首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on albino rats showed that high doses of tetracycline-induced damages of the liver evident from increased activity of serum enzymes (alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase) and inhibition of bile secretion, synthesis and secretion of bile acids and cholesterol excretion. Administration of vitamin E, sodium selenite, infusion of Astragalus L. and especially vitamin E combinations with sodium selenite markedly or completely arrested the occurrence of hepatotoxic properties of tetracycline. It is suggested that the use of vitamin E combinations with selenium-containing preparations is advisable in the prophylaxis and treatment of tetracycline-induced damages of the liver.  相似文献   

2.
It was shown on male rats that like ethanol tetracycline increased lipid peroxidation (LPO) in the hepatocyte membranes, evident from increased levels of diene conjugates and malone dialdehyde in the liver homogenates, especially on their combination. The signal amplitude of the EPR-forms of cytochrome P-450 and Cu-, Mo- and Fe-containing proteins did not change, while the content of the EPR-forms of the free radicals increased. High efficiency of antioxidants, such as tocopherol acetate, sodium selenite and tincture of Astragalus L. is indirect evidence of the role of the free radicals in initiation of LPO in tetracycline affections of the liver.  相似文献   

3.
A study on the effect of retinolin vitro on the hemolysis of vitamin E deficient rat red blood cells showed that retinol enhanced the lysis of the E deficient cells as compared to the lysis of normal cells. The lipid peroxidation present during hydrogen peroxide induced lysis of E deficient cells was however markedly inhibited in the presence of retinol without affecting the rate of lysis. In an actively peroxidising system of non-enzymatic lipid peroxidation of rat liver or brain homogenates and of brain lysosomes incubated with human erythrocytes, no lysis was obtained; incorporation of retinol in such systems resulted in lysis but no peroxidation. Hydrogen peroxide generating substances almost completely inhibited the lysis of normal human erythrocytes by retinol, but linoleic acid hydroperoxide and auto-oxidised liver or brain homogenates and ox-brain liposomes increased the lysis. It is concluded that vitamin E deficient erythrocyte hemolysis may be augmented by retinol, an anti-oxidant, having a lytic function without the peroxidation of stromal lipids  相似文献   

4.
The aim of this study was to evaluate the utilization of a standard treatment with diminazene aceturate against the infection caused by Trypanosoma evansi, associated to sodium selenite and vitamin E. In vitro tests showed trypanocidal effect related to the treatment with diminazene aceturate and sodium selenite, but vitamin E had no harmful effect on the trypanosomes. In vivo experiments utilized a total of 72 adult outbreed females rats, separated into 9 groups (A, B, C, D, E, F, G, H and I), 8 animals each. Group A was the uninfected group; groups B to I were infected with 0.2 mL of blood containing 106 trypanosomes. Parasitemia was estimated daily by microscopic examination of blood smears. Group B served as positive control; group C was treated with diminazene aceturate; group D with sodium selenite; group E with vitamin E; group F received an association of diminazene aceturate and sodium selenite; group G received an association of diminazene aceturate and vitamin E; group H received an association of diminazene aceturate, sodium selenite and vitamin E, and group I received an association of sodium selenite and vitamin E. Diminazene aceturate was administrated in a single dose on the 3rd day post infection (PI). Sodium selenite and vitamin E were administered at the 3rd and 23rd day PI. In vivo tests showed increase of longevity in groups treated with diminazene aceturate associated with sodium selenite (groups F and H). No difference was found between groups C and E, thus the vitamin E did not increase the efficacy of treatment against T. evansi when associated to diminazene aceturate. The curative efficacy of treatments was 37.5, 87.7, 37.7 and 75% to the groups C, F, G and H, respectively. Other treatments showed no efficacy. The sodium selenite when combined with chemotherapy may represent an alternative in the treatment of trypanosomosis.  相似文献   

5.
The effect of long-term diets enriched with natural antioxidants was studied on Wistar rats with average initial body weight 150 g. After enrichment of the diet with selenium (0.1 ppm of sodium selenite per 100 g of diet), with vitamin E (6 mg of alpha-tocopherol per 100 g of diet) and selenium and vitamin E together the following results were obtained: diets enriched with selenium or vitamin E given for 12 months reduced the production of lipid peroxides in the liver and serum of the rats. On the other hand, addition of both antioxidants to the diet had no effect on lipid peroxide levels in the animals. Diet enrichment for 12 and 18 months with selenium or vitamin E had no effect on the levels of total cholesterol and HDL cholesterol. The obtained results suggest that selenium and alpha-tocopherol exert an inhibitory action on the processes of ageing in the experimental animal model.  相似文献   

6.
The effects of dietary sodium selenite and vitamin E on the microvascular permeability of rat organs such as heart, brain, kidney, liver and eye were investigated by using the Evans blue leakage method. Combined deficiency of selenium and vitamin E caused an increase in the permeability of the heart and eye with respect to their controls while it had no considerable effect on the permeability of other organs. On the other hand, toxic levels of selenium (4.2 mg/kg) in diet decreased the permeabilities in kidney, liver, and eye whereas this parameter of brain increased in the same animal group. These results suggested that low or high sodium selenite and vitamin E contents in diet could alter the microvascular permeability of different organs in different manners. It might be important to give reasonable explanations for the pathophysiology of some diseases that are characterized with organ damage and /or disfunction originated from selenium deficiency or toxicity.  相似文献   

7.
We have investigated the protective effect of vitamin C and E together supplementation on oxidative stress and antioxidant enzyme activities in the liver of streptozotocin-induced diabetic rats, unsupplemented diabetic and control rats. We also determined the levels of both the vitamins and oxidative stress in plasma. Vitamin supplementation in diabetic rats lowered plasma and liver lipid peroxidation, normalised plasma vitamin C levels and raised vitamin E above normal levels. In liver, the activity of glutathione peroxidase was raised significantly and that of glutathione-S-transferase was normalised by vitamin supplementation in diabetic rats. The levels of lipid peroxidation products in plasma and liver of vitamin-supplemented diabetic rats and activities of antioxidant enzymes in liver suggest that these vitamins reduce lipid peroxidation by quenching free radicals.  相似文献   

8.
研究了箬叶多糖FⅢ-a及其化学修饰物、亚硒酸钠和GSH对Cu2+诱导的低密度脂蛋白氧化修饰的保护作用.其结果表明箬叶多糖、硫酸酯多糖、硒酸酯多糖可显著抑制脂质过氧化产物(TBARS)及荧光物质的生成,彼此之间无明显差异.但对VE的消耗有着不同的保护作用,其顺序是FⅢ-a>S-FⅢ-a>Se-FⅢ-a,并且具有明显的量效关系.硒或GSH对Cu2+诱导的LDL氧化修饰无明显的抑制,但联合使用在0.125mmol/LNa2SeO3和0.2mmol/LGSH及12.5μmol/LNa2SeO3和0.02mmol/LGSH的浓度下能强烈地抑制TBARS的生成,甚至比正常的LDL还要低.但是对VE的消耗只有较弱的保护作用,硒酸酯多糖与此相似.Na2SeO3在0.125mmol/L时可以明显抑制荧光物质的生成.  相似文献   

9.
Although the use of vitamin E supplements has been associated with a reduction in coronary events, assumed to be due to lowered lipid peroxidation, there are no previous long-term clinical trials into the effects of vitamin C or E supplementation on lipid peroxidation in vivo. Here, we have studied the long-term effects of vitamins C and E on plasma F2-isoprostanes, a widely used marker of lipid peroxidation in vivo. As a study cohort, a subset of the "Antioxidant Supplementation in Atherosclerosis Prevention" (ASAP) study was used. ASAP is a double-masked placebo-controlled randomized clinical trial to study the long-term effect of vitamin C (500 mg of slow release ascorbate daily), vitamin E (200 mg of D-alpha-tocopheryl acetate daily), both vitamins (CellaVie), or placebo on lipid peroxidation, atherosclerotic progression, blood pressure and myocardial infarction (n = 520 at baseline). Lipid peroxidation measurements were carried out in 100 consecutive men at entry and repeated at 12 months. The plasma F2-isoprostane concentration was lowered by 17.3% (95% CI 3.9-30.8%) in the vitamin E group (p = 0.006 for the change, as compared with the placebo group). On the contrary, vitamin C had no significant effect on plasma F2-isoprostanes as compared with the placebo group. There was also no interaction in the effect between these vitamins. In conclusion, long-term oral supplementation of clinically healthy, but hypercholesterolemic men, who have normal vitamin C and E levels with a reasonable dose of vitamin E lowers lipid peroxidation in vivo, but a relatively high dose of vitamin C does not. This observation may provide a mechanism for the observed ability of vitamin E supplements to prevent atherosclerosis.  相似文献   

10.
Microsomal NADPH-driven electron transport is known to initiate lipid peroxidation by activating oxygen in the presence of iron. This pro-oxidant effect can mask an antioxidant function of NADPH-driven electron transport in microsomes via vitamin E recycling from its phenoxyl radicals formed in the course of peroxidation. To test this hypothesis we studied the effects of NADPH on the endogenous vitamin E content and lipid peroxidation induced in liver microsomes by an oxidation system independent of iron: an azo-initiator of peroxyl radicals, 2,2'-azobis (2,4-dimethylvaleronitrile), (AMVN), in the presence of an iron chelator deferoxamine. We found that under conditions NADPH: (i) inhibited lipid peroxidation; (ii) this inhibitory effect was less pronounced in microsomes from vitamin E-deficient rats than in microsomes from normal rats; (iii) protected vitamin E from oxidative destruction; (iv) reduced chromanoxyl radicals of vitamin E homologue with a 6-carbon side-chain, chromanol-alpha-C-6. Thus NADPH-driven electron transport may function both to initiate and/or inhibit lipid peroxidation in microsomes depending on the availability of transition metal catalysts.  相似文献   

11.
The causes and consequences of ageing are likely to be complex and involve the interaction of many processes. It has been proposed that the decline in mitochondrial function caused by the accumulation of oxidatively damaged molecules plays a significant role in the ageing process. In agreement with previous reports we have shown that the activities of NADH CoQ1 reductase and cytochrome oxidase declined with increasing age in both rat liver and gastrocnemius muscle mitochondria. However, only in the liver were the changes in lipid peroxidation and membrane fluidity suggestive of an age-related increase in oxidative stress.

After 12 weeks on a vitamin E deficient diet, vitamin E levels were undetectable in both gastrocnemius muscle and liver. In skeletal muscle, this was associated with a statistically significant increase in lipid peroxidation, a decrease in cytochrome oxidase activity after 48 weeks, and an exacerbation in the age-related rate of decline of NADH CoQ1 reductase activity. This was consistent with the suggestion that an imbalance between free radical generation and antioxidant defence may contribute to the mitochondrial dysfunction with age. In contrast to this, vitamin E deficiency in the liver caused a significant increase in mitochondrial respiratory chain activities with increasing age despite evidence of increased lipid peroxidation. Comparison of other features in these samples suggested vitamin E deficiency; did not have a significant impact upon mtDNA translation; induced a compensatory increase in glutathione levels in muscle, which was less marked in the liver, but probably most interestingly caused a significant decrease in the mitochondrial membrane fluidity in muscle but not in liver mitochondria.

These data suggest that while increased lipid peroxidation exacerbated the age-related decline in muscle respiratory chain function this relationship was not observed in liver. Consequently other factors are likely to be contributing to the age-related decline in mitochondrial function and specific stimuli may influence or even reverse these age-related effects as observed with vitamin E deficiency in the liver.  相似文献   

12.
This study was conducted to investigate the effect of dietary vitamin E concentration on growth performance, iron-catalyzed lipid peroxidation in liver and muscle tissue, and erythrocyte fragility of transgenic growth hormone coho salmon (Oncorhynchus kisutch). Fish were fed one of four isoenergetic and isonitrogenous experimental diets that contained either 11, 29, 50, or 105 IU of vitamin E/kg. Following the 10-week feeding trial, no significant (P>0.05) diet-related differences were detected in growth, whole body proximate composition or erythrocyte fragility. The vitamin E contents of liver and muscle, however, were affected by the dietary treatment. Fish fed diets containing > or =50 IU of vitamin E/kg had significantly increased vitamin E concentrations in their tissues. Iron-catalyzed lipid peroxidation of liver and muscle tissue of fish fed elevated dietary vitamin E (> or =50 IU vitamin E/kg diet) was significantly lower (P<0.05) than that noted for fish fed the diet containing no supplemental vitamin E. The results indicated that changes in tissue lipid peroxidation measurements precede clinical signs of sub-optimal vitamin E intake.  相似文献   

13.
Rat lung microsomes and liposomes made from isolated lung microsomal lipids were found to be much more resistant to lipid peroxidation than those from liver in both enzymatic and nonenzymatic systems. The polyunsaturated fatty acid (PUFA) content of isolated lung microsomal lipids was 28% of total fatty acids, while liver was 54%. The vitamin E (α-tocopherol) content of isolated lung microsomal lipids was 2.13 nmol/μmol lipid phosphate and that of liver was 0.43. Individually, neither the lower PUFA content nor higher vitamin E levels could account for the resistance of lung microsomal lipids to peroxidation. Distearoyl-L-a-phosphatidylcholine and/or α-tocopherol were added to liver microsomal lipids to achieve different PUFA to vitamin E ratios at PUFA contents of 28% or 54%, and the resulting liposomes were subjected to an NADPH-dependent lipid peroxidation system utilizing cytochrome P450 reductase, EDTA-Fe+3, and ADP-Fe+3. Liposomes having PUFA to vitamin E ratios less than approximately 250 nmol PUFA/nmol vitamin E were resistant to peroxidation, whereas lipid peroxidation, as evidenced by malondialdehyde production, occurred in liposomes having higher ratios. When lipid peroxidation occurred, 40%–60% of the liposomal vitamin E was irreversibly oxidized. Irreversible oxidation did not occur in the absence of lipid peroxidation. These studies indicated that the low PUFA to vitamin E ratio in lung microsomes and isolated microsomal lipids was sufficient to account for the observed resistance to lipid peroxidation.  相似文献   

14.
The effect of sodium selenite on the enzymatic oxidation of retinal in vitro and vitamin A accumulation in the rat liver was examined. Selenium as sodium selenite at concentrations of 0.5--2.5 microgram/ml inhibited significantly (40--45%) the enzymatic irreversible oxidation of retinal. Dietary supplements of sodium selenite at a dose of 50--250 microgram/kg body weight caused an almost two-fold increase of the vitamin A content in the rat liver as compared with the controls that were given no selenium.  相似文献   

15.
The effect of in vivo lipid peroxidation on the excretion of immunoreactive prostaglandin E2 (PGE2) in the urine of rats was studied. Weanling, male Sprague-Dawley rats were fed a vitamin E-deficient diet containing 10% tocopherol-stripped corn oil (CO) or 5% cod liver oil (CLO) with or without 40 mg dl-alpha-tocopheryl acetate/kg. To induce a high, sustained level of lipid peroxidation, some rats were injected intraperitoneally with 100 mg of iron as iron dextran after 10 days of feeding. Iron overload stimulated in vivo lipid peroxidation in rats, as measured by the increase in expired ethane and pentane. Dietary vitamin E reversed this effect. Rats fed the CLO diet excreted 9.5-fold more urinary thiobarbituric acid-reactive substances (TBARS) than did rats fed the CO diet. Iron overload increased the excretion of TBARS in the urine of rats fed the CO diet, but not in urine of rats fed the CLO diet. Dietary vitamin E decreased TBARS in the urine of rats fed either the CO or the CLO diet. Iron overload decreased by 40% the urinary excretion of PGE2 by rats fed the CO diet, and dietary vitamin E did not reverse this effect. Iron overload had no statistically significant effect on urinary excretion of PGE2 by rats fed the CLO diet. A high level of lipid peroxidation occurred in iron-treated rats, as evidenced by an increase in alkane production and in TBARS in urine in this study, and by an increase in alkane production by slices of kidney from iron-treated rats in a previous study [V. C. Gavino, C. J. Dillard, and A. L. Tappel (1984) Arch. Biochem. Biophys. 233, 741-747]. Since PGE2 excretion in urine was not correlated with these effects, lipid peroxidation appears not to be a major factor in renal PGE2 flux.  相似文献   

16.
The aim of this work was to evaluate the role of lipid peroxidation and glutathione on liver damage induced by 7-day biliary obstruction in the rat. Male Wistar rats were bile-duct-ligated and divided in groups of 10 animals. Groups received vitamin E (400 IU/rat, p.o., daily) or trolox (50 mg/kg, p.o., daily) or both. Lipid peroxidation increased significantly in the livers of bile-duct-ligated rats. Vitamin E and trolox prevented lipid peroxidation. GSH was oxidized in the BDL group and the GSH/GSSG ratio decreased as a consequence. However, total glutathione content increased in liver and blood indicating a possible induction in de novo synthesis of GSH. Antioxidants preserved the normal GSH/GSSG ratio. Despite the observation that antioxidants verted lipid peroxidation and oxidation of GSH, liver injury (as assessed by serum enzyme activities, bilirubin concentration, liver glycogen content and histology) was not affected by the treatments. These results suggest that drugs that inhibit lipid peroxidation and oxidation of glutathione have no effect on conventional biochemical markers of liver injury and on liver histology of bile-duct-ligated rats for 7 days. It seems more likely that the detergent action of bile salts is responsible for solubilization of plasma membranes and cell death, which in turn may lead to oxidative stress, GSH oxidation and lipid peroxidation.  相似文献   

17.
Although the use of vitamin E supplements has been associated with a reduction in coronary events, assumed to be due to lowered lipid peroxidation, there are no previous long-term clinical trials into the effects of vitamin C or E supplementation on lipid peroxidation in vivo. Here, we have studied the long-term effects of vitamins C and E on plasma F2-isoprostanes, a widely used marker of lipid peroxidation in vivo. As a study cohort, a subset of the “Antioxidant Supplementation in Atherosclerosis Prevention” (ASAP) study was used. ASAP is a double-masked placebo-controlled randomized clinical trial to study the long-term effect of vitamin C (500 mg of slow release ascorbate daily), vitamin E (200 mg of d-α-tocopheryl acetate daily), both vitamins (CellaVie®), or placebo on lipid peroxidation, atherosclerotic progression, blood pressure and myocardial infarction (n = 520 at baseline). Lipid peroxidation measurements were carried out in 100 consecutive men at entry and repeated at 12 months. The plasma F2-isoprostane concentration was lowered by 17.3% (95% CI 3.9–30.8%) in the vitamin E group (p = 0.006 for the change, as compared with the placebo group). On the contrary, vitamin C had no significant effect on plasma F2-isoprostanes as compared with the placebo group. There was also no interaction in the effect between these vitamins. In conclusion, long-term oral supplementation of clinically healthy, but hypercholesterolemic men, who have normal vitamin C and E levels with a reasonable dose of vitamin E lowers lipid peroxidation in vivo, but a relatively high dose of vitamin C does not. This observation may provide a mechanism for the observed ability of vitamin E supplements to prevent atherosclerosis.  相似文献   

18.
We assessed oxidative stress in three different clinical conditions: smoking, human immunodeficiency virus (HIV) infection, and inflammatory bowel disease, using breath alkane output and other lipid peroxidation parameters such as plasma lipid peroxides (LPO) and malondialdehyde (MDA). Antioxidant micronutrients such as selenium, vitamin E, C, beta-carotene and carotenoids were also measured. Lipid peroxidation was significantly higher and antioxidant vitamins significantly lower in smokers compared to nonsmokers. Beta-carotene or vitamin E supplementation significantly reduced lipid peroxidation in that population. However, vitamin C supplementation had no effect. In HIV-infected subjects, lipid peroxidation parameters were also elevated and antioxidant vitamins reduced compared to seronegative controls. Vitamin E and C supplementation resulted in a significant decrease in lipid peroxidation with a trend toward a reduction in viral load. In patients with inflammatory bowel disease, breath alkane output was also significantly elevated when compared to healthy controls. A trial with vitamin E and C is underway. In conclusion, breath alkane output, plasma LPO and MDA are elevated in certain clinical conditions such as smoking, HIV infection, and inflammatory bowel disease. This is associated with lower levels of antioxidant micronutrients. Supplementation with antioxidant vitamins significantly reduced these lipid peroxidation parameters. The results suggest that these measures are good markers for lipid peroxidation.  相似文献   

19.
Data are presented in this paper on the effect of vitamin E on rats given a fish diet after whole-body gamma-irradiation. The content of lipid peroxidation products in rat plasma, brain and liver and also the content of vitamin E have been investigated. Irradiation increases lipid peroxidation in the studied tissues and decreases vitamin E content. This process is aggravated by the fish diet. Vitamin E given in addition to fish diet helps the organism to stabilize the antioxidant homeostasis at a qualitatively different level.  相似文献   

20.
Addition of ascorbate or its generation from gulonolactone causes the oxidation of protein thiols and a simultaneous dehydroascorbate formation in rat liver microsomes. The participation of vitamin E in the phenomenon was studied. We measured ascorbate and protein thiol oxidation and lipid peroxidation in vitamin E deficient liver microsomes. Vitamin E deficiency partly uncoupled the two processes: ascorbate oxidation increased, while protein thiol oxidation decreased. These changes were accompanied with an accelerated lipid peroxidation in the vitamin E-deficient microsomes, which indicates the accumulation of reactive oxygen species. All these effects were reduced by the in vitro addition of vitamin E to the deficient microsomes, supporting its direct role in the process. The results demonstrate that vitamin E is a component of the protein thiol oxidizing machinery in the hepatic endoplasmic reticulum transferring electrons from the thiol groups towards oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号