首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
Northern peatlands are recognized as globally important stores of terrestrial carbon (C), yet we have limited understanding of how global changes, including land use, affect C cycling processes in these ecosystems. Making use of a long-term (>50?year old) peatland land management experiment in the UK, we investigated, using a 13CO2 pulse chase approach, how managed burning and grazing influenced the short-term uptake and cycling of C through the plant?Csoil system. We found that burning affected the composition and growth stage of the plant community, by substantially reducing the abundance of mature ericoid dwarf-shrubs. Burning also affected the structure of the soil microbial community, measured using phospholipid fatty acid analysis, by reducing fungal biomass. There was no difference in net ecosystem exchange of CO2, but burning was associated with an increase in photosynthetic uptake of 13CO2 and increased transfer of 13C to the soil microbial community relative to unburned areas. In contrast, grazing had no detectable effects on any measured C cycling process. Our study provides new insight into how changes in vegetation and soil microbial communities arising from managed burning affect peatland C cycling processes, by enhancing the uptake of photosynthetic C and the transfer of C belowground, whilst maintaining net ecosystem exchange of CO2 at pre-burn levels.  相似文献   

2.
3.
O3 concentrations in the troposphere are rising and those in the stratosphere decreasing, the latter resulting in higher fluxes of solar ultraviolet-B (UV-B) radiation to the earth's surface. We assessed whether the fluxes of CO2 and CH4 are altered by enhanced UV-B radiation or elevated tropospheric O3 concentrations in boreal peatland microcosms (core depth 40 cm, diameter 10.5 cm) with different vegetation cover. At the end of the UV-B experiment which lasted for a growing season, net CO2 exchange (NEE) and dark ecosystem respiration (R TOT) were sevenfold higher, and CH4 efflux 12-fold higher, in microcosms with intact vegetation dominated by Eriophorum vaginatum L. and Sphagnum spp., compared to microcosms from which we removed E. vaginatum. Vegetation treatment had minor effects on CH4 production and consumption potentials in the peat, suggesting that the large difference in CH4 efflux is mainly due to efficient CH4 transport via the aerenchyma of E. vaginatum. Ambient UV-B supplemented with 30% and elevated O3 concentrations (100 and 200 ppb, for 7 weeks) significantly increased R TOT in both vegetation treatments. Elevated O3 concentrations reduced NEE over time, while UV-B had no clear effects on the fluxes of CO2 or CH4 in the cloudy summer of the study. Field experiments are needed to assess the significance of increasing UV-B radiation and elevated tropospheric O3 concentration on peatland gas exchange in the long-term.  相似文献   

4.
A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full-factorial 1-m3 mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2 fluxes, decomposition, and older C loss. We used Δ14C and δ13C of ecosystem CO2 respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic 14C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land-use-induced changes in peatland hydrology can increase the vulnerability of peatland C stores.  相似文献   

5.
Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites. Together, findings from these studies across different spatial scales suggest that although fire can create some soil climate conditions more conducive to rapid decomposition, rates of C release from soils may be constrained following fire by changes in moisture and/or substrate quality that impede rates of decomposition. Author contributions: JAO: performed research, analyzed data, contributed new methods, wrote the paper; MRT: designed laboratory study, performed research, analyzed data; JWH: designed field study, performed research; KLM: performed research; LEP: performed research, contributed new method; GS: performed research; JCN: performed research.  相似文献   

6.
Vascular plant responses to experimental enrichment with atmospheric carbon dioxide (CO2), using MINIFACE technology, were studied in a Dutch lowland peatland dominated by Sphagnum and Phragmites for 3 years. We hypothesized that vascular plant carbon would accumulate in this peatland in response to CO2 enrichment owing to increased productivity of the predominant species and poorer quality (higher C/N ratios) and consequently lower decomposability of the leaf litter of these species. Carbon isotope signatures demonstrated that the extra 180 ppmv CO2 in enriched plots had been incorporated into vegetation biomass accordingly. However, on the CO2 sequestration side of the ecosystem carbon budget, there were neither any significant responses of total aboveground abundance of vascular plants, nor of any of the individual species. On the CO2 release side of the carbon budget (decomposition pathway), litter quantity did not differ between ambient and CO2 treatments, while the changes in litter quality (N and P concentration, C/N and C/P ratio) were marginal and inconsistent. It appeared therefore that the afterlife effects of significant CO2-induced changes in green-leaf chemistry (lower N and P concentrations, higher C/N and C/P) were partly offset by greater resorption of mobile carbohydrates from green leaves during senescence in CO2-enriched plants. The decomposability of leaf litters of three predominant species from ambient and CO2-enriched plots, as measured in a laboratory litter respiration assay, showed no differences. The relatively short time period, environmental spatial heterogeneity and small plot sizes might explain part of the lack of CO2 response. When our results are combined with those from other Sphagnum peatland studies, the common pattern emerges that the vascular vegetation in these ecosystems is genuinely resistant to CO2-induced change. On decadal time-scales, water management and its effects on peatland hydrology, N deposition from anthropogenic sources and land management regimes that arrest the early successional phase (mowing, tree and shrub removal), may have a greater impact on the vascular plant species composition, carbon balance and functioning of lowland Sphagnum–Phragmites reedlands than increasing CO2 concentrations in the atmosphere.  相似文献   

7.
Forest fire dramatically affects the carbon storage and underlying mechanisms that control the carbon balance of recovering ecosystems. In western North America where fire extent has increased in recent years, we measured carbon pools and fluxes in moderately and severely burned forest stands 2 years after a fire to determine the controls on net ecosystem productivity (NEP) and make comparisons with unburned stands in the same region. Total ecosystem carbon in soil and live and dead pools in the burned stands was on average 66% that of unburned stands (11.0 and 16.5 kg C m−2, respectively, P<0.01). Soil carbon accounted for 56% and 43% of the carbon pools in burned and unburned stands. NEP was significantly lower in severely burned compared with unburned stands (P<0.01) with an increasing trend from −125±44 g C m−2 yr−1 (±1 SD) in severely burned stands (stand replacing fire), to −38±96 and +50±47 g C m−2 yr−1 in moderately burned and unburned stands, respectively. Fire of moderate severity killed 82% of trees <20 cm in diameter (diameter at 1.3 m height, DBH); however, this size class only contributed 22% of prefire estimates of bole wood production. Larger trees (> 20 cm DBH) suffered only 34% mortality under moderate severity fire and contributed to 91% of postfire bole wood production. Growth rates of trees that survived the fire were comparable with their prefire rates. Net primary production NPP (g C m−2 yr−1, ±1 SD) of severely burned stands was 47% of unburned stands (167±76, 346±148, respectively, P<0.05), with forb and grass aboveground NPP accounting for 74% and 4% of total aboveground NPP, respectively. Based on continuous seasonal measurements of soil respiration in a severely burned stand, in areas kept free of ground vegetation, soil heterotrophic respiration accounted for 56% of total soil CO2 efflux, comparable with the values of 54% and 49% previously reported for two of the unburned forest stands. Estimates of total ecosystem heterotrophic respiration (Rh) were not significantly different between stand types 2 years after fire. The ratio NPP/Rh averaged 0.55, 0.85 and 1.21 in the severely burned, moderately burned and unburned stands, respectively. Annual soil CO2 efflux was linearly related to aboveground net primary productivity (ANPP) with an increase in soil CO2 efflux of 1.48 g C yr−1 for every 1 g increase in ANPP (P<0.01, r2= 0.76). There was no significant difference in this relationship between the recently burned and unburned stands. Contrary to expectations that the magnitude of NEP 2 years postfire would be principally driven by the sudden increase in detrital pools and increased rates of Rh, the data suggest NPP was more important in determining postfire NEP.  相似文献   

8.
高原湿地是生态系统中重要的碳汇。土壤CO_2通量作为高原湿地生态系统碳收支的重要组成部分,碳的释放对区域碳平衡发挥着重要的作用。藏香猪放牧是我国高海拔藏区一种特有的放牧方式,是导致高原湿地土壤退化的重要干扰因素之一,并影响着土壤CO_2通量的变化。采用土壤CO_2通量自动测量系统(LI-8100A,LI-COR,USA),分别在不同季节对滇西北布伦、哈木谷、伊拉草原上藏香猪干扰和对照(非干扰土壤)CO_2通量变化进行监测,研究发现,藏香猪干扰型放牧降低了土壤CO_2排放通量,且表现出明显的日波动变化特征。相比旱季,雨季不同放牧方式影响下的土壤CO_2通量差异性更为明显,其中布伦、哈木谷、伊拉草原较对照分别降低了70.4%、87.5%、60.7%。CO_2排放通量与土壤理化性状及植物生物量的回归分析表明,对照样地的土壤容重、孔隙度、pH、总活性碳、植物生物量与土壤CO_2通量具有显著的相关性(P0.01)。通过植物-土壤指数(plant-soil index,PSI)分析了藏香猪干扰型放牧对高原湿地的影响,总体来看,对照样地中土壤CO_2通量与PSI之间具有较好的线性关系,可以用来很好的预测未来高原湿地土壤CO_2通量的变化。该研究结果不仅有效估算了强干扰放牧影响下的高原湿地土壤碳排放量,而且为加强藏香猪放牧的科学管理,高原湿地生态系统的保护、恢复及重建提供了理论支持。  相似文献   

9.
Selective herbivory of palatable plant species provides a competitive advantage for unpalatable plant species, which often have slow growth rates and produce slowly decomposable litter. We hypothesized that through a shift in the vegetation community from palatable, deciduous dwarf shrubs to unpalatable, evergreen dwarf shrubs, selective herbivory may counteract the increased shrub abundance that is otherwise found in tundra ecosystems, in turn interacting with the responses of ecosystem carbon (C) stocks and CO2 balance to climatic warming. We tested this hypothesis in a 19‐year field experiment with factorial treatments of warming and simulated herbivory on the dominant deciduous dwarf shrub Vaccinium myrtillus. Warming was associated with a significantly increased vegetation abundance, with the strongest effect on deciduous dwarf shrubs, resulting in greater rates of both gross ecosystem production (GEP) and ecosystem respiration (ER) as well as increased C stocks. Simulated herbivory increased the abundance of evergreen dwarf shrubs, most importantly Empetrum nigrum ssp. hermaphroditum, which led to a recent shift in the dominant vegetation from deciduous to evergreen dwarf shrubs. Simulated herbivory caused no effect on GEP and ER or the total ecosystem C stocks, indicating that the vegetation shift counteracted the herbivore‐induced C loss from the system. A larger proportion of the total ecosystem C stock was found aboveground, rather than belowground, in plots treated with simulated herbivory. We conclude that by providing a competitive advantage to unpalatable plant species with slow growth rates and long life spans, selective herbivory may promote aboveground C stocks in a warming tundra ecosystem and, through this mechanism, counteract C losses that result from plant biomass consumption.  相似文献   

10.
Extreme drought events have the potential to cause dramatic changes in ecosystem structure and function, but the controls upon ecosystem stability to drought remain poorly understood. Here we used model systems of two commonly occurring, temperate grassland communities to investigate the short-term interactive effects of a simulated 100-year summer drought event, soil nitrogen (N) availability and plant species diversity (low/high) on key ecosystem processes related to carbon (C) and N cycling. Whole ecosystem CO2 fluxes and leaching losses were recorded during drought and post-rewetting. Litter decomposition and C/N stocks in vegetation, soil and soil microbes were assessed 4 weeks after the end of drought. Experimental drought caused strong reductions in ecosystem respiration and net ecosystem CO2 exchange, but ecosystem fluxes recovered rapidly following rewetting irrespective of N and species diversity. As expected, root C stocks and litter decomposition were adversely affected by drought across all N and plant diversity treatments. In contrast, drought increased soil water retention, organic nutrient leaching losses and soil fertility. Drought responses of above-ground vegetation C stocks varied depending on plant diversity, with greater stability of above-ground vegetation C to drought in the high versus low diversity treatment. This positive effect of high plant diversity on above-ground vegetation C stability coincided with a decrease in the stability of microbial biomass C. Unlike species diversity, soil N availability had limited effects on the stability of ecosystem processes to extreme drought. Overall, our findings indicate that extreme drought events promote post-drought soil nutrient retention and soil fertility, with cascading effects on ecosystem C fixation rates. Data on above-ground ecosystem processes underline the importance of species diversity for grassland function in a changing environment. Furthermore, our results suggest that plant–soil interactions play a key role for the short-term stability of above-ground vegetation C storage to extreme drought events.  相似文献   

11.
We examined the importance of temperature (7°C or 15°C) and soil moisture regime (saturated or field capacity) on the carbon (C) balance of arctic tussock tundra microcosms (intact blocks of soil and vegetation) in growth chambers over an 81-day simulated growing season. We measured gaseous CO2 exchanges, methane (CH4) emissions, and dissolved C losses on intact blocks of tussock (Eriophorum vaginatum) and intertussock (moss-dominated). We hypothesized that under increased temperature and/or enhanced drainage, C losses from ecosystem respiration (CO2 respired by plants and heterotrophs) would exceed gains from gross photosynthesis causing tussock tundra to become a net source of C to the atmosphere. The field capacity moisture regime caused a decrease in net CO2 storage (NEP) in tussock tundra micrososms. This resulted from a stimulation of ecosystem respiration (probably mostly microbial) with enhanced drainage, rather than a decrease in gross photosynthesis. Elevated temperature alone had no effect on NEP because CO2 losses from increased ecosystem respiration at elevated temperature were compensated by increased CO2 uptake (gross photosynthesis). Although CO2 losses from ecosystem respiration were primarily limited by drainage, CH4 emissions, in contrast, were dependent on temperature. Furthermore, substantial dissolved C losses, especially organic C, and important microhabitat differences must be considered in estimating C balance for the tussock tundra system. As much as 20% of total C fixed in photosynthesis was lost as dissolved organic C. Tussocks stored 2x more C and emitted 5x more methane than intertussocks. In spite of the limitations of this microcosm experiment, this study has further elucidated the critical role of soil moisture regime and dissolved C losses in regulating net C balance of arctic tussock tundra.  相似文献   

12.
Ponderosa pine (Pinus ponderosa) forests of the southwestern United States are a mosaic of stands where undisturbed forests are carbon sinks, and stands recovering from wildfires may be sources of carbon to the atmosphere for decades after the fire. However, the relative magnitude of these sinks and sources has never been directly measured in this region, limiting our understanding of the role of fire in regional and US carbon budgets. We used the eddy covariance technique to measure the CO2 exchange of two forest sites, one burned by fire in 1996, and an unburned forest. The fire was a high‐intensity stand‐replacing burn that killed all trees. Ten years after the fire, the burned site was still a source of CO2 to the atmosphere [109±6 (SEM) g C m?2 yr?1], whereas the unburned site was a sink (?164±23 g C m?2 yr?1). The fire reduced total carbon storage and shifted ecosystem carbon allocation from the forest floor and living biomass to necromass. Annual ecosystem respiration was lower at the burned site (480±5 g C m?2 yr?1) than at the unburned site (710±54 g C m?2 yr?1), but the difference in gross primary production was even larger (372±13 g C m?2 yr?1 at the burned site and 858±37 g C m?2 yr?1at the unburned site). Water availability controlled carbon flux in the warm season at both sites, and the burned site was a source of carbon in all months, even during the summer, when wet and warm conditions favored respiration more than photosynthesis. Our study shows that carbon losses following stand‐replacing fires in ponderosa pine forests can persist for decades due to slow recovery of the gross primary production. Because fire exclusion is becoming increasingly difficult in dry western forests, a large US forest carbon sink could shift to a decadal‐scale carbon source.  相似文献   

13.
1. Oligotrophic softwater lakes represent a special type of aquatic ecosystem with unique plant communities where generalisations from other aquatic plant communities to rising CO2 in the water column may not apply. 2. In the present study, we set up large in situ mesocosms and supporting laboratory experiments with isoetid vegetation (Littorella uniflora) where water column CO2 and light could be manipulated in order to test whether (i) light and CO2 availability affect nutrient concentrations in isoetid vegetation, and (ii) if changes in light and CO2 climate affect fluxes of inorganic nitrogen (N) and phosphorus (P) from sediment to water column, which potentially could result in increased growth of epiphytic algae. 3. The results showed that the standing stocks of phosphorus and nitrogen in the L. uniflora vegetation were significantly influenced by CO2 concentration and light intensity. Both standing stocks of P and N were significantly higher in the mesocosm treatments with high CO2 concentration than in those at low CO2 concentration. Similarly, standing stocks of P and N enhanced with increasing light intensity. 4. Measurements of nutrient fluxes both in the field and the laboratory did not show any significant release of nutrients to the water column from plants or sediments at any of the light or CO2 treatments. However, mats of epiphytic algae developed from the beginning of June to late September and caused a light reduction for the isoetid vegetation. 5. Increasing CO2 concentrations in the water column may over time potentially result in a change in soft water plant communities.  相似文献   

14.
Controls of nitrogen limitation in tallgrass prairie   总被引:5,自引:0,他引:5  
Summary The relationship between fire frequency and N limitation to foliage production in tallgrass prairie was studied with a series of fire and N addition experiments. Results indicated that fire history affected the magnitude of the vegetation response to fire and to N additions. Sites not burned for over 15 years averaged only a 9% increase in foliage biomass in response to N enrichment. In contrast, foliage production increased an average of 68% in response to N additions on annually burned sites, while infrequently burned sites, burned in the year of the study, averaged a 45% increase. These findings are consistent with reports indicating that reduced plant growth on unburned prairie is due to shading and lower soil temperatures, while foliage production on frequently burned areas is constrained by N availability. Infrequent burning of unfertilized prairie therefore results in a maximum production response in the year of burning relative to either annually burned or long-term unburned sites.Foliage biomass of tallgrass prairie is dominated by C4 grasses; however, forb species exhibited stronger production responses to nitrogen additions than did the grasses. After four years of annual N additions, forb biomass exceeded that of grass biomass on unburned plots, and grasses exhibited a negative response to fertilizer, probably due to competition from the forbs. The dominant C4 grasses may out-compete forbs under frequent fire conditions not only because they are better adapted to direct effects of burning, but because they can grow better under low available N regimes created by frequent fire.  相似文献   

15.
Increases in solar ultraviolet‐B radiation (UV‐B; 280–320 nm) reaching the earth have been estimated to continue until 2050s in the boreal and subarctic regions with an abundant peatland cover. Peatlands are significant sinks for carbon dioxide (CO2) and sources for methane (CH4). To assess whether the future increases in UV‐B could affect the fluxes of CO2 and CH4 in peatlands via an impact on vegetation, we exposed peatland microcosms to modulated 30% supplementation of erythemally weighted UV‐B at an outdoor facility for one growing season. The experimental design included appropriate controls for UV‐A and ambient radiation. The UV‐B caused a significant reduction in gross photosynthesis, net ecosystem CO2 exchange, and CH4 emission of the peatland microcosms. These changes in the carbon gas cycling can be partly explained by UV‐B‐induced morphological changes in Eriophorum vaginatum which acts as a conduit for CH4. Leaf cross section and the percentage of CH4‐conducting aerenchymatous tissue in E. vaginatum were significantly reduced by UV‐B. Methanol‐extractable UV‐B absorbing compounds decreased under both UV‐B and UV‐A in Sphagnum angustifolium, and tended to accumulate under UV‐B in S. papillosum. Membrane permeability to magnesium (Mg) and calcium (Ca) ions was higher in UV‐B exposed S. angustifolium. Amount of chlorophyll and carotenoid pigments was increased by UV‐A in S. magellanicum. The observed changes in Sphagnum mosses did not coincide with those in carbon gas fluxes but occurred at the time of the highest UV intensity in the mid summer. Our findings indicate that increasing UV‐B may have more substantial effects on gas exchange in peatlands than previously thought.  相似文献   

16.
《Plant Ecology & Diversity》2013,6(2-3):227-241
Background: Although forest floor forms a large biomass pool in forested peatlands, little is known about its role in ecosystem carbon (C) dynamics.

Aim: We aimed to quantify forest floor photosynthesis (P FF) and respiration (R FF) as a part of overall C dynamics in a drained peatland forest in southern Finland.

Methods: We measured net forest floor CO2 exchange with closed chambers and reconstructed seasonal CO2 exchange in the prevailing plant communities.

Results: The vegetation was a mosaic of plant communities that differed in CO2 exchange dynamics. The reconstructed growing season P FF was highest in the Sphagnum community and lowest in the feather moss communities. On the contrary, R FF was highest in the feather moss communities and lowest in the Sphagnum community. CO2 assimilated by the forest floor was 20–30% of the total CO2 assimilated by the forest. The forest floor was a net CO2 source to the atmosphere, because respiration from ground vegetation, tree roots and decomposition of soil organic matter exceeded the photosynthesis of ground vegetation.

Conclusions: Tree stand dominates C fluxes in drained peatland forests. However, forest floor vegetation can have a noticeable role in the C cycle of peatlands drained for forestry. Similarly to natural mires, Sphagnum moss-dominated communities were the most efficient assimilators of C.  相似文献   

17.
There is considerable interest in how ecosystems will respond to changes in precipitation. Alterations in rain and snowfall are expected to influence the spatio-temporal patterns of plant and soil processes that are controlled by soil moisture, and potentially, the amount of carbon (C) exchanged between the atmosphere and ecosystems. Because grasslands cover over one third of the terrestrial landscape, understanding controls on grassland C processes will be important to forecast how changes in precipitation regimes will influence the global C cycle. In this study we examined how irrigation affects carbon dioxide (CO2) fluxes in five widely variable grasslands of Yellowstone National Park during a year of approximately average growing season precipitation. We irrigated plots every 2 weeks with 25% of the monthly 30-year average of precipitation resulting in plots receiving approximately 150% of the usual growing season water in the form of rain and supplemented irrigation. Ecosystem CO2 fluxes were measured with a closed chamber-system once a month from May-September on irrigated and unirrigated plots in each grassland. Soil moisture was closely associated with CO2 fluxes and shoot biomass, and was between 1.6% and 11.5% higher at the irrigated plots (values from wettest to driest grassland) during times of measurements. When examining the effect of irrigation throughout the growing season (May–September) across sites, we found that water additions increased ecosystem CO2 fluxes at the two driest and the wettest sites, suggesting that these sites were water-limited during the climatically average precipitation conditions of the 2005 growing season. In contrast, no consistent responses to irrigation were detected at the two sites with intermediate soil moisture. Thus, the ecosystem CO2 fluxes at those sites were not water-limited, when considering their responses to supplemental water throughout the whole season. In contrast, when we explored how the effect of irrigation varied temporally, we found that irrigation increased ecosystem CO2 fluxes at all the sites late in the growing season (September). The spatial differences in the response of ecosystem CO2 fluxes to irrigation likely can be explained by site specific differences in soil and vegetation properties. The temporal effects likely were due to delayed plant senescence that promoted plant and soil activity later into the year. Our results suggest that in Yellowstone National Park, above-normal amounts of soil moisture will only stimulate CO2 fluxes across a portion of the ecosystem. Thus, depending on the topographic location, grassland CO2 fluxes can be water-limited or not. Such information is important to accurately predict how changes in precipitation/soil moisture will affect CO2 dynamics and how they may feed back to the global C cycle.  相似文献   

18.
Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant‐removal experiment in two Sphagnum‐dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO2 radiocarbon (bomb‐14C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change.  相似文献   

19.
The carbon pool of peatlands has been considered as potentially unstable in a changing climate. This study is the first presenting carbon dioxide (CO2) net ecosystem exchange, CO2 efflux due to ecosystem respiration and CO2 uptake by gross primary production over a complete growing season for different microforms of a boreal peatland in Russia (61°56′N, 50°13′E). CO2 fluxes were measured using the closed chamber technique from the 25th April in the period of snow melt until the end of the vegetation period and the first frost on the 20th October 2008 at seven different microform types: minerogenous and ombrogenous hollows, lawns and hummocks, respectively, and Carex lawns situated in a transition zone between minerogenous and ombrogenous mire parts. The total number of chamber flux measurements was 5,517. Ombrogenous hummocks and lawns were sources of CO2 over the investigation period whereas hollows and minerogenous lawns were CO2 sinks. Some plots of Carex lawns and minerogenous hummocks were sinks while other plots of these microform types were sources. The CO2 fluxes were characterised by large variability not only between the microform types but also within the respective microform types. Of all microform types, the Carex, ombrogenous, and minerogenous lawns showed the highest variability in CO2 fluxes, which is probably related to a stronger within-microform heterogeneity in vegetation composition and coverage as well as in the water table level. Air temperature was one of the dominant controls on the CO2 flux dynamics. Water table and green area index were found to have strong influence on CO2 fluxes both within different patches of the same microform type as well as between different microforms.  相似文献   

20.
Abstract Climate change is predicted to bring about a water level (WL) draw-down in boreal peatlands. This study aimed to assess the effect of WL on the carbon dioxide (CO2) dynamics of a boreal oligotrophic fen ecosystem and its components; Sphagnum mosses, sedges, dwarf shrubs and the underlying peat. We measured CO2 exchange with closed chambers during four growing seasons in a study site that comprised different vegetation treatments. WL gradient in the site was broadened by surrounding half of the site with a shallow ditch that lowered the WL by 10–25 cm. We modeled gross photosynthesis (P G) and ecosystem respiration (R ECO) and simulated the CO2 exchange in three WL conditions: prevailing and WL draw-down scenarios of 14 and 22 cm. WL draw-down both reduced the P G and increased the R ECO, thus leading to a smaller net CO2 uptake in the ecosystem. Of the different components, Sphagnum mosses were most sensitive to WL draw-down and their physiological activities almost ceased. Vascular plant CO2 exchange, en bloc, hardly changed but whereas sedges contributed twice as much to the CO2 exchange as shrubs in the prevailing conditions, the situation was reversed in the WL draw-down scenarios. Peat respiration was the biggest component in R ECO in all WL conditions and the increase in R ECO following the WL draw-down was due to the increase in peat respiration. The results imply that functional diversity buffers the ecosystem against environmental variability and that in the long term, WL draw-down changes the vegetation composition of boreal fens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号