首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
European eels (Anguilla anguilla) spawn in the remote Sargasso Sea in partial sympatry with American eels (Anguilla rostrata), and juveniles are transported more than 5000 km back to the European and North African coasts. The two species have been regarded as classic textbook examples of panmixia, each comprising a single, randomly mating population. However, several recent studies based on continental samples have found subtle, but significant, genetic differentiation, interpreted as geographical or temporal heterogeneity between samples. Moreover, European and American eels can hybridize, but hybrids have been observed almost exclusively in Iceland, suggesting hybridization in a specific region of the Sargasso Sea and subsequent nonrandom dispersal of larvae. Here, we report the first molecular population genetics study based on analysis of 21 microsatellite loci in larvae of both Atlantic eel species sampled directly in the spawning area, supplemented by analysis of European glass eel samples. Despite a clear East-West gradient in the overlapping distribution of the two species in the Sargasso Sea, we only observed a single putative hybrid, providing evidence against the hypothesis of a wide marine hybrid zone. Analyses of genetic differentiation, isolation by distance, isolation by time and assignment tests provided strong evidence for panmixia in both the Sargasso Sea and across all continental samples of European eel after accounting for the presence of sibs among newly hatched larvae. European eel has declined catastrophically, and our findings call for management of the species as a single unit, necessitating coordinated international conservation efforts.  相似文献   

2.
1 The Bibury long‐term data set contains information on annual fluctuations in the abundance of over 100 grasses and forbs in roadside verge vegetation over the period from 1958 to the present. Monitoring has been carried out every July by the same individual. The data set represents a unique long‐term record of the dynamics of a complete plant community.
2 Records for the most abundant taxa (including bare ground and litter) were used to determine the effect of climate variability on the year‐to‐year performance of the selected species. Residuals about the long‐term mean log biomass of each species (de‐trended where the species showed a significant increase or decrease in abundance over time) were correlated against indices of interannual climate variability. Plant and weather records were compared over 3‐month seasonal periods (March–May, June–August, September–November, December–February) or 6‐month seasonal periods (March–August, September–February), with time lags of 0, 1 and 2 years.
3 Principal components analysis (PCA) was used to formulate annual weather indices, using either conventional weather variables (temperature, rainfall and sunshine) or the Lamb catalogue of daily weather types.
4 Between 5% and 70% more correlations were observed than might be expected to occur by chance, depending on the season and the PCA index, indicating markedly non‐random plant–weather relationships. Total vegetation production was positively correlated with minimum spring temperature. The distribution of correlations was generally evenly distributed across the three lag periods.
5 In general, those species favoured by environmental stress or disturbance were promoted following warm dry springs and summers, whereas those favoured by more productive conditions were promoted following a wet growing season.  相似文献   

3.
Disruption of naturally evolved spatial patterns of genetic variation and local adaptations is a growing concern in wildlife management and conservation. During the last decade, releases of native taxa with potentially non-native genotypes have received increased attention. This has mostly concerned conservation programs, but releases are also widely carried out to boost harvest opportunities. The mallard, Anas platyrhynchos, is one of few terrestrial migratory vertebrates subjected to large-scale releases for hunting purposes. It is the most numerous and widespread duck in the world, yet each year more than three million farmed mallard ducklings are released into the wild in the European Union alone to increase the harvestable population. This study aimed to determine the genetic effects of such large-scale releases of a native species, specifically if wild and released farmed mallards differ genetically among subpopulations in Europe, if there are signs of admixture between the two groups, if the genetic structure of the wild mallard population has changed since large-scale releases began in the 1970s, and if the current data matches global patterns across the Northern hemisphere. We used Bayesian clustering (Structure software) and Discriminant Analysis of Principal Components (DAPC) to analyze the genetic structure of historical and present-day wild (n?=?171 and n?=?209, respectively) as well as farmed (n?=?211) mallards from six European countries as inferred by 360 single-nucleotide polymorphisms (SNPs). Both methods showed a clear genetic differentiation between wild and farmed mallards. Admixed individuals were found in the present-day wild population, implicating introgression of farmed genotypes into wild mallards despite low survival among released farmed mallards. Such cryptic introgression would alter the genetic composition of wild populations and may have unknown long-term consequences for conservation.  相似文献   

4.
The stock of the European eel is considered to be outside safe biological limits, following a dramatic demographic decline in recent decades (90–99% drop) that involves a large number of factors including overfishing, contaminants and environmental fluctuations. The aim of the present study is to estimate the effective population size of the European eel and the possible existence of a genetic bottleneck, which is expected during or after a severe demographic crash. Using a panel of 22 EST-derived microsatellite loci, we found no evidence for a genetic bottleneck in the European eel as our data showed moderate to high levels of genetic diversity, no loss of allele size range or rare alleles, and a stationary population with growth values not statistically different from zero, which is confirmed by finding comparable value of short-term and long-term effective population size. Our results suggest that the observed demographic decline in the European eel did not entail a genetic decline of the same magnitude. Forward-time simulations confirmed that large exploited marine fish populations can undergo genetic bottleneck episodes and experience a loss of genetic variability. Simulations indicated that the failure to pick up the signal of a genetic bottleneck in the European eel is not due to lack of power. Although anthropogenic factors lowered the continental stock biomass, the observation of a stable genetic effective population size suggests that the eel crash was not due to a reduction in spawning stock abundance. Alternatively, we propose that overfishing, pollution and/or parasites might have affected individual fitness and fecundity, leading to an impoverished spawning stock that may fail to produce enough good quality eggs. A reduced reproduction success due to poor quality of the spawners may be exacerbated by oceanic processes inducing changes in primary production in the Sargasso Sea and/or pathway of transport across the Atlantic Ocean leading to a higher larval mortality.  相似文献   

5.
Disentangling the demographic processes that determine the genetic structure of a given species is a fundamental question in conservation and management. In the present study, the population structure of the European eel was examined with a multidisciplinary approach combining the fields of molecular genetics and population dynamics modelling. First, we analyzed a total of 346 adult specimens of known age collected in three separate sample sites using a large panel of 22 EST-linked microsatellite loci. Second, we developed a European eel-specific model to unravel the demographic mechanisms that can produce the level of genetic differentiation estimated by molecular markers. This is the first study that reveals a pattern of genetic patchiness in maturing adults of the European eel. A highly significant genetic differentiation was observed among samples that did not follow an Isolation-by-Distance or Isolation-by-Time pattern. The observation of genetic patchiness in adults is likely to result from a limited parental contribution to each spawning event as suggested by our modelling approach. The value of genetic differentiation found is predicted by the model when reproduction occurs in a limited number of spawning events isolated from each other in time or space, with an average of 130-375 breeders in each spawning event. Unpredictability in spawning success may have important consequences for the life-history evolution of the European eel, including a bet-hedging strategy (distributing reproductive efforts over time) which could in turn guarantee successful reproduction of some adults.  相似文献   

6.
Due to broad‐scale habitat loss, European Rollers (Coracias garrulus) have been decreasing in numbers rapidly during the 20th century in parts of their European distribution range. In Austria, as of 2017, only a completely isolated relict population of two breeding pairs and a few non‐breeders remained in Styria compared to about 270 pairs in the 1950s. In 2018, no breeders have been recorded. Since 2002, all nestlings and adult birds in Austria have been ringed. Given the small census size, combined with lack of immigration from other populations, genetic depletion seems likely. In the present study, mitochondrial control region sequence and microsatellite data based on blood samples of nestlings from recent years were collected and compared with museum samples from historical times (when Rollers were more common and widespread in Austria) and with birds across the distribution range to arrive at a first preliminary phylogeographic dataset for the species. The mitochondrial DNA showed a decrease in variation over time in Austria, eventually reaching monomorphism, while genetic diversity of 10 microsatellite loci was higher than expected and a change in genetic structuring through time was observed. These results indicate drift effects in this relict European Roller population caused by the fast population breakdown and small population size. Our phylogeographic analysis indicates a division into a European and an Asian group, roughly (but not exactly) in accordance with the two subspecies C. garrulus garrulus (Europe) and Coracias garrulus semenowi (Asia). The lack of substructuring in the European group along with the results from nuclear DNA markers show the Austrian Rollers to be part of a formerly continuous population and opens the way to restocking the present relict population with birds from Eastern Europe (“genetic rescue”).  相似文献   

7.
Genetic techniques and long‐term behavioural observations were combined to investigate dispersal patterns and changes in social position in Neolamprologus pulcher , a co‐operatively breeding cichlid from Lake Tanganyika. Comparisons of genetic variance ( F ST) across sub‐populations demonstrated that fish were genetically more similar to individuals from proximate sub‐populations compared to individuals from distant sub‐populations. Microsatellite analyses revealed year‐long philopatry for some individuals and that other individuals dispersed to new territories and sub‐populations. Individuals appeared to disperse farther (across many territories in a sub‐population or to new sub‐populations) to achieve breeding status. Non‐breeding group members (or helpers) were observed to inherit breeding positions and male breeders were replaced faster than female breeders. These results demonstrate that important and difficult to obtain life‐history information can be obtained from genetic sampling.  相似文献   

8.
Eels are unique species in the biological world. The two North Atlantic eel species, the American eel (Anguilla rostrata) and the European eel (A. anguilla), occupy a broad range of habitats from the Caribbean to Greenland in the western Atlantic and from Morocco to Iceland in the eastern Atlantic, respectively. North Atlantic eels have a catadromous life cycle, spawning only in the Sargasso Sea and spending the majority of their lives in continental (fresh, brackish and coastal) waters. Despite such a wide distribution range, North Atlantic eels have been regarded as a textbook example of panmictic species. In contrast with the large amount of population genetic studies testing the panmixia hypothesis in the European eel, a relatively modest effort has been given to study the population structure of the American eel. In this issue of Molecular Ecology, Côté et al. ( 2013 ) present the most comprehensive American eel data set to date, which includes samples of different life stages obtained throughout all its distribution range in North America. Results show a total lack of genetic differentiation among samples and provide decisive evidence for panmixia in the American eel.  相似文献   

9.
Synopsis We investigated the relationship between conservation status and genetic variability in European and North American Atlantic salmon, Salmo salar, populations, many of which have suffered severe bottlenecks. A negative north--south cline exists for the status of population conservation in this species. A literature review of genetic variability and demographic parameters of wild Atlantic salmon populations resulted in no statistical associations between population conservation status and genetic variation at enzyme or VNTR loci. We found however, a negative relationship between male parr maturation rates and geographical latitude for both American and European populations. The increase in effective population size due to participation by mature male parr and the increased proportions of these males in smaller (southern) populations could explain the lack of expected relationship between genetic variation and conservation status.  相似文献   

10.
Large escapes of cultured salmon from net‐pens have become inevitable disasters linked to the growth of aquaculture in coastal areas. Hybridization between farmed and wild salmon has been witnessed; but the extent of eventual genetic introgression is controversial as selection against hybrids can maintain distinct gene pools. Individual assignment tests based on genetic data have been widely used in fisheries, due to the importance of accurate population assignment for a variety of purposes including distinction between individuals of native and stocked origin. However the ability of these Bayesian programs to detect hybrids and subsequent generations between closely related populations has been little investigated. Here we present results regarding the efficiency of two new computer programs, structure and New Hybrids in detecting hybridization between farmed and wild salmon from the river Teno (Northern Europe) based on genetic data obtained from 17 microsatellite loci.  相似文献   

11.
Twelve polymorphic allozyme loci were employed to assess the genetic change in a captive breeding population of the endangered killifish Aphanius baeticus in the Doñana National Park, south‐western Spain. The initial founder event did not significantly reduce the allelic richness or the expected heterozygosity. No genetic bottleneck signature was detected by tests for deviation from mutation‐drift equilibrium. The F ST between the wild source and captive population, however, was relatively high (0·053 or 0·122 when excluding or including the locus IDHP‐1 * respectively), after just two to three generations in captivity. Two generations after the incorporation of 68 new wild specimens (greater than five generations after founding) decreased the genetic differences and the F ST(0·041 excluding IDHP‐1 *). The restoration efforts appeared to be helpful and the study of 12 polymorphic loci and a sensitive parameter such as F ST were useful for monitoring genetic changes in captivity. Nonetheless, future monitoring should include additional highly polymorphic loci (microsatellites) to achieve higher power to detect genetic change. Such restoration and monitoring efforts should help to avoid rapid inbreeding, adaptation to captivity, and to maintain the long‐term evolutionary potential in small isolated populations.  相似文献   

12.
Using evolutionary theory to predict the dynamics of populations is one of the aims of evolutionary conservation. In endangered species, with geographic range extending over continuous areas, the predictive capacity of evolutionary‐based conservation measures greatly depends on the accurate identification of reproductive units. The endangered European eel (Anguilla anguilla) is a highly migratory fish species with declining population due to a steep recruitment collapse in the beginning of the 1980s. Despite punctual observations of genetic structure, the population is viewed as a single panmictic reproductive unit. To understand the possible origin of the detected structure in this species, we used a combination of mitochondrial and nuclear loci to indirectly evaluate the possible existence of cryptic demes. For that, 403 glass eels from three successive cohorts arriving at a single location were screened for phenotypic and genetic diversity, while controlling for possible geographic variation. Over the 3 years of sampling, we consistently identified three major matrilines which we hypothesized to represent demes. Interestingly, not only we found that population genetic models support the existence of those matriline‐driven demes over a completely panmictic mode of reproduction, but also we found evidence for asymmetric gene flow amongst those demes. We uphold the suggestion that the detection of demes related to those matrilines reflect a fragmented spawning ground, a conceptually plausible consequence of the low abundance that the European eel has been experiencing for three decades. Furthermore, we suggest that this cryptic organization may contribute to the maintenance of the adaptive potential of the species.  相似文献   

13.
Lemer S  Planes S 《Molecular ecology》2012,21(12):2949-2962
Translocation has been widely studied as a tool for conservation management to restore or enhance degraded populations. On the contrary, few studies have been conducted on translocation for commercial purposes. In this study, we evaluate the genetic consequences of translocation of wild individuals of Pinctada margaritifera on farmed and adjacent wild populations. We tested the hypotheses that translocations would induce high genetic heterogeneity in farmed populations and this heterogeneity would then leak into the adjacent wild populations. In fact, farmed samples exhibit high levels of heterogeneity and low pairwise relatedness compared to wild populations, highlighting the pooling of genetically divergent populations into farms. We also demonstrate that this heterogeneity is transmitted to adjacent wild populations as a result of interbreeding. Adjacent wild populations tend to have higher genetic diversity values and greater pairwise relatedness coefficient with farmed populations than wild populations. Overall, pearl culture in French Polynesia promotes the mixing of unrelated individuals in farmed locations and reduces genetic divergence among geographically distant populations as well as among farmed and wild populations of a same lagoon. We also studied for the first time a farmed population originating from spat collected in a lagoon where release of hatchery-produced larvae occurred 10 years ago and we were able to identify four distinct genetic groups. These groups contribute highly to reproduction and caused considerable genetic drift in the lagoon, suggesting that hatchery-produced larvae are neither sustainable method for pearl culture nor for conserving the diversity of P. margaritifera in French Polynesia.  相似文献   

14.
Ciesla  M.  & Kaczkowski  Z. 《Journal of fish biology》2004,65(S1):327-327
Nase Chondrostoma nasus L., once one of the most common fish species in the upper reaches of central European rivers, is now considered endangered throughout its natural range. Since 2000 the Department of Ichthyobiology and Fisheries, Warsaw Agricultural University, has co-operated with the Polish Anglers Association in Krosno to study the effects of river restocking with pond‐farmed nase juveniles. The experiment is carried out on Wislok River, where nase was very twenty years ago but has now completely disappeared. Selected parts of the river are stocked with tagged, one‐summer and 1 year‐old juveniles. Changes in nase occurrence, and their growth and foraging behaviour have been analysed.  相似文献   

15.
Panmictic species pose particular problems for conservation because their welfare can be addressed effectively only on a global scale. We recently documented by means of microsatellite analysis that the European eel (Anguilla anguilla) is not panmictic but instead shows genetic isolation by distance. In this study, we extended the analysis to the American eel (A. rostrata) by applying identical analytical procedures and statistical power. Results obtained for the American eel were in sharp contrast with those obtained for the European eel: the null hypothesis of panmixia could not be rejected, and no isolation by distance was detected. This implies that the species must be managed as a single population. Using Bayesian statistics, we also found that the effective population sizes for both species were surprisingly low and that the populations had undergone severe contractions, most probably during the Wisconsinan glaciation. The apparent sensitivity of eels to climatic changes affecting the strength and position of the Gulf Stream 20,000 years ago is particularly worrying, given the effects of the ongoing global warming on the North Atlantic climate. Moreover, additional short-term stresses such as surging glass eel prizes, overfishing and lethal parasitic infections negatively affect eel population size. The fascinating transatlantic migration and life cycle of Atlantic eels is also their Achilles' heel as these negative short- and long-term effects will probably culminate in a fatal synergy if drastic conservation measures are not implemented to protect these international biological resources.  相似文献   

16.
High degree of population subdivision in a widespread amphibian   总被引:5,自引:0,他引:5  
In general, amphibians are known to exhibit a higher degree of population subdivision than any other major animal taxa, but large-scale population genetic surveys of widely distributed species are still scarce, especially in the Eurasian continent. Using microsatellite markers and mitochondrial DNA sequences, we investigated the large-scale population genetic structure of the common frog (Rana temporaria)--one of the most widespread amphibians of the Palearctic region. Analyses of cytochrome b sequences revealed evidence for two distinct lineages inhabiting western and eastern parts of Europe. The separation of these lineages c. 700,000 years ago may have been induced by the onset of the Middle Pleistocene continental glaciations. Analyses of the variability of microsatellite loci within each of the clades revealed evidence for evolution of a high degree of population subdivision (FST approximately 0.23) even in northern Fennoscandia, colonized less than 10,000 years ago. The high level of substructuring is puzzling in the face of an apparently high dispersal capacity, as evidenced by the rather rapid recolonization of northern Europe. This suggests that processes other than restricted dispersal capacity need to be explored as explanations for the high degree of population subdivision in amphibians. The colonization of northern Europe has been accompanied by loss of genetic variability as evidenced by decreasing levels of intrapopulational genetic variability in microsatellite loci from south to north across Europe.  相似文献   

17.
Life history traits of highly vagile marine species, such as adult reproductive success and larval dispersal, are strongly determined by oceanographic and climatic forces. Nevertheless, marine organisms may show restricted dispersal in time and space. Patterns of isolation by distance (IBD) have been repeatedly observed in marine species. If spawning time is a function of geographical location, temporal and spatial isolation, can easily be confounded or misinterpreted. In this study, we aimed at discriminating between various forces shaping the genetic composition of recruiting juveniles of the European eel (Anguilla anguilla L.). By controlling for geographical variation, we assessed temporal variation and tested for possible isolation by time (IBT) between recruitment waves within and between years. Using 12 polymorphic allozyme and six variable microsatellite loci, we show that genetic differentiation was low (F(ST) = 0.01-0.002) and significant between temporal samples. Regression analysis between genetic and temporal distance, was consistent with a subtle interannual pattern of IBT. Our data suggest that the population dynamics of the European eel may be governed by a double pattern of temporal variance in genetic composition: (i) a broad-scale IBT of spawning cohorts, possibly as a consequence of the large migration loop in anguillids and strong variance in annual adult reproductive contribution; and (ii) a smaller-scale variance in reproductive success (genetic patchiness) within cohorts among seasonally separated spawning groups, most likely originating from fluctuating oceanic and climatic forces. The consistency of both mechanisms remains to be verified with fine-scale analyses of both spawning/migrating aged adults and their offspring to confirm the stochastic/deterministic nature of the IBT pattern in eel.  相似文献   

18.
BACKGROUND AND AIMS: Molecular markers have changed previous expectations about germplasm collections of endangered plants, as new perspectives aim at holding a significant representation of all the genetic diversity in the studied species to accomplish further conservation initiatives successfully. Borderea chouardii is a critically endangered allotetraploid dioecious member of Dioscoreaceae, known from a single population in the Iberian pre-Pyrenees. This population was reported to be highly structured into two genetically distinct groups of individuals corresponding to their spatial separation along the vertical cliff where it grows. In 1999, the Spanish Government of Aragón launched the first conservation programme for the ex situ preservation of this species, and since then a seed collection has been conserved at the Germplasm Bank of the Universidad Politécnica de Madrid. However, as some seed samples had not been labelled clearly at the time of collection, their origin was uncertain. METHODS: Genetic variation in germplasm accessions of B. chouardii was investigated using microsatellite (simple sequence repeat; SSR) markers. KEY RESULTS: The 17 primer pairs used detected 62 SSR alleles in the 46 samples analysed from five different germplasm stocks. Eight alleles scored from the wild population were not detected in the germplasm samples analysed. The relatedness of the germplasm samples to the wild subpopulations through neighbour-joining clustering, principal coordinates analysis (PCO) and assignment tests revealed a biased higher representation of the genetic diversity of the lower cliff (43 samples) subpopulation than that of the upper cliff (three samples). CONCLUSIONS: The collection of additional samples from the upper cliff is recommended to achieve a better representation of the genetic diversity of this subpopulation. It is also recommended that these stocks should be managed separately according to their distinct microspatial origin in order to preserve the genetic substructuring of the wild population.  相似文献   

19.
The parasite fauna of Spanish mackerel Scomberomorus commerson from 10 sites across northern Australia and one site in Indonesia, was examined to evaluate the degree of movement and subsequent stock structure of the fish. Kupang fish (Indonesia) had very few Terranova spp., Grillotia branchi , Otobothrium cysticum or Pterobothrium sp. compared to Australian fish, indicating that no Australian fish enter the Kupang fishery. Univariate and discriminant function analysis of four 'temporary' parasite species, the copepod Pseudocycnoides armatus and the monogeneans Gotocotyla bivaginalis , Pricea multae and Pseudothoracocotyla ovalis , demonstrated little similarity between areas of northern Australia, indicating minimal short‐term exchange between neighbouring groups of S. commerson . Analyses of five 'permanent' parasite species, the larval helminths G. branchi , O. cysticum , Pterobothrium sp., Callitetrarhynchus gracilis and Paranybelinia balli , also revealed large differences between areas thus indicating long‐term separation. There are at least six parasitological stocks across northern Australia: Fog Bay/Bathurst Island, Cape Wessel, Groote/Sir Edward Pellew, Mornington Island, Weipa, and the Torres Strait. The occurrence of a few irregular fish in the samples suggested that up to 5% of fish moved between stocks during their lifetime. The similarity of within‐school variability to that between schools showed that the fish do not form long‐term school associations.  相似文献   

20.
Inferring past demography is a central question in evolutionary and conservation biology. It is, however, sometimes challenging to infer the processes that shaped the current patterns of genetic variation in endangered species. Population substructuring can occur as a result of survival in several isolated refugia and subsequent recolonization processes or via genetic drift following a population decline. The kea (Nestor notabilis) is an endemic parrot widely distributed in the mountains of the South Island of New Zealand that has gone through a major human‐induced population decline during the 1860s–1970s. The aims of this study were to understand the glacial and postglacial history of kea and to determine whether the recent population decline played a role in the shaping of the current genetic variation. We examined the distribution of genetic variation, differentiation and admixture in kea using 17 microsatellites and the mitochondrial control region. Mitochondrial data showed a shallow phylogeny and a genetic distinction between the North and South of the range consistent with the three genetic clusters identified with microsatellite data. Both marker types indicated an increase in genetic isolation by geographic distance. Approximate Bayesian Computation supported a scenario of postglacial divergence from a single ancestral glacial refugium, suggesting that the contemporary genetic structure has resulted from recolonization processes rather than from a recent population decline. The recent evolutionary origin of this genetic structure suggests that each genetic cluster does not need to be considered as independent conservation units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号