首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From a population of wild type S49 cells, a clone, DTB6, was isolated in a single step from selective medium containing thymidine and dibutyryl cyclic AMP that exhibited a 60% deficiency in AMP deaminase (AMP-D) activity. The AMP-D deficiency conferred to the DTB6 cells a striking susceptibility to killing by low concentrations of either adenine or adenosine, the latter in the presence of an inhibitor of adenosine deaminase activity. This growth supersensitivity of DTB6 cells toward adenine could be ameliorated by the addition of hypoxanthine to the culture medium. Immunoprecipitation of AMP-D from wild type and mutant cells revealed that the DTB6 cell line contained markedly diminished amounts of the AMP-D isozyme which reacts with antisera to the predominant isoform expressed in adult kidney. The quantities of the AMP-D isozyme immunoprecipitated by antisera raised to the predominant isoform prepared from adult heart were equivalent in the two cell lines. Although Northern blot analyses revealed no alterations in mRNA sizes or levels encoded by either of the AMP-D genes, Southern blots of genomic DNA hybridized to a cDNA specific for the ampd2 gene revealed the presence of a new BamHI restriction fragment in the DNA of DTB6 cells. These data suggested that a point mutation has occurred in the ampd2 gene of DTB6 cells which encodes the AMP-D isozyme recognized by the kidney antisera. The DTB6 cells also possessed a virtual complete deficiency in thymidine kinase activity. The two enzyme deficiencies were distinguishable. The ability to isolate single step mutants with two seemingly independent biochemical abnormalities raises the speculation that there may be some link between cellular functions responsible for purine nucleotide and thymidine metabolism.  相似文献   

2.
3.
4.
5.
We have shown that several isoforms of triadin, a protein involved in calcium release process through the ryanodine receptor, are expressed in rat skeletal muscle, and we have cloned two of these isoforms. One is the rat homolog of the 95-kDa triadin identified in rabbit skeletal muscle, and the second one, shorter, is a truncated form of the previous one, but with a new unique COOH-terminal end. We propose to name the two proteins identified here Trisk 95 and Trisk 51. We have produced antibodies specific to each isoform. Using these antibodies, we have shown that the newly identified protein, Trisk 51, is actually expressed in adult rat skeletal muscle and also in rat embryo skeletal muscle. Immunofluorescent labeling of rat skeletal muscle with anti-Trisk 95, anti-Trisk 51, or anti-ryanodine receptor antibodies shows a similar localization of these proteins, in the tissue. Transfection of L6 cells with cDNA of Trisk 51 or Trisk 95 leads to the expression of proteins with the expected molecular weight, identical to those detected in rat skeletal muscle. Both proteins appear during differentiation of satellite cells in myotubes which may indicate the involvement of these two isoforms in the building of a functional calcium release machinery.  相似文献   

6.
We have isolated a cDNA that encodes the human regulatory myosin light chain isoform predominant in adult atrial muscle. The cDNA contains an open reading frame of 175 amino acids and encodes a hydrophilic protein of a largely helical structure with two potential phosphorylation sites. The protein is different from any other regulatory myosin light chain so far described and is the product of a previously uncharacterized single copy gene. An isoform-specific probe was used to analyze the expression of this isoform in adult muscle and in cardiac and skeletal muscle development in vivo and in vitro. Parallel analysis of the corresponding human alkali myosin light chain (predominant in adult atrium) showed that both isoforms are expressed in early heart development, in both atrium and ventricle. Although the atrial alkali light chain is expressed throughout embryonic striated muscle development, the regulatory myosin light chain was not detected in skeletal myogenesis in vivo or in vitro. Thus the atrial isoforms are not universally or exclusively "paired" and can be independently regulated. We propose that the manner in which these particular isoforms fulfill the functional requirements of the muscle at different developmental times may have direct impact on their regulation.  相似文献   

7.
A cDNA clone for a Xenopus laevis skeletal muscle beta-tropomyosin (beta-TMad) isoform was isolated from an adult skeletal muscle cDNA library. Sequence analysis revealed that this clone corresponded to a second beta-tropomyosin mRNA distinct from the one that was previously characterized (beta-TMemb). The two skeletal beta-TM mRNAs originate from distinct genes and are differentially expressed during development. Beta-TMemb mRNA is expressed only in the somites of the early embryo while beta-TMad mRNA is expressed in pre-metamorphic tadpoles and adult skeletal muscles. We have isolated the promoter region of the beta-TMemb gene and shown that a DNA construct containing 2.9 kb of promoter region is properly expressed after injection in the embryo.  相似文献   

8.
We report here the isolation and characterization of cDNA and genomic sequences corresponding to a rat embryonic myosin heavy chain (MHC) protein. This gene, which is present as a single copy in the rat genome, comprises about 25 kilobase pairs of DNA and contains approximately 80% intronic sequences. The embryonic MHC gene belongs to a highly conserved multigene family, and exhibits a high degree of nucleotide and amino acid sequence conservation with other sarcomeric MHC genes from nematode to man. S1 nuclease mapping experiments using cDNA and genomic probes show that this MHC gene is transiently expressed during skeletal muscle development. Its mRNA is detected in fetal skeletal muscle during early development and persists up to 2 weeks after birth with the overlapping expression of neonatal and adult skeletal MHC mRNAs. However, this MHC is not expressed in the adult skeletal muscle with the exception of extraocular muscle fibers. The transient expression during muscle development of the isoform produced by this gene and its sequential replacement by other MHCs raises interesting questions about the mechanism controlling MHC isozyme transitions and the physiological significance of the individual MHCs in muscle fibers.  相似文献   

9.
10.
We have cloned and sequenced a cDNA from a human adult skeletal muscle cDNA library, encoding for a novel isoform of alpha-tubulin (tuba8) that is preferentially expressed in heart, skeletal muscle, and testis. A genomic DNA sequence from the chromosomal region 22q11 allowed us to determine the complete structure of the TUBA8 gene that mirrors the canonical exon/intron organization of the vertebrate alpha-tubulin genes. We also cloned and sequenced the cDNA of its murine homologue (MMU-TUBA8). The latter encodes for a protein that differs from its human counterpart in only three amino acids, revealing an extreme rate of conservation that is even extended to both the 3' and 5' UTRs of the mRNAs. Sequence comparison of these novel isoforms with other known alpha tubulins shows that tuba8 is the most divergent member of the mammalian alpha-tubulin family. The sequence peculiarity of the human and murine tuba8 strongly suggests that they might have functional significance and, according to the multi-tubulin hypothesis, that they might play specific functional roles in the cell cytoskeleton.  相似文献   

11.
Two cDNA libraries corresponding to polyA+ RNA from human adult skeletal muscle have been constructed by cloning in the PstI site of pBR322. Skeletal alpha actin cDNA clones have been isolated and characterized. Three of these plasmids have overlapping inserts which together contain the complete 5' non-coding and protein-coding region and part of the 3' untranslated region. Determination of the sequence of the cloned cDNA confirms the complete conservation in human of the amino-acid sequence of skeletal alpha actin compared to the rabbit or rat proteins. The 5' untranslated region, but not the 3' untranslated region, shows good homology with the corresponding one in the rat gene. Analysis of changes at silent sites within the protein-coding region suggests that the divergence of skeletal and cardiac alpha actin took place much earlier than the mammalian radiation. The plasmids described here have been used as probes to detect the homologous gene among the about thirty actin sequences present in the human genome.  相似文献   

12.
Denervation of skeletal muscle alters the expression of many genes, which may be important for establishing optimal conditions for reinnervation. Using the differential display technique we have attempted to discover neurally regulated genes in skeletal muscle. An mRNA that is up-regulated in denervated hind limb muscle was identified and cloned. The cDNA encodes an RNA-binding protein, which was discovered during the course of this work to be a nucleolar protein interacting with the fork-head associated domain of the proliferation marker protein Ki-67, and named NIFK. We show that the nifk gene is widely expressed in adult mouse tissues and that the expression is up-regulated in denervated hind limb muscle. No difference between expression in perisynaptic and extrasynaptic portions of muscle was observed. The widespread expression in adult tissues suggests that the NIFK protein has other functions in addition to its interaction with Ki-67, which is only expressed in proliferating cells.  相似文献   

13.
Expression of the myogenic gene MRF4 during Xenopus development.   总被引:5,自引:0,他引:5  
  相似文献   

14.
The inhibitor protein (PKI) of the cAMP-dependent protein kinase was first characterized from rabbit skeletal muscle. More recently a form of PKI was isolated and cloned from rat testis which shares relatively limited amino acid sequence with the rabbit skeletal muscle form. We have now isolated a cDNA from rat brain which encodes a protein corresponding to the rabbit skeletal muscle PKI. This establishes the presence of the "skeletal muscle" and "testis" proteins in the same species and therefore that they clearly represent distinct isoforms. We have also demonstrated that the isoform from testis, like the skeletal muscle isoform, is specific for the cAMP-dependent protein kinase and that it is able to inhibit this enzyme when expressed in cultured JEG-3 cells. Both forms contain the five specific amino acid recognition determinants which have been shown to be required for high affinity binding to the protein kinase catalytic site, although there is some noted lack of conservation of codons used for these residues. Overall, the two rat isoforms are only 41% identical at the amino acid level and 46% at the level of coding nucleotides. We propose that the rabbit skeletal muscle and rat testis forms be designated PKI alpha and PKI beta, respectively. Using Northern blot analysis, we have examined the tissue distribution of the two forms in the rat and their relative expression during development. In the adult rat, mRNA of the PKI alpha species is highest in muscle (both skeletal and cardiac) and brain (cortex and cerebellum).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
AMP deaminase (AMP-D) plays a critical role in energy metabolism in skeletal muscle. Prior studies have demonstrated AMP-D binds to myosin heavy chain in vitro, and it decorates the end of the A band in the myofibril. The present study presents evidence that proteolytic removal of 14 kilodaltons, presumably from the carboxy terminus, of the native 80K peptide does not eliminate catalytic activity but this deletion has a pronounced influence on binding of AMP-D to myosin in the presence of ATP. Comparison of the sequence of the rat skeletal muscle form of AMP-D to that of yeast AMP-D demonstrates conservation of an ATP binding site in the carboxy-terminal domain of the rat protein. These results provide a mechanism for regulating binding of AMP-D to myosin heavy chain in response to changes in ATP concentration and suggest a potential function for AMP-D/myosin complex formation in myocytes.  相似文献   

16.
In an attempt to define myosin heavy chain (MHC) gene organization and expression in adult human skeletal muscle, we have isolated and characterized genomic sequences corresponding to different human sarcomeric MHC genes (1). In this report, we present the complete DNA sequence of two different adult human skeletal muscle MHC cDNA clones, one of which encodes the entire light meromyosin (LMM) segment of MHC and represents the longest described MHC cDNA sequence. Additionally, both clones provide new sequence data from a 228 amino acid segment of the MHC tail for which no protein or DNA sequence has been previously available. One clone encodes a "fast" form of skeletal muscle MHC while the other clone most closely resembles a MHC form described in rat cardiac ventricles. We show that the 3' untranslated region of skeletal MHC cDNAs are homologous from widely separated species as are cardiac MHC cDNAs. However, there is no homology between the 3' untranslated region of cardiac and skeletal muscle MHCs. Isotype-specific preservation of MHC 3' untranslated sequences during evolution suggests a functional role for these regions.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号