首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The apoprotein of glucose oxidase from Aspergillus niger was reconstituted with specifically 15N- and 13C-enriched FAD derivatives and investigated by 15N- and 13C-NMR spectroscopy. On the basis of the 15N-NMR results it is suggested that, in the oxidized state of glucose oxidase, hydrogen bonds are formed to the N(3) and N(5) positions of the isoalloxazine system. The hydrogen bond to N(3) is more pronounced than that to N(5) as compared with the respective hydrogen bonds formed between FMN and water. The resonance position of N(10) indicates a small decrease in sp2 hybridization compared to free flavin in water. Apparently the isoalloxazine ring is not planar at this position in glucose oxidase. Additional hydrogen bonds at the carbonyl groups of the oxidized enzyme-bound FAD were derived from the 13C-NMR results. A strong downfield shift observed for the C(4a) resonance may be ascribed in part to the decrease in sp2 hybridization at the N(10) position and to the polarization of the carbonyl groups at C(2) and C(4). The polarization of the isoalloxazine ring in glucose oxidase is more similar to FMN in water than to that of tetraacetyl-riboflavin in apolar solvents. In the reduced enzyme the N(1) position is anionic at pH 5.6. The pKa is shifted to lower pH values by at least 1 owing to the interaction of the FAD with the apoprotein. As in the oxidized state of the enzyme, a hydrogen bond is also formed at the N(3) position of the reduced flavin. The N(5) and N(10) resonances of the enzyme-bound reduced FAD indicate a decrease in the sp2 character of these atoms as compared with that of reduced FMN in aqueous solution. Some of the 15N- and 13C-resonance positions of the enzyme-bound reduced cofactor are markedly pH-dependent. The pH dependence of the N(5) and C(10a) resonances indicates a decrease in sp2 hybridization of the N(5) atom with increasing pH of the enzyme solution.  相似文献   

2.
The apoenzyme of NADPH oxidoreductase, 'old yellow enzyme', was reconstituted with specifically 15N-labeled flavin mononucleotide and investigated by 15N NMR spectroscopy in the oxidized and reduced state. The results indicate that in the oxidized state a hydrogen bond is formed between the N(5) atom and the apoprotein. In addition, hydrogen bonds exist between the N(1) and N(3) atoms of FMN and the apoprotein. The resonance position of N(10) indicates that this atom is somewhat sp3-hybridized, i.e. lifted out of the molecular plane of the isoalloxazine ring system. In the reduced state the N(1) atom is negatively charged and the N(3) atom forms a hydrogen bond with the apoprotein. The N(10) atom in protein-bound FMN exhibits about the same hybridization state as in free anionic reduced FMN, i.e. it is located in the plane of the isoalloxazine ring. The chemical shift of the N(5) resonance indicates that this atom is almost completely sp3-hybridized. This interpretation can also be derived from the 15N(5)-1H coupling constant. Among the flavoproteins thus far studied by NMR techniques, old yellow enzyme is the only protein that shows a conformation of the reduced prosthetic group with the N(5) atom lifted out of the molecular plane. The isoelectric focussing properties of old yellow enzyme and a new easy method for the preparation of the apoprotein are also reported.  相似文献   

3.
The apoenzyme of NADPH oxidoreductase, 'old yellow enzyme', was reconstituted with selectively 13C-enriched flavin mononucleotides and investigated by 13C NMR spectroscopy. The 13C NMR results confirm the results obtained by 15N NMR spectroscopy and yield additional information about the coenzyme-apoenzyme interaction. A strong deshielding of the C(2) and C(4) atoms of enzyme-bound FMN both in the oxidized and reduced state is observed, which is supposed to be induced by hydrogen-bond formation between the protein and the two carbonyl groups at C(2) and C(4) of the isoalloxazine ring system. The chemical shifts of all 13C resonances of the flavin in the two-electron-reduced state indicate that the N(5) atom is sp3-hybridized. From 31P NMR measurements it is concluded that the FMN phosphate group is not accessible to bulk solvent. The unusual 31P chemical shift of FMN in old yellow enzyme seems to indicate a different binding mode of the FMN phosphate group in this enzyme as compared to the flavodoxins. The 13C and 15N NMR data on the old-yellow-enzyme--phenolate complexes show that the atoms of the phenolate are more deshielded whereas the atoms of the enzyme-bound isoalloxazine ring are more shielded upon complexation. A non-linear correlation exists between the chemical shifts of the N(5) and the N(10) atoms and the pKa value of the phenolate derivative bound to the protein. Since the chemical shifts of N(5), N(10) and C(4a) are influenced most on complexation it is suggested that the phenolate is bound near the pyrazine ring of the isoalloxazine system. 15N NMR studies on the complex between FMN and 2-aminobenzoic acid indicate that the structure of this complex differs from that of the old-yellow-enzyme--phenolate complexes.  相似文献   

4.
Desulfovibrio vulgaris apoflavodoxin has been reconstituted with 15N and 13C-enriched riboflavin 5'-phosphate. For the first time all carbon atoms of the isoalloxazine ring of the protein-bound prosthetic group have been investigated. The reconstituted protein was studied in the oxidized and in the two-electron-reduced state. The results are interpreted in terms of specific interactions between the apoprotein and the prosthetic group, and the chemical structure of protein-bound FMN. In the oxidized state weak hydrogen bonds exist between the apoprotein and the N(5), N(3) and O(4 alpha) atoms of FMN. The N(1) and O(2 alpha) atoms of FMN form strong hydrogen bonds. The isoalloxazine ring of FMN is strongly polarized and the N(10) atom shows an increased sp2 hybridisation compared to that of free FMN in aqueous solution. The N(3)-H group is not accessible to bulk solvent, as deduced from the coupling constant of the N(3)-H group. In the reduced state the hydrogen bond pattern is similar to that in the oxidized state and in addition a strong hydrogen bond is observed between the N(5)-H group of FMN and the apoprotein. The reduced prosthetic group possesses a coplanar structure and is ionized. The N(3)-H and N(5)-H groups are not accessible to solvent water. Two-electron reduction of the protein leads to a large electron density increase in the benzene subnucleus of bound FMN compared to that in free FMN. The results are discussed in relation to the published crystallographic data on the protein.  相似文献   

5.
NADH-Cytochrome b5 reductase (b5R), a flavoprotein consisting of NADH and flavin adenine dinucleotide (FAD) binding domains, catalyzes electron transfer from the two-electron carrier NADH to the one-electron carrier cytochrome b5 (Cb5). The crystal structures of both the fully reduced form and the oxidized form of porcine liver b5R were determined. In the reduced b5R structure determined at 1.68 Å resolution, the relative configuration of the two domains was slightly shifted in comparison with that of the oxidized form. This shift resulted in an increase in the solvent-accessible surface area of FAD and created a new hydrogen-bonding interaction between the N5 atom of the isoalloxazine ring of FAD and the hydroxyl oxygen atom of Thr66, which is considered to be a key residue in the release of a proton from the N5 atom. The isoalloxazine ring of FAD in the reduced form is flat as in the oxidized form and stacked together with the nicotinamide ring of NAD+. Determination of the oxidized b5R structure, including the hydrogen atoms, determined at 0.78 Å resolution revealed the details of a hydrogen-bonding network from the N5 atom of FAD to His49 via Thr66. Both of the reduced and oxidized b5R structures explain how backflow in this catalytic cycle is prevented and the transfer of electrons to one-electron acceptors such as Cb5 is accelerated. Furthermore, crystallographic analysis by the cryo-trapping method suggests that re-oxidation follows a two-step mechanism. These results provide structural insights into the catalytic cycle of b5R.  相似文献   

6.
Thioredoxin reductase (TrxR) from Escherichia coli, the mutant proteins E159Y and C138S, and the mutant protein C138S treated with phenylmercuric acetate were reconstituted with [U-(13)C(17),U-(15)N(4)]FAD and analysed, in their oxidized and reduced states, by (13)C-, (15)N- and (31)P-NMR spectroscopy. The enzymes studied showed very similar (31)P-NMR spectra in the oxidized state, consisting of two peaks at -9.8 and -11.5 p.p.m. In the reduced state, the two peaks merge into one apparent peak (at -9.8 p.p.m.). The data are compared with published (31)P-NMR data of enzymes closely related to TrxR. (13)C and (15)N-NMR chemical shifts of TrxR and the mutant proteins in the oxidized state provided information about the electronic structure of the protein-bound cofactor and its interactions with the apoproteins. Strong hydrogen bonds exist between protein-bound flavin and the apoproteins at C(2)O, C(4)O, N(1) and N(5). The N(10) atoms in the enzymes are slightly out of the molecular plane of the flavin. Of the ribityl carbon atoms C(10alpha,gamma,delta) are the most affected upon binding to the apoprotein and the large downfield shift of the C(10gamma) atom indicates strong hydrogen bonding with the apoprotein. The hydrogen bonding pattern observed is in excellent agreement with X-ray data, except for the N(1) and the N(3) atoms where a reversed situation was observed. Some chemical shifts observed in C138S deviate considerably from those of the other enzymes. From this it is concluded that C138S is in the FO conformation and the others are in the FR conformation, supporting published data. In the reduced state, strong hydrogen bonding interactions are observed between C(2)O and C(4)O and the apoprotein. As revealed by the (15)N chemical shifts and the N(5)H coupling constant the N(5) and the N(10) atom are highly sp(3) hybridized. The calculation of the endocyclic angles for the N(5) and the N(10) atoms shows the angles to be approximately 109 degrees, in perfect agreement with X-ray data showing that the flavin assumes a bent conformation along the N(10)/N(5) axis of the flavin. In contrast, the N(1) is highly sp(2) hybridized and is protonated, i.e. in the neutral state. Upon reduction of the enzymes, the (13)C chemical shifts of some atoms of the ribityl side chain undergo considerable changes also indicating conformational rearrangements of the side-chain interactions with the apoproteins. The chemical shifts between native TrxR and C138S are now rather similar and differ from those of the two other mutant proteins. This strongly indicates that the former enzymes are in the FO conformation and the other two are in the FR conformation. The data are discussed briefly in the context of published NMR data obtained with a variety of flavoproteins.  相似文献   

7.
Chen ZW  Zhao G  Martinovic S  Jorns MS  Mathews FS 《Biochemistry》2005,44(47):15444-15450
Monomeric sarcosine oxidase (MSOX) is a flavoprotein that contains covalently bound FAD [8a-(S-cysteinyl)FAD] and catalyzes the oxidation of sarcosine (N-methylglycine) and other secondary amino acids, such as l-proline. Our previous studies showed that N-(cyclopropyl)glycine (CPG) acts as a mechanism-based inactivator of MSOX [Zhao, G., et al. (2000) Biochemistry 39, 14341-14347]. The reaction results in the formation of a modified reduced flavin that can be further reduced and stabilized by treatment with sodium borohydride. The borohydride-reduced CPG-modified enzyme exhibits a mass increase of 63 +/- 2 Da as compared with native MSOX. The crystal structure of the modified enzyme, solved at 1.85 A resolution, shows that FAD is the only site of modification. The modified FAD contains a fused five-membered ring, linking the C(4a) and N(5) atoms of the flavin ring, with an additional oxygen atom bound to the carbon atom attached to N(5) and a tetrahedral carbon atom at flavin C(4) with a hydroxyl group attached to C(4). On the basis of the crystal structure of the borohydride-stabilized adduct, we conclude that the labile CPG-modified flavin is a 4a,5-dihydroflavin derivative with a substituent derived from the cleavage of the cyclopropyl ring in CPG. The results are consistent with CPG-mediated inactivation in a reaction initiated by single electron transfer from the amine function in CPG to FAD in MSOX, followed by collapse of the radical pair to yield a covalently modified 4a,5-dihydroflavin.  相似文献   

8.
p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida have been reconstituted with 13C- and 15N-enriched FAD. The protein preparations were studied by 13C-NMR, 15N-NMR and 31P-NMR techniques in the oxidized and in the two-electron-reduced states. The chemical shift values are compared with those of free flavin in water or chloroform. It is shown that the pi electron distribution in oxidized free p-hydroxybenzoate hydroxylase is comparable to free flavin in water, and it is therefore suggested that the flavin ring is solvent accessible. Addition of substrate has a strong effect on several resonances, e.g. C2 and N5, which indicates that the flavin ring becomes shielded from solvent and also that a conformational change occurs involving the positive pole of an alpha-helix microdipole. In the reduced state, the flavin in p-hydroxybenzoate hydroxylase is bound in the anionic form, i.e. carrying a negative charge at N1. The flavin is bound in a more planar configuration than when free in solution. Upon binding of substrate the resonances of N1, C10a and N10 shift upfield. It is suggested that these upfield shifts are the result of a conformational change similar, but not identical, to the one observed in the oxidized state. The 13C chemical shifts of FAD bound to apo(salicylate hydroxylase) indicate that in the oxidized state the flavin ring is also fairly solvent accessible in the free enzyme. Addition of substrate has a strong effect on the hydrogen bond formed with O4 alpha. It is suggested that this is due to the exclusion of water from the active site by the binding of substrate. In the reduced state, the flavin is anionic. Addition of substrate forces the flavin ring to adopt a more planar configuration, i.e. a sp2-hybridized N5 atom and a slightly sp3-hybridized N10 atom. The NMR results are discussed in relation to the reaction catalyzed by the enzymes.  相似文献   

9.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens was replaced by a stereochemical analog, which is spontaneously formed from natural FAD in alcohol oxidases from methylotrophic yeasts. Reconstitution of p-hydroxybenzoate hydroxylase from apoprotein and modified FAD is a rapid process complete within seconds. Crystals of the enzyme-substrate complex of modified FAD-containing p-hydroxybenzoate hydroxylase diffract to 2.1 A resolution. The crystal structure provides direct evidence for the presence of an arabityl sugar chain in the modified form of FAD. The isoalloxazine ring of the arabinoflavin adenine dinucleotide (a-FAD) is located in a cleft outside the active site as recently observed in several other p-hydroxybenzoate hydroxylase complexes. Like the native enzyme, a-FAD-containing p-hydroxybenzoate hydroxylase preferentially binds the phenolate form of the substrate (pKo = 7.2). The substrate acts as an effector highly stimulating the rate of enzyme reduction by NADPH (kred > 500 s-1). The oxidative part of the catalytic cycle of a-FAD-containing p-hydroxybenzoate hydroxylase differs from native enzyme. Partial uncoupling of hydroxylation results in the formation of about 0.3 mol of 3,4-dihydroxybenzoate and 0.7 mol of hydrogen peroxide per mol NADPH oxidized. It is proposed that flavin motion in p-hydroxybenzoate hydroxylase is important for efficient reduction and that the flavin "out" conformation is associated with the oxidase activity.  相似文献   

10.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens, was replaced by 6-hydroxy-FAD (an extra hydroxyl group on the carbon at position 6 of the isoalloxazine ring of FAD). The catalytic cycle of this modified enzyme was analyzed and compared to the function of native (FAD) enzyme. Transient state kinetic analyses of the multiple changes in the chemical state of the flavin were the principal methods used to probe the mechanism. Four known substrates of the native enzyme were used to probe the reaction. With the natural substrate, p-hydroxybenzoate, the 6-hydroxy-FAD enzyme activity was 12-15% of native enzyme, due to a slower release of product from the enzyme, and less than one product molecule was formed per NADPH oxidized, due to an increased rate of nonproductive decomposition of the transient peroxyflavin essential to the catalytic pathway. More extensive changes in mechanism were observed with the substrates, 2,4-dihydroxybenzoate and p-aminobenzoate. The results suggest that, during catalysis, when the reduced state of FAD is ready for oxygen reaction, the substrate is located below and close to the C-4a/N-5 edge of the isoalloxazine ring. The nature of the high extinction, transient state of flavin, formed upon transfer of oxygen to substrate is discussed. It is not a flavin cation, and is unlikely to be an oxygen-substituted analogue of N-3/C-4 dihydroflavin.  相似文献   

11.
Isaias Lans  Susana Frago  Milagros Medina 《BBA》2012,1817(12):2118-2127
The chemical versatility of flavin cofactors within the flavoprotein environment allows them to play main roles in the bioenergetics of all type of organisms, particularly in energy transformation processes such as photosynthesis or oxidative phosphorylation. Despite the large diversity of properties shown by flavoproteins and of the biological processes in which they are involved, only two flavin cofactors, FMN and FAD (both derived from the 7,8-dimethyl-10-(1′-D-ribityl)-isoalloxazine), are usually found in these proteins. Using theoretical and experimental approaches we have carried out an evaluation of the effects introduced upon substituting the 7- and/or 8-methyls of the isoalloxazine ring in the chemical and oxido-reduction properties of the different atoms of the ring on free flavins and on the photosynthetic Anabaena Flavodoxin (a flavoprotein that replaces Ferredoxin as electron carrier from Photosystem I to Ferredoxin-NADP+ reductase). In Anabaena Flavodoxin both the protein environment and the redox state contribute to modulate the chemical reactivity of the isoalloxazine ring. Anabaena apoflavodoxin is shown to be designed to stabilise/destabilise each one of the FMN redox states (but not of the analogues produced upon substitution of the 7- and/or 8-methyls groups) in the adequate proportions to provide Flavodoxin with the particular properties required for the functions in which it is involved in vivo. The 7- and/or 8-methyl groups of the ixoalloxazine can be discarded as the gate for electrons exchange in Anabaena Fld, but a key role in this process is envisaged for the C6 atom of the flavin and the backbone atoms of Asn58.  相似文献   

12.
Kim SH  Hisano T  Iwasaki W  Ebihara A  Miki K 《Proteins》2008,70(3):718-730
The two-component enzyme, 4-hydroxyphenylacetate 3-monooxygenase, catalyzes the conversion of 4-hydroxyphenylacetate to 3,4-dihydroxyphenylacetate. In the overall reaction, the oxygenase component (HpaB) introduces a hydroxyl group into the benzene ring of 4-hydroxyphenylacetate using molecular oxygen and reduced flavin, while the reductase component (HpaC) provides free reduced flavins for HpaB. The crystal structures of HpaC from Thermus thermophilus HB8 in the ligand-free form, the FAD-containing form, and the ternary complex with FAD and NAD(+) were determined. In the ligand-free form, two large grooves are present at the dimer interface, and are occupied by water molecules. A structural analysis of HpaC containing FAD revealed that FAD has a low occupancy, indicating that it is not tightly bound to HpaC. This was further confirmed in flavin dissociation experiments, showing that FAD can be released from HpaC. The structure of the ternary complex revealed that FAD and NAD(+) are bound in the groove in the extended and folded conformation, respectively. The nicotinamide ring of NAD(+) is sandwiched between the adenine ring of NAD(+) and the isoalloxazine ring of FAD. The distance between N5 of the isoalloxazine ring and C4 of the nicotinamide ring is about 3.3 A, sufficient to permit hydride transfer. The structures of these three states are essentially identical, however, the side chains of several residues show small conformational changes, indicating an induced fit upon binding of NADH. Inactivity with respect to NADPH can be explained as instability of the binding of NADPH with the negatively charged 2'-phosphate group buried inside the complex, as well as a possible repulsive effect by the dipole of helix alpha1. A comparison of the binding mode of FAD with that in PheA2 from Bacillus thermoglucosidasius A7, which contains FAD as a prosthetic group, reveals remarkable conformational differences in a less conserved loop region (Gly83-Gly94) involved in the binding of the AMP moiety of FAD. These data suggest that variations in the affinities for FAD in the reductases of the two-component flavin-diffusible monooxygenase family may be attributed to difference in the interaction between the AMP moiety of FAD and the less conserved loop region which possibly shows structural divergence.  相似文献   

13.
NADPH-cytochrome P450 oxidoreductase catalyzes transfer of electrons from NADPH, via two flavin cofactors, to various cytochrome P450s. The crystal structure of the rat reductase complexed with NADP(+) has revealed that nicotinamide access to FAD is blocked by an aromatic residue (Trp-677), which stacks against the re-face of the isoalloxazine ring of the flavin. To investigate the nature of interactions between the nicotinamide, FAD, and Trp-677 during the catalytic cycle, three mutant proteins were studied by crystallography. The first mutant, W677X, has the last two C-terminal residues, Trp-677 and Ser-678, removed; the second mutant, W677G, retains the C-terminal serine residue. The third mutant has the following three catalytic residues substituted: S457A, C630A, and D675N. In the W677X and W677G structures, the nicotinamide moiety of NADP(+) lies against the FAD isoalloxazine ring with a tilt of approximately 30 degrees between the planes of the two rings. These results, together with the S457A/C630A/D675N structure, allow us to propose a mechanism for hydride transfer regulated by changes in hydrogen bonding and pi-pi interactions between the isoalloxazine ring and either the nicotinamide ring or Trp-677 indole ring. Superimposition of the mutant and wild-type structures shows significant mobility between the two flavin domains of the enzyme. This, together with the high degree of disorder observed in the FMN domain of all three mutant structures, suggests that conformational changes occur during catalysis.  相似文献   

14.
The active site of spinach glycolate oxidase   总被引:10,自引:0,他引:10  
  相似文献   

15.
Sequence-specific 1H and 13C NMR assignments have been made for residues that form the five-stranded parallel beta-sheet and the flavin mononucleotide (FMN) binding site of oxidized Anabaena 7120 flavodoxin. Interstrand nuclear Overhauser enhancements (NOEs) indicate that the beta-sheet arrangement is similar to that observed in the crystal structure of the 70% homologous long-chain flavodoxin from Anacystis nidulans [Smith et al. (1983) J. Mol. Biol. 165, 737-755]. A total of 62 NOEs were identified: 8 between protons of bound FMN, 29 between protons of the protein in the flavin binding site, and 25 between protons of bound FMN and protons of the protein. These constraints were used to determine the localized solution structure of the FMN binding site. The electronic environment and conformation of the protein-bound flavin isoalloxazine ring were investigated by determining 13C chemical shifts, one-bond 13C-13C and 15N-1H coupling constants, and three-bond 13C-1H coupling constants. The carbonyl edge of the flavin ring was found to be slightly polarized. The xylene ring was found to be nonplanar. Tyrosine 94, located adjacent to the flavin isoalloxazine ring, was shown to have a hindered aromatic ring flip rate.  相似文献   

16.
31P NMR spectroscopy has been utilized in conjunction with site-directed mutagenesis and phospholipid analysis to determine structural aspects of the prosthetic flavins, FAD and FMN, of NADPH-cytochrome P450 reductase. Comparisons are made among detergent-solubilized and protease (steapsin)-solubilized preparations of porcine liver reductases, showing unequivocally that the 31P NMR signals at approximately 0.0 ppm in the detergent-solubilized, hydrophobic form are attributable to phospholipids. By extraction and TLC analysis, the phospholipid contents of detergent-solubilized rat liver reductase, both tissue-purified and Escherichia coli-expressed, have been determined to reflect the membranes from which the enzyme was extracted. In addition, the cloned, wild-type NADPH-cytochrome P450 reductase exhibits an additional pair of signals downfield of the normal FAD pyrophosphate resonances reported by Otvos et al. [(1986) Biochemistry 25, 7220-7228], but these signals are not observed with tissue-purified or mutant enzyme preparations. The Tyr140----Asp140 mutant, which exhibits only 20% of wild-type activity, displays no gross changes in 31P NMR spectra. However, the Tyr178----Asp178 mutant, which has no catalytic activity and does not bind FMN, exhibits no FMN 31P NMR signal and a normal, but low intensity, pair of signals for FAD. The latter experiments, taking advantage of mutations in residues putatively on either side of the FMN isoalloxazine ring, suggest subtle to severe changes in the binding of the flavin prosthetic groups and, perhaps, cooperative interactions of flavin binding to NADPH-cytochrome P450 reductase.  相似文献   

17.
The interaction between the prosthetic group 6,7-dimethyl-8-(1'-D-ribityl)lumazine and the lumazine apoproteins from two marine bioluminescent bacteria, one from a relatively thermophilic species, Photobacterium leiognathi, and the other from a psychrophilic species, Photobacterium phosphoreum, was studied by 13C and 15N NMR using various selectively enriched derivatives. It is shown that the electron distribution in the protein-bound 6,7-dimethyl-8-ribityllumazine differs from that of free 6,7-dimethyl-8-ribityllumazine in buffer. The 13C and 15N chemical shifts indicate that the protein-bound 6,7-dimethyl-8-ribityllumazine is embedded in a polar environment and that the ring system is strongly polarized. It is concluded that the two carbonyl groups play an important role in the polarization of the molecule. The N(3)-H group is not accessible to bulk solvent. The N(8) atom is sp2 hybridized and has delta+ character. Nuclear Overhauser effect studies indicate that the 6,7-dimethyl-8-ribityllumazine ring is rigidly bound with no internal mobility. The NMR results indicate that the interaction between the ring system and the two apoproteins is almost the same.  相似文献   

18.
The flavodoxins from Megasphaera elsdenii, Clostridium MP, and Azotobacter vinelandii were studied by 13C, 15N, and 31P NMR techniques by using various selectivity enriched oxidized riboflavin 5'-phosphate (FMN) derivatives. It is shown that the pi electron distribution in protein-bound flavin differs from that of free flavin and depends also on the apoflavoprotein used. In the oxidized state Clostridium MP and M. elsdenii flavodoxins are very similar with respect to specific hydrogen bond interaction between FMN and the apoprotein and the electronic structure of flavin. A. vinelandii flavodoxin differs from these flavodoxins in both respects, but it also differs from Desulfovibrio vulgaris flavodoxin. The similarities between A. vinelandii and D. vulgaris flavodoxins are greater than the similarities with the other two flavodoxins. The differences in the pi electron distribution in the FMN of reduced flavodoxins from A. vinelandii and D. vulgaris are even greater, but the hydrogen bond patterns between the reduced flavins and the apoflavodoxins are very similar. In the reduced state all flavodoxins studied contain an ionized prosthetic group and the isoalloxazine ring is in a planar conformation. The results are compared with existing three-dimensional data and discussed with respect to the various possible mesomeric structures in protein-bound FMN. The results are also discussed in light of the proposed hypothesis that specific hydrogen bonding to the protein-bound flavin determines the specific biological activity of a particular flavoprotein.  相似文献   

19.
The effect of hydrogen bonding at hetero atoms of reduced flavin on its reactivity was studied by ab initio molecular orbital calculations. Among the atoms in the isoalloxazine nucleus of lumiflavin, C(4a) was found to be the most reactive with neutral electrophiles such as molecular oxygen, whereas no reactivity of N(5) can be expected, because of its negative charge. The reactivity of C(4a) is markedly enhanced by hydrogen bonding at N(1) and N(3) in a hydrophobic environment, while it is decreased when hydrogen bonding occurs at all the hetero atoms, as in the case of an aqueous solution of flavin.  相似文献   

20.
The resonance Raman spectra of the oxidized and two-electron reduced forms of yeast glutathione reductase are reported. The spectra of the oxidized enzyme indicate a low electron density for the isoalloxazine ring. As far as the two-electron reduced species are concerned, the spectral comparison of the NADPH-reduced enzyme with the glutathione- or dithiothreitol-reduced enzyme shows significant frequency differences for the flavin bands II, III, and VII. The shift of band VII was correlated with a change in steric or electronic interaction of the hydroxyl group of a conserved Tyr with the N(10)-C(10a) portion of the isoalloxazine ring. Upward shifts of bands II and III observed for the glutathione- or dithiothreitol-reduced enzyme indicate both a slight change in isoalloxazine conformation and a hydrogen bond strengthening at the N(1) and/or N(5) site(s). The formation of a mixed disulfide intermediate tends to slightly decrease the frequency of bands II, III, X, XI, and XIV. To account for the different spectral features observed for the NADPH- and glutathione-reduced species, several possibilities have been examined. In particular, we propose a hydrogen bonding modulation at the N(5) site of FAD through a variable conformation of an ammonium group of a conserved Lys residue. Changes in N(5)(flavin)-protein interaction in the two-electron reduced forms of glutathione reductase are discussed in relation to a plausible mechanism of the regulation of the enzyme activity via a variable redox potential of FAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号