首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used flow cytometry to examine seasonal variations in basin-scale distributions of bacterioplankton in Lake Biwa, Japan, a large mesotrophic freshwater lake with an oxygenated hypolimnion. The bacterial communities were divided into three subgroups: bacteria with very high nucleic acid contents (VHNA bacteria), bacteria with high nucleic acid contents (HNA bacteria), and bacteria with low nucleic acid contents (LNA bacteria). During the thermal stratification period, the relative abundance of VHNA bacteria (%VHNA) increased with depth, while the reverse trend was evident for LNA bacteria. Seasonally, the %VHNA was strongly positively correlated (r = 0.87; P < 0.001) with the concentration of dissolved inorganic phosphorus, but not with the concentration of chlorophyll a. The growth of VHNA bacteria was significantly enhanced by addition of phosphate or phosphate plus glucose but not by addition of glucose alone. Although the growth of VHNA and HNA bacteria generally exceeded that of LNA bacteria, our data also revealed that LNA bacteria grew faster than and were grazed as fast as VHNA bacteria in late August, when nutrient limitation was presumably severe. Based on these results, we hypothesize that in severely P-limited environments such as Lake Biwa, P limitation exerts more severe constraints on the growth of bacterial groups with higher nucleic acid contents, which allows LNA bacteria to be competitive and become an important component of the microbial loop.  相似文献   

2.
Planktonic bacteria can be grouped into ‘high nucleic acid content (HNA) bacteria’ and ‘low nucleic acid content (LNA) bacteria.’ Nutrient input modes vary in environments, causing nutrient availability heterogeneity. We incubated them with equal amounts of total glucose added in a continuous/pulsed mode. The pulse-treated LNA bacteria exhibited twice the cell abundance and four times the viability of the continuous-treated LNA, while HNA did not show an adaptation to pulsed treatment. In structural equation modelling, LNA bacteria had higher path coefficients than HNA, between growth and carbon-saving metabolic pathways, intracellular ATP and the inorganic energy storage polymer, polyphosphate, indicating their low-cost growth, and flexible energy storage and utilisation. After incubation, the pulse-treated LNA bacteria contained more proteins and polysaccharides (0.00064, 0.0012 ng cell−1) than the continuous-treated LNA (0.00014, 0.00014 ng cell−1), conferring endurance and rapid response to pulses. Compared to LNA, HNA keystone taxa had stronger correlations with the primary glucose metabolism step, glycolysis, and occupied leading positions to explain the random forest model. They are essential to introduce glucose into the element cycling of the whole community under both treatments. Our work outlines a systematic bacterial response to carbon input.  相似文献   

3.
The nucleic acid contents of individual bacterial cells as determined with three different nucleic acid-specific fluorescent dyes (SYBR I, SYBR II, and SYTO 13) and flow cytometry were compared for different seawater samples. Similar fluorescence patterns were observed, and bacteria with high apparent nucleic acid contents (HNA) could be discriminated from bacteria with low nucleic acid contents (LNA). The best discrimination between HNA and LNA cells was found when cells were stained with SYBR II. Bacteria in different water samples collected from seven freshwater, brackish water, and seawater ecosystems were prelabeled with tritiated leucine and then stained with SYBR II. After labeling and staining, HNA, LNA, and total cells were sorted by flow cytometry, and the specific activity of each cellular category was determined from leucine incorporation rates. The HNA cells were responsible for most of the total bacterial production, and the specific activities of cells in the HNA population varied between samples by a factor of seven. We suggest that nucleic acid content alone can be a better indicator of the fraction of growing cells than total counts and that this approach should be combined with other fluorescent physiological probes to improve detection of the most active cells in aquatic systems.  相似文献   

4.
The nucleic acid contents of individual bacterial cells as determined with three different nucleic acid-specific fluorescent dyes (SYBR I, SYBR II, and SYTO 13) and flow cytometry were compared for different seawater samples. Similar fluorescence patterns were observed, and bacteria with high apparent nucleic acid contents (HNA) could be discriminated from bacteria with low nucleic acid contents (LNA). The best discrimination between HNA and LNA cells was found when cells were stained with SYBR II. Bacteria in different water samples collected from seven freshwater, brackish water, and seawater ecosystems were prelabeled with tritiated leucine and then stained with SYBR II. After labeling and staining, HNA, LNA, and total cells were sorted by flow cytometry, and the specific activity of each cellular category was determined from leucine incorporation rates. The HNA cells were responsible for most of the total bacterial production, and the specific activities of cells in the HNA population varied between samples by a factor of seven. We suggest that nucleic acid content alone can be a better indicator of the fraction of growing cells than total counts and that this approach should be combined with other fluorescent physiological probes to improve detection of the most active cells in aquatic systems.  相似文献   

5.
We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea.  相似文献   

6.
This paper addresses the dynamics of the prokaryotic picoplankton community in the coastal and open sea areas of the central Adriatic and in the coastal area of the southern Adriatic. This involved the study, from January to December 2005, of bacteria (total number of non-pigmented bacteria; high nucleic acid content (HNA) bacteria; low nucleic acid content (LNA) bacteria), cyanobacteria (Synechococcus and Prochlorococcus) and heterotrophic nanoflagellates. During the warmer seasons, in the mainly oligotrophic area under investigation into the Adriatic Sea, bacterial densities and bacterial production have shown an increase in values and domination of the LNA group of the bacterial population. In contrast, in those areas influenced by karstic rivers, the domination of HNA bacteria in total abundance of non-pigmented bacteria and high values of bacterial production was estimated throughout the investigated period. Our results show the importance of both HNA and LNA bacterial groups in the total bacterial activity throughout the investigated area. The biomass of bacteria was mostly predominant in the prokaryotic community, while within the autotrophic community Synechococcus biomass mostly predominated. During the warmer seasons, an increase in autotrophic biomass was observed in relation to non-pigmented biomass. The importance of predation in controlling bacteria by heterotrophic nanoflagellates was pronounced during the warmer period and in the coastal areas.  相似文献   

7.
Bacteria with high nucleic acid (HNA) and low nucleic acid (LNA) content are commonly observed in aquatic environments. To date, limited knowledge is available on their temporal and spatial variations in freshwater environments. Here an investigation of HNA and LNA bacterial abundance and their flow cytometric characteristics was conducted in an exorheic river (Haihe River, Northern China) over a one year period covering September (autumn) 2011, December (winter) 2011, April (spring) 2012, and July (summer) 2012. The results showed that LNA and HNA bacteria contributed similarly to the total bacterial abundance on both the spatial and temporal scale. The variability of HNA on abundance, fluorescence intensity (FL1) and side scatter (SSC) were more sensitive to environmental factors than that of LNA bacteria. Meanwhile, the relative distance of SSC between HNA and LNA was more variable than that of FL1. Multivariate analysis further demonstrated that the influence of geographical distance (reflected by the salinity gradient along river to ocean) and temporal changes (as temperature variation due to seasonal succession) on the patterns of LNA and HNA were stronger than the effects of nutrient conditions. Furthermore, the results demonstrated that the distribution of LNA and HNA bacteria, including the abundance, FL1 and SSC, was controlled by different variables. The results suggested that LNA and HNA bacteria might play different ecological roles in the exorheic river.  相似文献   

8.
We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea.  相似文献   

9.
In aquatic ecosystems, fluctuations in environmental conditions and prokaryotic host physiological states can strongly affect the dynamics of viral life strategies. The influence of prokaryote physiology and environmental factors on viral replication cycles (lytic and lysogeny) was investigated from April to September 2011 at three different strata (epi, meta, and hypolimnion) in the mixolimnion of deep volcanic temperate freshwater Lake Pavin (France). Overall, the euphotic region (epi and metalimnion) was more dynamic and showed significant variation in microbial standing stocks, prokaryotic physiological state, and viral life strategies compared to the aphotic hypolimnion which was stable within sampled months. The prokaryotic host physiology as inferred from the nucleic acid content of prokaryotic cells (high or low nucleic acid) was strongly regulated by the chlorophyll concentration. The predominance of the high nucleic acid (HNA) prokaryotes (cells) over low nucleic acid (LNA) prokaryotes (cells) in the spring (HNA/LNA?=?1.2) and vice versa in the summer period (HNA/LNA?=?0.4) suggest that the natural prokaryotic communities underwent major shifts in their physiological states during investigated time period. The increase in the percentage of inducible lysogenic prokaryotes in the summer period was associated with the switch in the dominance of LNA over HNA cells, which coincided with the periods of strong resource (nutrient) limitation. This supports the idea that lysogeny represents a maintenance strategy for viruses in unproductive or harsh nutrient/host conditions. A negative correlation of percentage of lysogenic prokaryotes with HNA cell abundance and chlorophyll suggest that lysogenic cycle is closely related to prokaryotic cells which are stressed or starved due to unavailability of resources for its growth and activity. Our results provide support to previous findings that changes in prokaryote physiology are critical for the promotion and establishment of lysogeny in aquatic ecosystems, which are prone to constant environmental fluctuations.  相似文献   

10.
Bacterial abundances determined in Drake Passage and Bransfield and Gerlache Straits (Antarctica) in the Austral summer ranged from 0.78 to 9.4×105 cells ml−1, and were positively correlated with standing stocks of Chl a. Two bacterial subpopulations were discriminated based in their different levels of green fluorescence and wide angle light scatter (SSC) per cell after SYTO-13 staining for the first time in Antarctic waters. High nucleic acid (HNA) and low nucleic acid (LNA) subpopulations differed considerably in their response to changes in environmental variables. The apparent content of nucleic acids per cell for the HNA subpopulation (FL1-HNA) showed vertical profiles similar to those of Chl a, including the presence of a maximum at the subsurface chlorophyll maximum. FL1-HNA was positively correlated with Chl a. No similar trends were observed for the LNA fraction. HNA and LNA subpopulations differed in the response of the wide angle light scatter signal to environmental factors as well. SSC-HNA decreased strongly with depth and was positively correlated with Chl a. Again, no similar trends were observed for the LNA subpopulation. The percentage of HNA cells (%HNA) ranged between 35.0 and 76.7% and showed a general tendency to increase with depth. This increase seemed to be larger when the stratification of the water column was higher. Differences in grazing pressure could be responsible of the unexpected vertical distribution of HNA cells. Our results shows that in situ LNA and HNA bacterioplankton subpopulations are under different ecological controls and likely to play different trophodynamic roles in Antarctic waters.  相似文献   

11.
In flow cytometric analyses of marine prokaryotic picoplankton often two populations with distinct differences in their apparent nucleic acid content are discernable, one with a high and one with a low nucleic acid content (HNA and LNA, respectively). In this study we determined the phylogenetic composition of flow cytometrically sorted HNA and LNA populations, collected at six stations along a transect across three oceanic provinces from Iceland to the Azores. Catalysed reporter deposition fluorescence in situ hybridisation (CARD-FISH) analysis of sorted cells revealed distinct differences in phylogenetic composition between the LNA and HNA populations with only little overlap. At all stations the LNA population was dominated by the alphaproteobacterial clade SAR11 (45–74%). Also, Betaproteobacteria were always present at 2–4%. While the LNA composition was rather stable, the HNA populations were composed of distinct phylogenetic clades in the different oceanic provinces of Arctic and Tropics. For example Cyanobacteria dominated the North Atlantic Gyre HNA population (29–44%) with Prochlorococcus as the major clade (34–44%), but were low in Arctic and Polar waters (1% and 5%, respectively). In contrast, Bacteroidetes accounted for the majority of HNA cells in the Polar and Arctic province (26% and 32%, respectively), but were low in the Gyre region (3–10%). The DNA content of the HNA population was about 3.5 times higher than that of the LNA populations. This reflects differences in the genome sizes of closely related cultured representatives of HNA clades (3–6 Mbp) and LNA clades (1.3–1.5 Mbp).  相似文献   

12.
Here, we combined flow cytometry (FCM) and phylogenetic analyses after cell sorting to characterize the dominant groups of the prokaryotic assemblages inhabiting two ponds of increasing salinity: a crystallizer pond (TS) with a salinity of 390 g/L, and the non-crystallizer pond (M1) with a salinity of 200 g/L retrieved from the solar saltern of Sfax in Tunisia. As expected, FCM analysis enabled the resolution of high nucleic acid content (HNA) and low nucleic acid content (LNA) prokaryotes. Next, we performed a taxonomic analysis of the bacterial and archaeal communities comprising the two most populated clusters by phylogenetic analyses of 16S rRNA gene clone library. We show for the first time that the presence of HNA and LNA content cells could also be extended to the archaeal populations. Archaea were detected in all M1 and TS samples, whereas representatives of Bacteria were detected only in LNA for M1 and HNA for TS. Although most of the archaeal sequences remained undetermined, other clones were most frequently affiliated to Haloquadratum and Halorubrum. In contrast, most bacterial clones belonged to the Alphaproteobacteria class (Phyllobacterium genus) in M1 samples and to the Bacteroidetes phylum (Sphingobacteria and Salinibacter genus) in TS samples.  相似文献   

13.
Heterotrophic bacteria play a major role in organic matter cycling in the ocean. Although the high abundances and relatively fast growth rates of coastal surface bacterioplankton make them suitable sentinels of global change, past analyses have largely overlooked this functional group. Here, time series analysis of a decade of monthly observations in temperate Atlantic coastal waters revealed strong seasonal patterns in the abundance, size and biomass of the ubiquitous flow-cytometric groups of low (LNA) and high nucleic acid (HNA) content bacteria. Over this relatively short period, we also found that bacterioplankton cells were significantly smaller, a trend that is consistent with the hypothesized temperature-driven decrease in body size. Although decadal cell shrinking was observed for both groups, it was only LNA cells that were strongly coherent, with ecological theories linking temperature, abundance and individual size on both the seasonal and interannual scale. We explain this finding because, relative to their HNA counterparts, marine LNA bacteria are less diverse, dominated by members of the SAR11 clade. Temperature manipulation experiments in 2012 confirmed a direct effect of warming on bacterial size. Concurrent with rising temperatures in spring, significant decadal trends of increasing standing stocks (3% per year) accompanied by decreasing mean cell size (−1% per year) suggest a major shift in community structure, with a larger contribution of LNA bacteria to total biomass. The increasing prevalence of these typically oligotrophic taxa may severely impact marine food webs and carbon fluxes by an overall decrease in the efficiency of the biological pump.  相似文献   

14.
In order to assess the factors that determine the dynamics of bacteria with high nucleic acid content in aquatic systems, we (i) conducted 24-h in situ dialysis experiments, involving different fractions of plankton and unfiltered water and (ii) examined empirical relationships between bacteria and both abiotic factors and protists, in boreal humic freshwaters (reservoir and lakes) in the James Bay region (Québec, Canada). Bacteria were subdivided into two subgroups on the basis of their nucleic acid content assessed by flow cytometry. The abundance of bacteria with the highest nucleic acid content and high light scatter (HNA-hs) was significantly correlated, across sites, to bacterial production, whereas bacteria with lower nucleic acid content (LNA) and total bacteria were not. In addition, HNA-hs growth was higher and more variable than LNA growth, indicating that HNA-hs were the most dynamic bacteria. Heterotrophic nanoflagellate and ciliate biomass represented, on average, 5 and 13% of bacterial biomass, respectively. Both in ambient waters and in experiments, ciliates were significantly and negatively correlated with bacteria, whereas heterotrophic nanoflagellates, likely under the grazing pressure from ciliates and metazooplankton, were not. Among ciliates, Cyclidium glaucoma appeared to play an important role. Its growth was significantly and negatively correlated to that of HNA-hs but not to that of LNA. In ambient waters, the abundance of this species explained 56% of the variations in HNA-hs abundance and only 27% of those for LNA. The abundances of total bacteria and LNA significantly increased with chlorophyll a, whereas those of HNA-hs did not. In addition, during the experiments, the estimated potential losses of HNA-hs significantly increased with the initial abundance of C. glaucoma. These results suggest selective removal of the most dynamic bacteria by C. glaucoma and indicate that ciliates may play an important role in the dynamics of active bacteria in natural waters. These findings suggest the existence, within the aquatic microbial food webs, of keystone species that are very important in regulating the activity structure of bacteria.  相似文献   

15.
Compared to higher latitudes, tropical heterotrophic bacteria may be less responsive to warming because of strong bottom-up control. In order to separate both drivers, we determined the growth responses of bacterial physiological groups to temperature after adding dissolved organic matter (DOM) from mangroves, seagrasses and glucose to natural seawater from the Great Barrier Reef. Low (LNA) and high (HNA) nucleic acid content, membrane-intact (Live) and membrane-damaged (Dead) plus actively respiring (CTC+) cells were monitored for 4 days. Specific growth rates of the whole community were significantly higher (1.9 day-1) in the mangrove treatment relative to the rest (0.2–0.4 day-1) at in situ temperature and their temperature dependence, estimated as activation energy, was also consistently higher. Strong bottom-up control was suggested in the other treatments. Cell size depended more on DOM than temperature. Mangrove DOM resulted in significantly higher contributions of Live, HNA and CTC+ cells to total abundance, while the seagrass leachate reduced Live cells below 50%. Warming significantly decreased Live and CTC+ cells contributions in most treatments. Our results suggest that only in the presence of highly labile compounds, such as mangroves DOM, can we anticipate increases in heterotrophic bacteria biomass in response to warming in tropical regions.  相似文献   

16.
Abstract Dilution bioassays were performed to examine the seasonal and vertical difference in the relative importance of factors limiting growth of heterotrophic bacteria in Lake Biwa. The lake water diluted by 0.2 μm lake filtrate (1:6.6) was enriched either with glucose (C), inorganic phosphorus (P), ammonium nitrogen (N), amino acids (AA), or a combination of these, and incubated for 2 days at the depths where lake water was collected (2.5, 20 and 30 m depths). Experiments showed that at 2.5 m, P was the most deficient resource for bacterial growth, but the magnitude of P limitation depended on water temperature. Among others, amino acids showed a slight but significant stimulation of bacterial growth rates during the fall. At 20 and 30 m, however, growth stimulation by resource addition was rarely detected. Vertically reciprocal translocation experiments revealed that the growth rate was limited by low temperature rather than resource supply at the greater depths. The results support a simple view that bacterial growth rate is basically regulated by water temperature, but high growth rate is not realized in summer because of resource depletion. The present study suggests that both temperature and P supply play a crucial role in biogeochemical cycling of organic matter in Lake Biwa through the bacterial growth rate. Received: 10 March 1999; Accepted: 14 May 1999  相似文献   

17.
Simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is major limitation in investigating the community structures of plant-associated bacteria. Although locked nucleic acid (LNA) oligonucleotides was designed to selectively amplify the bacterial small subunit rRNA genes by applying the PCR clamping technique, those for plastids were applicable only for particular plants, while those for mitochondria were available throughout most plants. To widen the applicable range, new LNA oligonucleotides specific for plastids were designed, and the efficacy was investigated. PCR without LNA oligonucleotides predominantly amplified the organelle genes, while bacterial genes were predominantly observed in having applied the LNA oligonucleotides. Denaturing gradient gel electrophoresis (DGGE) analysis displayed additional bacterial DGGE bands, the amplicons of which were prepared using the LNA oligonucleotides. Thus, new designed LNA oligonucleotides specific for plastids were effective and have widened the scope in investigating the community structures of plant-associated bacteria.  相似文献   

18.
To evaluate the role of bacteria in the transformation of organic matter in subarctic waters, we investigated the effect of mineral nutrients (ammonia and phosphate) and organic carbon (glucose) enrichment on heterotrophic bacterial processes and community structure. Eight experiments were done in the Norwegian Sea during May and June 2008. The growth-limiting factor (carbon or mineral nutrient) for heterotrophic bacteria was inferred from the combination of nutrient additions that stimulated highest bacterial oxygen consumption, biomass, production, growth rate and bacterial efficiency. We conclude that heterotrophic bacteria were limited by organic carbon and co-limited by mineral nutrients during the prevailing early nano-phytoplankton (1–10 μm) bloom conditions. High nucleic acid (HNA) bacteria became dominant (>80%) only when labile carbon and mineral nutrient sources were available. Changes in bacterial community structure were investigated using denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S ribosomal RNA genes. The bacterial community structure changed during incubation time, but neither carbon nor mineral nutrient amendment induced changes at the end of the experiments. The lack of labile organic carbon and the availability of mineral nutrients are key factors controlling bacterial activity and the role of the microbial food web in carbon sequestration.  相似文献   

19.
深圳近海表层浮游细菌分布特征及其环境影响因素   总被引:1,自引:0,他引:1  
于2015年3月、5月、8月和10月在深圳市近岸海域(珠江口、深圳湾和大亚湾)采集表层水样,利用流式细胞仪测定总浮游细菌、高DNA含量亚群细菌(HNA)、低DNA含量亚群细菌(LNA)的丰度,分析它们的时空分布特点,阐释环境因子对浮游细菌时空分布格局的影响。结果表明,珠江口、深圳湾和大亚湾海域表层浮游细菌的平均丰度依次降低,分别为3.82×10~6个/mL、7.67×10~6个/mL和3.38×10~6个/mL。珠江口海域浮游细菌丰度由远岸到近岸递增,深圳湾海域湾内各站位浮游细菌丰度差异较小,大亚湾海域浮游细菌丰度空间差异不显著(P0.05)。浮游细菌丰度时间差异主要受温度影响,空间差异主要受营养盐和叶绿素a影响。HNA亚群丰度时空差异性比LNA亚群的大,HNA亚群受温度影响显著(P0.01),而LNA亚群与温度相关性不显著(P0.05)。环境对HNA和LNA亚群丰度的影响有许多相似之处,但两者对某些环境因子有着不同的响应,说明它们在近海表层生态系统中可能扮演着部分重叠但略有不同的角色。  相似文献   

20.
Filamentous, gliding, sulfide-oxidizing bacteria of the genus Thioploca were found on sediments in profundal areas of Lake Biwa, a Japanese freshwater mesotrophic lake, and were characterized morphologically and phylogenetically. The Lake Biwa Thioploca resembled morphologically Thioploca ingrica, a brackish water species from a Danish fjord. The diameters of individual trichomes were 3 to 5.6 μm; the diameters of complete Thioploca filaments ranged from 18 to 75 μm. The cell lengths ranged from 1.2 to 3.8 μm. In transmission electron microscope specimens stained with uranyl acetate, dense intracellular particles were found, which did not show any positive signals for phosphorus and sulfur in an X-ray analysis. The 16S rRNA gene of the Thioploca from Lake Biwa was amplified by using newly designed Thioploca-specific primers (706-Thioploca, Biwa160F, and Biwa829R) in combination with general bacterial primers in order to avoid nonspecific amplification of contaminating bacterial DNA. Denaturing gradient gel electrophoresis (DGGE) analysis of the three overlapping PCR products resulted in single DGGE bands, indicating that a single 16S rRNA gene had been amplified. With the same method, the Thioploca from Lake Constance was examined. The 16S rRNA sequence was verified by performing fluorescence in situ hybridization targeted at specific motifs of the Lake Biwa Thioploca. Positive signals were obtained with the bacterial probe EUB-338, the γ-proteobacterial probe GAM42a, and probe Biwa829 targeting the Lake Biwa Thioploca. Based on the nearly complete 16S rRNA sequence and on morphological similarities, the Thioploca from Lake Biwa and the Thioploca from Lake Constance are closely related to T. ingrica and to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号