首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary structure of nuclease P1 from Penicillium citrinum   总被引:3,自引:0,他引:3  
The primary structure of nuclease P1, which cleaves both RNA and single-stranded DNA, from Penicillium citrinum was elucidated. The complete amino acid sequence consisting of 270 residues was determined by analysis of peptides obtained by digestion with Achromobacter protease I of the reduced and S-aminoethylated protein and by digestion with Staphylococcus aureus V8 protease of the reduced and S-carboxymethylated protein. Four half-cystine residues were assigned to Cys72-Cys217 and Cys80-Cys85. N-Glycosylated asparagine residues were identified at positions 92, 138, 184 and 197. Fast-atom-bombardment and laser-ionization MS were successfully used to confirm the determined amino acid sequences of peptides and to estimate the molecular mass of this glycoprotein having heterogenous sugar moieties, respectively. Comparison of the amino acid sequence of nuclease P1 with other nucleases revealed that the protein has a high degree of sequence identity (50%) with nuclease S1 from Aspergillus oryzae. The His-Phe-Xaa-Asp-Ala sequence (positions 60-64) is similar to the sequence (His-Phe-Asp-Ala) involving the active-site His119 of bovine pancreatic RNase A, and the Pro-Leu-His sequence (positions 124-126) is identical with the sequence involving the active-site His134 of porcine pancreatic DNase I.  相似文献   

2.
Factor Xa is a central protease in the coagulation cascade and the target for many anticoagulant compounds currently under development. The preferences of the enzyme for substrates incorporating residues N-terminal to the cleavage site (P1, P2, etc.) have been elucidated, but little is known of its preferences for residues C-terminal to the cleavage site (P1', P2', etc.). The preferences of bovine factor Xa for substrate residues in the P1', P2' and P3' positions were mapped using fluorescence-quenched substrates. Bovine factor Xa, often used as a model for factor Xa, was most selective for the P2' position, less selective at the P1' position and almost completely non-selective at the P3' position. It appears that while the prime side subsites of factor Xa impose some selectivity towards substrates, the influence of these sites on factor Xa cleavage specificity is relatively low in comparison to related enzymes such as thrombin.  相似文献   

3.
We describe herein the syntheses and evaluation of a series of C-termini pyridyl containing Phe*-Ala-based BACE inhibitors (5-19). In conjunction with four fixed residues at the P1 (Phe), P1' (Ala), P2' (Val), and P2' cap (Pyr.), rather detailed SAR modifications at P2 and P3 positions were pursued. The promising inhibitors emerging from this SAR investigation, 12 and 17 demonstrated very good enzyme potency (IC(50)=45 nM) and cellular activity (IC(50)=0.4 microM).  相似文献   

4.
Izumi S  Kaneko H  Yamazaki T  Hirata T  Kominami S 《Biochemistry》2003,42(49):14663-14669
Cytochrome P450s in endoplasmic reticulum membranes function in the hydroxylation of exogenous and endogenous hydrophobic substrates concentrated in the membranes. The reactions require electron supplies from NADPH-cytochrome P450 reductase in the same membranes. The membranes play important roles in the reaction of cytochrome P450. The membrane topology of guinea pig P450 17alpha was investigated on the basis of the differences in reactivity to hydrophilic chemical modification reagents between those in the detergent-solubilized state and proteoliposomes. Recombinant guinea pig cytochrome P450 17alpha was purified from Escherichia coli and incorporated into liposome membranes. Lysine residues in the detergent-solubilized P450 17alpha and in the proteoliposomes were acetylated with acetic anhydride at pH 9.0, and the acidic amino acid residues were conjugated with glycinamide at pH 5.0 by the aid of a coupling reagent, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. The modifications were performed under conditions where the denatured form, P420, was not induced. The modified P450 17alpha's were digested by trypsin, and the molecular weights of the peptide fragments were determined by MALDI-TOF mass spectrometry. From the increase in the molecular weights of the peptides, the positions of modifications could be deduced. In the detergent-solubilized state, 11 lysine residues and 7 acidic amino acid residues were modified, among which lysine residues at positions 29, 59, 490, and 492 and acidic residues at 211, 212, and/or 216 were not modified in the proteoliposomes. Both the N- and C-terminal domains and the putative F-G loop were concluded to be in or near the membrane-binding domains of P450 17alpha.  相似文献   

5.
Kenaan C  Zhang H  Shea EV  Hollenberg PF 《Biochemistry》2011,50(19):3957-3967
Cytochrome P450 (CYP or P450)-mediated drug metabolism requires the interaction of P450s with their redox partner, cytochrome P450 reductase (CPR). In this work, we have investigated the role of P450 hydrophobic residues in complex formation with CPR and uncovered novel roles for the surface-exposed residues V267 and L270 of CYP2B4 in mediating CYP2B4--CPR interactions. Using a combination of fluorescence labeling and stopped-flow spectroscopy, we have investigated the basis for these interactions. Specifically, in order to study P450--CPR interactions, a single reactive cysteine was introduced in to a genetically engineered variant of CYP2B4 (C79SC152S) at each of seven strategically selected surface-exposed positions. Each of these cysteine residues was modified by reaction with fluorescein-5-maleimide (FM), and the CYP2B4-FM variants were then used to determine the K(d) of the complex by monitoring fluorescence enhancement in the presence of CPR. Furthermore, the intrinsic K(m) values of the CYP2B4 variants for CPR were measured, and stopped-flow spectroscopy was used to determine the intrinsic kinetics and the extent of reduction of the ferric P450 mutants to the ferrous P450--CO adduct by CPR. A comparison of the results from these three approaches reveals that the sites on P450 exhibiting the greatest changes in fluorescence intensity upon binding CPR are associated with the greatest increases in the K(m) values of the P450 variants for CPR and with the greatest decreases in the rates and extents of reduced P450--CO formation.  相似文献   

6.
Ferredoxins found in animal mitochondria function in electron transfer from NADPH-dependent ferredoxin reductase (Fd-reductase) to cytochrome P450 enzymes. To identify residues involved in binding of human ferredoxin to its electron transfer partners, neutral amino acids were introduced in a highly conserved acidic region (positions 68-86) by site-directed mutagenesis of the cDNA. Mutant ferredoxins were produced in Escherichia coli, and separate assays were used to determine the effect of substitutions on the capacity of each mutant to bind to Fd-reductase and cytochrome P450scc and to participate in the cholesterol side chain cleavage reaction. Replacements at several positions (mutants D68A, E74Q, and D86A) did not significantly affect activity, suggesting that acidic residues at these positions are not required for binding or electron transfer interactions. In contrast, substitutions at positions 76 and 79 (D76N and D79A) caused dramatic decreases in activity and in the affinity of ferredoxin for both Fd-reductase and P450scc; this suggests that the binding sites on ferredoxin for its redox partners overlap. Other substitutions (mutants D72A, D72N, E73A, E73Q, and D79N), however, caused differential effects on binding to Fd-reductase and P450scc, suggesting that the interaction sites are not identical. We propose a model in which Fd-reductase and P450scc share a requirement for ferredoxin residues Asp-76 and Asp-79 but have other determinants that differ and play an important role in binding. This model is consistent with the hypothesis that ferredoxin functions as a mobile shuttle in steroidogenic electron transfer, and it is considered unlikely that a functional ternary complex is formed.  相似文献   

7.
Cytochrome P450 monooxygenases (CYPs) are a large, highly diverse protein family with a common fold. The sequences, structures, and functions of CYPs have been extensively studied resulting in more than 53,000 scientific articles. A sequence‐based literature mining algorithm was designed to systematically analyze this wealth of information on SNPs, designed mutations, structural interactions, or functional roles of individual residues. Structurally corresponding positions in different CYPs were compared and universal selectivity‐determining positions were identified. Based on the Cytochrome P450 Engineering Database ( www.CYPED.BioCatNet.de ) and a standard numbering scheme for all CYPs, 4000 residues in 168 CYPs mentioned in 2400 articles could be assigned to 440 structurally corresponding standard positions of the CYP fold, covering 96% of all standard positions. Seventeen individual standard positions were mentioned in the context of more than 32 different CYPs. The majority of these most frequently mentioned positions are located on the six substrate recognition sites and are involved in control of selectivity, such as the well‐studied position 87 in CYP102A1 (P450BM‐3) which was mentioned in the articles on 63 different CYPs. The recurrent citation of the 17 frequently mentioned positions for different CYPs suggests their universal functional relevance. Proteins 2015; 83:1593–1603. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Synthetic fragments and analogs were used to characterize specificity of antisera to substance P. Both, the C-terminal hexapeptide and the pentapeptide completely inhibited binding of 125I-[Tyr8]substance P by these antisera, showing the antigenic identity with substance P. Synthetic fragments shorter than peptide (7-11) did not react with anti-substance P antisera in this system. Substitution of amino acids in different positions in the fragments (6-11) or (7-11) by histidine or glycine revealed that all five amino-acid residues take part in a structure of the antigenic determinant.  相似文献   

9.
Proteins from Sendai virus particles and from infected cells were analyzed in a protein-blotting protein-overlay assay for their interaction with in vitro-synthesized, [35S]methionine-labeled viral proteins NP, P, and M. After separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transfer onto polyvinylidene difluoride membranes, and renaturation, the immobilized proteins were found to interact specifically with radiolabeled proteins. NP proteins from virus particles and from infected cells retained 35S-P protein equally well. Conversely, P protein from virus particles and from infected cells retained 35S-NP protein. 35S-M protein was retained mainly by NP protein but also by several cellular proteins. To determine the domains on NP protein required for binding to immobilized P protein, a series of truncated and internally deleted 35S-NP proteins was constructed. The only deletion that did not affect binding resides between residues 426 and 497. The carboxyl-terminal 27 residues (positions 498 to 524) contribute significantly to the binding affinity. Removal of 20 residues (positions 225 to 244) in the hydrophobic middle part of NP protein completely abolished its binding to P protein.  相似文献   

10.
RNase P is involved in processing the 5⿲ end of pre-tRNA molecules. Bacterial RNase P contains a catalytic RNA subunit and a protein subunit. In this study, we have analyzed the residues in RNase P protein of M. tuberculosis that differ from the residues generally conserved in other bacterial RNase Ps. The residues investigated in the current study include the unique residues, Val27, Ala70, Arg72, Ala77, and Asp124, and also Phe23 and Arg93 which have been found to be important in the function of RNase P protein components of other bacteria. The selected residues were individually mutated either to those present in other bacterial RNase P protein components at respective positions or in some cases to alanine. The wild type and mutant M. tuberculosis RNase P proteins were expressed in E. coli, purified, used to reconstitute holoenzymes with wild type RNA component in vitro, and functionally characterized. The Phe23Ala and Arg93Ala mutants showed very poor catalytic activity when reconstituted with the RNA component. The catalytic activity of holoenzyme with Val27Phe, Ala70Lys, Arg72Leu and Arg72Ala was also significantly reduced, whereas with Ala77Phe and Asp124Ser the activity of holoenzyme was similar to that with the wild type protein. Although the mutants did not suffer from any binding defects, Val27Phe, Ala70Lys, Arg72Ala and Asp124Ser were less tolerant towards higher temperatures as compared to the wild type protein. The Km of Val27Phe, Ala70Lys, Arg72Ala and Ala77Phe were >2-fold higher than that of the wild type, indicating the substituted residues to be involved in substrate interaction. The study demonstrates that residues Phe23, Val27 and Ala70 are involved in substrate interaction, while Arg72 and Arg93 interact with other residues within the protein to provide it a functional conformation.  相似文献   

11.
ATP-gated P2X4 receptors (P2X4R) are abundantly expressed in the CNS. However, little is known about the molecular targets for ethanol action in P2X4Rs. The current investigation tested the hypothesis that the ectodomain-transmembrane (TM) interface contains residues that are important for the action of ethanol in P2X4Rs. Wild type (WT) and mutant P2X4R were expressed in Xenopus oocytes. ATP concentration–response curves and ethanol (10–200 mM)-induced changes in ATP EC10-gated currents were determined using two-electrode voltage clamp (−70 mV). Alanine substitution at the ectodomain-TM1 interface (positions 50–61) resulted in minimal changes in ethanol response. On the other hand, alanine substitution at the ectodomain-TM2 interface (positions 321–337) identified two key residues (D331 and M336) that significantly reduced ethanol inhibition of ATP-gated currents without causing marked changes in ATP I max, EC50, or Hill's slope. Other amino acid substitutions at positions 331 and 336 significantly altered or eliminated the modulatory effects of ethanol. Linear regression analyses revealed a significant relationship between hydropathy and polarity, but not molecular volume/molecular weight of the residues at these two positions. The results support the proposed hypothesis and represent an important step toward developing ethanol-insensitive receptors for investigating the role of P2X4Rs in mediating behavioral effects of ethanol.  相似文献   

12.
We have used UV difference spectroscopy and fluorescence spectroscopy to study the perturbation by beta-cyclodextrin of tyrosyl or tryptophyl residues located at each of the 10 variable consensus contact positions in the third domain of turkey ovomucoid. The goal was to monitor the accessibility of the side chain rings of these residues when located at these positions. The results indicated that the tyrosyl or tryptophyl rings are most highly exposed when located in the P1 position followed by the P4 position. It was possible to determine the association constants for beta-cyclodextrin binding at these positions. When located at the P2, P5, P6 and P3' positions, the rings of the tyrosyl or tryptophyl residues were exposed but less so than at the P1 or P4 positions. By contrast, when located at the P1', P2', P14' and P18' positions, the tyrosyl or tryptophyl residues were insufficiently exposed to be perturbed by beta-cyclodextrin, although they reacted positively to dimethyl sulfoxide solvent perturbation. These findings indicate that beta-cyclodextrin perturbation provides a convenient way to detect highly exposed tyrosyls or tryptophyls in proteins. Furthermore, we evaluated the ability of beta-cyclodextrin to inhibit the interaction of turkey ovomucoid third domain variants with different P1 residues. The results showed that the presence of beta-cyclodextrin had little effect on the association constant when the P1 residue was a glycyl residue, but greatly decreased the association constant when the P1 residue was a tyrosyl or tryptophyl residue. Thus, beta-cyclodextrin may be used to selectively modulate the interaction between proteinase inhibitors and their cognate enzymes.  相似文献   

13.
We used the expression of chimeric proteins and point mutants to identify amino acids of the hepatic progesterone 21-hydroxylase P450IIC5 which are part of an epitope recognized by an inhibitory monoclonal antibody and which affect substrate binding. Three amino acids of P450IIC5 at positions 113, 115, and 118 were introduced into P450IIC4, which is 95% identical to P450IIC5. The resultant chimeric protein acquired binding of the monoclonal antibody 1F11, which is highly specific and inhibitory for P450IIC5. Point mutants in P450IIC4 showed that two of the three changes, T115S and N118K, contribute to the epitope recognized by this antibody. The T115S mutant bound the antibody weakly (Kd greater than 30 nM) whereas the N118K mutant bound the antibody as tightly as P450IIC5 (Kd less than or equal to 0.7 nM). Thus, residues 115 and 118 are located on the surface of these enzymes, and the Lys/Asn difference at amino acid 118 is largely responsible for the high degree of discrimination which this antibody exhibits between P450IIC5 and P450IIC4. The valine to alanine mutation at position 113 conferred to P450IIC4 a lower apparent Km for progesterone 21-hydroxylation. Because antibody binding was not affected by this mutation, it is tempting to speculate that this residue is buried in the protein where it exerts its effect on the catalytic activity by interaction with the substrate or alters the positions of residues of the active site. The close proximity of the epitope at positions 115 and 118 to Ala113 suggests that the inhibitory monoclonal antibody interferes with substrate binding.  相似文献   

14.
A cytochrome P450 2B4 (CYP2B4) model was used to select key residues supposed to serve in interactions with NADPH-cytochrome P450 reductase (P450R). Eight amino acid residues located on the surface of the hemoprotein were chosen for mutagenesis experiments with CYP2B4(Delta2-27) lacking the NH(2)-terminal signal anchor sequence. The mutated proteins were expressed in Escherichia coli, purified, and characterized by EPR- and CD-spectral analysis. Replacement of histidine 226 with alanine caused a 3.8-fold fall in the affinity for P450R with undisturbed reductive capacity of the system. Similarly, the K225A, R232A, and R253A variants exhibited P450R-directed activity that was depressed to about half that of the control enzyme, suggesting that the deletion of positive charges on the surface of CYP2B4(Delta2-27) resulted in impaired electrostatic contacts with complementary amino acids on the P450R protein. While the Y235A mutant did not show appreciably perturbed reduction activity, the conservative substitution with alanine of the phenylalanine residues at positions 223 and 227 gave a 2.1- to 6. 1-fold increase in the K(m) values with unchanged V(max); this was attributed to the disruption of hydrophobic forces rather than to global structural rearrangement(s) of the engineered pigments. Measurement of the stoichiometry of aerobic NADPH consumption and H(2)O(2) formation revealed the oxyferrous forms of the F223A, H226A, and F227A mutants to autoxidize more readily owing to less efficient coupling of the systems. Noteworthy, the F244A enzyme did not exhibit significant reduction activity, suggesting a pivotal role of Phe-244 in the functional coupling of P450R. The residue was predicted to constitute part of an obligatory electron transfer conduit through pi-stacking with Phe-296 located close to the heme unit. All of the residues examined reside in the putative G helix of CYP2B4, so that this domain obviously defines part of the binding site for P450R.  相似文献   

15.
An essential protein-binding domain of nuclear RNase P RNA   总被引:5,自引:3,他引:2  
Eukaryotic RNase P and RNase MRP are endoribonucleases composed of RNA and protein subunits. The RNA subunits of each enzyme share substantial secondary structural features, and most of the protein subunits are shared between the two. One of the conserved RNA subdomains, designated P3, has previously been shown to be required for nucleolar localization. Phylogenetic sequence analysis suggests that the P3 domain interacts with one of the proteins common to RNase P and RNase MRP, a conclusion strengthened by an earlier observation that the essential domain can be interchanged between the two enzymes. To examine possible functions of the P3 domain, four conserved nucleotides in the P3 domain of Saccharomyces cerevisiae RNase P RNA (RPR1) were randomized to create a library of all possible sequence combinations at those positions. Selection of functional genes in vivo identified permissible variations, and viable clones that caused yeast to exhibit conditional growth phenotypes were tested for defects in RNase P RNA and tRNA biosynthesis. Under nonpermissive conditions, the mutants had reduced maturation of the RPR1 RNA precursor, an expected phenotype in cases where RNase P holoenzyme assembly is defective. This loss of RPR1 RNA maturation coincided, as expected, with a loss of pre-tRNA maturation characteristic of RNase P defects. To test whether mutations at the conserved positions inhibited interactions with a particular protein, specific binding of the individual protein subunits to the RNA subunit was tested in yeast using the three-hybrid system. Pop1p, the largest subunit shared by RNases P and MRP, bound specifically to RPR1 RNA and the isolated P3 domain, and this binding was eliminated by mutations at the conserved P3 residues. These results indicate that Pop1p interacts with the P3 domain common to RNases P and MRP, and that this interaction is critical in the maturation of RNase P holoenzyme.  相似文献   

16.
P2X receptors are ATP-gated ion channels made up of three similar or identical subunits. It is unknown whether ligand binding is intersubunit or intrasubunit, either for agonists or for allosteric modulators. Zinc binds to rat P2X2 receptors and acts as an allosteric modulator, potentiating channel opening. To probe the location of this zinc binding site, P2X2 receptors bearing mutations of the histidines at positions 120 and 213 were expressed in Xenopus oocytes. Studies of H120C and H213C mutants produced five lines of evidence consistent with the hypothesis that the residues in these positions bind zinc. Mixing of subunits containing the H120A or H213A mutation generated receptors that showed zinc potentiation, even though neither of these mutant receptors showed zinc potentiation on its own. Furthermore, expression of trimeric concatamers with His --> Ala mutations at some but not all six positions showed that zinc potentiation correlated with the number of intersubunit histidine pairs. These results indicate that zinc potentiation requires an interaction across a subunit interface. Expression of the H120C/H213C double mutant resulted in the formation of ectopic disulfide bonds that could be detected by changes in the physiological properties of the receptors after treatment with reducing and oxidizing agents. Immunoblot analysis of H120C/H213C protein separated under nonreducing conditions demonstrated that the ectopic bonds were between adjacent subunits. Taken together, these data indicate that His120 and His213 sit close to each other across the interface between subunits and are likely to be key components of the zinc binding site in P2X2 receptors.  相似文献   

17.
The catalytic domain of cytochrome P450 is thought to contact the lipid core of the endoplasmic reticulum membrane based on antibody epitope accessibility, protease susceptibility, and hydrophobic surfaces present on P450 structures of solubilized forms of the proteins. Quenching by nitroxide spin label-modified phospholipids of the fluorescence of tryptophan residues substituted into cytochrome P450 2C2, modified to contain tryptophan only at position 120, was used to identify regions of P450 inserted into the lipid core and to estimate the depth of penetration. Consistent with the proposed models of cytochrome P450-membrane interaction, the fluorescence of tryptophans inserted at residues 36 and 69 in the two segments of P450 2C2 flanking the A-helix and at residue 380 in the beta2-2 strand was quenched by nitroxide spin labels on carbon 5 of the fatty acid tails of the phospholipids within the lipid bilayer. The fluorescence of tryptophan at 380 was also strongly quenched by a spin label on carbon 12 of the fatty acids suggesting it was deepest in the membrane. However, fluorescence of tryptophan substituted at residue 225 in the F-G loop, which was predicted to be in the lipid bilayer, was not quenched by the spin labels at carbons 5 and 12 of the fatty acids. The pattern of quenching of fluorescence for tryptophans at the other positions tested, 80, 189, 239, and 347, was similar to the parent protein indicating they were not inserted into the lipid bilayer as expected. The results are consistent with an orientation of cytochrome P450 2C2 in the membrane in which positions 36, 69, and 380 are inserted into the lipid bilayer and residues 80 and 225 are near or within the phospholipid headgroup region. In this orientation, the F-G loop, which contains residue 225, could form a dimerization interface as was observed in the P450 2C8 crystal structure (Schoch, G. A., et al. (2004) J. Biol. Chem. 279, 9497).  相似文献   

18.
Cytochrome P450IA1 (purified from hepatic microsomes of beta-naphthoflavone-treated rats) has been covalently modified with the lysine-modifying reagent acetic anhydride. Different levels of lysine residue modification in cytochrome P450IA1 can be achieved by varying the concentration of acetic anhydride. Modification of lysine residues in P450IA1 greatly inhibits the interaction of P450IA1 with NADPH-cytochrome P450 reductase. Modification of 1.0 and 3.3 mol lysine residues per mole P450IA1 resulted in 30 and 95% decreases, respectively, in 7-ethoxycoumarin hydroxylation by a reconstituted P450IA1/reductase complex. However, modification of 3.3 mol lysine residues per mole P450IA1 decreased only cumene hydroperoxide-supported P450-dependent 7-ethoxycoumarin hydroxylation by 30%. Spectral and fluorescence studies showed no indication of global conformational change of P450IA1 even with up to 8.8 mol lysine residues modified per mole P450IA1. These data suggest that at least three lysine residues in P450IA1 may be involved in the interaction with reductase. Identification of lysine residues in P450IA1 possibly involved in this interaction was carried out by [14C]acetic anhydride modification, trypsin digestion, HPLC separation, and amino acid sequencing. The lysine residue candidates identified in this manner were K97, K271, K279, and K407.  相似文献   

19.
Mouse cytochrome P3-450: complete cDNA and amino acid sequence   总被引:5,自引:1,他引:4       下载免费PDF全文
A full-length cDNA clone (1,894 nucleotides) of mouse cytochrome P3-450 was isolated with the Okayama-Berg vector and sequenced. An open reading frame spanned positions 61 to 1602. The first 25, and three of the last five, amino acids of P3-450 are identical to those found in the amino- and carboxy-terminus, respectively, of the rat P-450d protein. Mouse P3-450 protein has 513 residues, and a molecular weight of 58,223 with six cysteine residues. P3-450 nucleotides 305 to 352 exhibit 74% homology, and nucleotides 1068 to 1260, 69% homology, with portions of rat P-450b exons 2 and 7, respectively. P3-450 shows 62% homology in the so-called "highly conserved region" of 39 nucleotides in the rat P-450b and P-450e and the mouse P-450b. These results indicate that P3-450, P-450b and P-450e arose from a common ancestral gene. Cysteinyl peptide-coding regions were examined: P3-450 nucleotides 1405 to 1464 exhibit 61% homology, and nucleotides 502 to 552 exhibit 37% homology, when compared with their corresponding regions in the rat P-450b gene. These data support the likelihood that cysteine 456 is the thiolate ligand to the heme iron in the P3-450 enzyme active-site.  相似文献   

20.
PMP-D2 and HI, two peptides from Locusta migratoria, were shown to belong to the family of tight-binding protease inhibitors. However, they interact weakly with bovine trypsin (K(i) around 100 nM) despite a trypsin-specific Arg at the primary specificity site P1. Here we demonstrate that they are potent inhibitors of midgut trypsins isolated from the same insect and of a fungal trypsin from Fusarium oxysporum (K(i) 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号