by fusion with a range of vesicles. Here we describe direct fusion of early phagosomes with vesicles that appear to be derived from the biosynthetic pathway. In mouse bone marrow macrophages, the 51 kDa proform of cathepsin D was found in vesicles of the ER/Golgi network that could be discriminated from endosomal vesicles which in turn contained the 46 and 30 kDa processed forms of the enzyme. Procathepsin D was acquired by phagosomes formed around inert particles such as IgG-coated beads and could be "protected" by blocking acidification with Bafilomycin A1. Mycobacterium avium-containing vacuoles from established infections possessed both pro- and processed cathepsin D similar to early bead-containing phagosomes. In contrast phagosomes harboring dead mycobacteria demonstrated markedly enhanced acquisition of the 46kDa form within 4 h post internalization and only low levels of procathepsin D.  相似文献   

18.
Macrophage pseudopodia that surround objects during phagocytosis contain a meshwork of actin filaments and exclude organelles. Between these pseudopodia at the base of developing phagosomes, the organelle exclusion ceases, and lysosomes enter the cell periphery to fuse with the phagosomes. Macrophages also extend hyaline pseudopodia on the surface of nylon wool fibers and secrete lysosomal enzymes into the extracellular medium instead of into phagosomes. To analyze biochemically these concurrent alterations in cytoplasmic architecture, we allowed rabbit lung macrophages to spread on nylon wool fibers and then subjected the adherent cells to shear. This procedure caused the selective release of β-glucoronidase into the extracellular medium and yielded two fractions, cell bodies and isolated pseudopod blebs resembling podosomes, which are plasma-lemma-bounded sacs of cortical cytoplasm. Cytoplasmic extracts of the cell bodies eluted from nylon fibers contained two-thirds less actin-binding protein and myosin, and approximately 20 percent less actin and two-thirds of the other two proteins were accounted for in podosomes. The alterations in protein composition correlated with assays of myosin-associated EDTA-activated adenosine triphosphatase activity, and with a diminution in the capacity of extracts of nylon wool fiber-treated cell bodies to gel, a property dependent on the interaction between actin-binding protein and F-actin. However, the capacity of the remaining actin in cell bodies to polymerize did not change. We propose that actin-binding protein and myosin are concentrated in the cell cortex and particularly in pseudopodia where prominent gelation and syneresis of actin occur. Actin in the regions from which actin-binding protein and myosin are displaced disaggregates without depolymerizing, permitting lysosomes to gain access to the plasmalemma. Translocation of contractile proteins could therefore account for the concomitant differences in organelle exclusion that characterize phagocytosis.  相似文献   

19.
In ciliated protozoa, most nutrients are internalized via phagocytosis by food vacuole formation at the posterior end of the buccal cavity. The uptake of small-sized molecules and external fluid through the plasma membrane is a localized process. That is because most of the cell surface is internally covered by an alveolar system and a fibrous epiplasm, so that only defined areas of the cell surface are potential substance uptake sites. The purpose of this study is to analyze, by fluorescence confocal laser scanning microscopy, the relationship between WGA (Triticum vulgaris agglutinin) and dextran internalization in Paramecium primaurelia cells blocked in the phagocytic process, so that markers could not be internalized via food vacuole formation. WGA, which binds to surface constituents of fixed and living cells, was used as a marker for membrane transport and dextran as a marker for fluid phase endocytosis. After 3 min incubation, WGA-FITC is found on plasma membrane and cilia, and successively within small cytoplasmic vesicles. After a 10-15 min chase in unlabeled medium, the marked vesicles decrease in number, increase in size and fuse with food vacuoles. This fusion was evidenced by labeling food vacuoles with BSA-Texas red. Dextran enters the cell via endocytic vesicles which first localize in the cortical region, under the plasma membrane, and then migrate in the cytoplasm and fuse with other endocytic vesicles and food vacuoles. When cells are fed with WGA-FITC and dextran-Texas red at the same time, two differently labeled vesicle populations are found. Cytosol acidification and incubation in sucrose medium or in chlorpromazine showed that WGA is internalized via clathrin vesicles, whereas fluid phase endocytosis is a clathrin-independent process.  相似文献   

20.
We investigated the location of actin isoforms in relation to each other and to filament attachment sites by studying the edge-to-edge distribution of both immunofluorescence and immunogold probes in smooth muscle cells from three sources. Antibodies to alpha- or alpha,gamma-actin labeled uniformly across smooth muscle cells from each source. Antibodies to beta-cytoplasmic actin were concentrated on and near dense bodies, especially in gizzard smooth muscle, but were also located throughout the filament compartment. Double immunofluorescent labeling with antibodies to alpha- or alpha/gamma- and to beta-actin shows overlap of label at dense bodies and attachment plaques. Double immunofluorescent labeling with antibodies to alpha-actinin and to beta-actin identified dense bodies and attachment plaques as sites of colocalization. Immunogold labeling with anti-desmin was most prominent near dense bodies in the gizzard and was widely dispersed in vas deferens and arterial smooth muscle cells. Our results indicate that there is extensive overlap between the locations of contractile and cytoskeletal elements and, thus, do not support the two-domain model of smooth muscle structure. Tissue-specific organizational motif differences were seen when gizzard, vas deferens, and artery were compared and suggest that one model may not apply to these three smooth muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号