首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In hyperthyroxinemic and hypothyreotic rats the lipoprotein level in serum was investigated using agarosegel-electrophoresis and changes in serum level of cholesterol, triglycerides, free fatty acids and glycerol were determined. In hyperthyroxinemic animals the beta-lipoproteins were found in the same level as the control animals, while the prae-beta-fraction was significantly elevated and the alpha-lipoproteins lowered. The cholesterol was significantly reduced, the triglycerides and the glycerol significantly increased. The free fatty acids were slightly elevated. In hypothyreotic animals the beta-and prae-beta-fraction of lipoproteins was significantly elevated. The alpha-lipoproteins were found diminished. Cholesterol and triglyceride values were also significantly increased. The levels of free fatty acids and glycerol did not differ in both groups of animals.  相似文献   

2.
G Hübner  P Dung 《Endokrinologie》1975,66(3):377-380
In serum of hyperthyroxinemic and hypothyreotic rats the activities of MDH and LDH were investigated. In both groups the level of MDH was significantly elevated in comparison with control animals. The activity of LDH did not show any significant alterations.  相似文献   

3.
28-day-old weanling rats were fed a diet containing 3% casein as the only source of protein for eight weeks to induce protein deficiency. When compared to control animals (fed a diet containing 25% casein), these rats had significantly lowered body (5.2-fold reduction) and liver (2.5-fold reduction) weights. The circulatory level of retinol (nmol per ml plasma) as well as retinol (nmol per g tissue) in the liver of these protein-deficient animals were also reduced significantly, although their liver concentration of retinyl palmitate (nmol per g tissue) was comparable to that of the control group. Assay of liver tissue for retinyl palmitate hydrolase activity revealed a 4-fold reduction (compared to that of control animals) of specific enzyme activity (nmol retinol formed per g protein per h). These findings suggest that severe protein deficiency results in a decreased hydrolysis of retinyl esters in the liver, which may be in part responsible for the reduced level of metabolically 'active' retinoids available for normal physiological functions.  相似文献   

4.
Perfluorodecanoic acid (PFDA) administration to adult male rats increased both the activity of hepatic malic enzyme and liver weight in a dose-dependent manner. Hepatomegaly and augmented activity of malic enzyme in liver were apparent within one day following PFDA administration and reached a plateau by three days posttreatment. Malic enzyme quantity per liver in PFDA-treated rats was elevated within one day following dosing and increased continually throughout five days posttreatment. Administration of PFDA to rats in the fed state also led to an increase in the specific activity of hepatic malic enzyme that peaked at three days following dosing. When compared to the fed condition, rats fasted for 48 hours had a decrease in both relative liver weight and the quantity of supernatant protein per liver. The total activity (U/liver) and specific activity of malic enzyme in the liver were also reduced in the fasted state. During the 24 hours after treatment in rats fasted for 48 hours, the body weight as well as the absolute and relative liver weight of animals receiving vehicle declined continuously in the absence of feed. Following the administration of PFDA to fasted rats, body weight was maintained until eight hours posttreatment but then declined at a rate similar to that found with the vehicle-treated group. Absolute and relative liver weight in PFDA-treated rats were increased significantly at eight hours posttreatment when compared to those receiving vehicle, and this increment was maintained throughout the rest of the 24 hours following dosing. While the activity and enzyme content of hepatic malic enzyme decreased in the vehicle-treated group, administration of PFDA to rats fasted for 48 hours prevented their decline. The specific activity of hepatic malic enzyme in 48 hours fasted rats receiving PFDA was also elevated significantly at 16 hours posttreatment. Thus, the administration of PFDA to the adult male rat in both the fed and fasted nutritional states was found to regulate hepatic malic enzyme by not only increasing enzyme quantity but also by augmenting the specific activity, (ie, catalytic state) of the enzyme.  相似文献   

5.
This study compared the effects of dietary whey protein with dietary casein or soy protein on glycogen storage and glycoregulatory enzyme activities in the liver of sedentary and exercise-trained rats. Male Sprague-Dawley rats (ca. 130 g) were divided into one sedentary and three exercise-trained groups, with eight animals in each group. Casein was provided as the source of dietary protein in the sedentary group while the exercise-trained groups were fed casein, whey, or soy protein. Rats in the exercise-trained groups ran for 30 mins/day, 4 days/week on a motor-driven treadmill. In the exercise-trained rats, animals fed whey protein had higher liver glycogen content than animals in the other two diet groups. Glucokinase activity was significantly higher in rats fed whey protein compared to that in rats fed soy protein, while glucose 6-phosphatase activity was significantly decreased in animals on the whey protein diet compared with those the other two diets. Although 6-phospho-fructokinase activity was significantly lower in the whey protein group than in the soy protein group, we found that fructose 1,6-bisphosphatase activity was significantly higher in the whey group compared with either the casein or soy groups. Pyruvate kinase activity in rats fed the casein diet was significantly higher than in rats fed either the whey or soy protein diets. In addition, hepatic alanine aminotransferase activity and serum alanine level were also increased in the whey protein group compared with the casein or soy protein groups. Taken together, these results demonstrate that the whey protein diet in exercise-trained rats results in significantly higher levels of liver glycogen, because of the combined effects of regulation of rate limiting glycolytic and gluconeogenic enzyme activities and activation of glycogenesis from alanine via alanine amino-transferase.  相似文献   

6.
We investigated the effects of bile duct ligation on alkaline phosphatase (ALP) activities in liver, calvarium, duodenum, and ileum in rats and its possible mechanism of action. ALP isozyme activities in the ligated rats were significantly elevated in the liver and duodenum, while those in the ileum and calvarium were markedly decreased. The ALP isozyme activity elevated by the ligation was obviously suppressed by prior administration of indomethacin, an inhibitor of prostaglandin synthesis. Moreover, phorbol ester also elevated the ALP activity as well as the phosphatase level in the ligated rat. However, other drugs, such as an inhibitor of protein kinase C and calmodulin, showed different effects: calmodulin stimulated an 11.0-, 1.3-, or 1.5-fold increase in ALP activity in the ileum, duodenum, or calvarium, respectively; whereas the hepatic enzyme activity was not affected. The induction by calmodulin was markedly different from that by the ligation. Moreover, imipramine, an inhibitor of protein kinase C, had little effect. These results suggest that prostaglandin is a possible ALP inducer in ligated rats, probably working by elevating the cAMP level. On the other hand, the ligation induced simultaneously de novo synthesis of the membranous and soluble ALP isozymes; and the release rate of the soluble enzyme was greater than that of the membranous isozymes, indicating that the soluble enzyme might be a main source of the induced serum ALP. Lectin affinity chromatography indicated that the soluble enzyme or induced serum enzyme may contain more fucose than that of the membranous one, suggesting that the sugar moiety in the ALP molecule may relate to the clearance of ALP from or its release into the circulation.  相似文献   

7.
The regulatory role of protein kinase C (PKC) in glycogen metabolism in pectin fed rats was investigated. Administration of pectin (5 g/kg body wt/day) from cucumber (Cucumis sativius L.) led to inhibitory effects on PKC activity in the liver of rats. In the brain and pancreas, PKC activity was significantly higher in pectin-treated rats as compared to the control group. Level of blood glucose was significantly lowered and the level of glycogen in the liver was significantly increased in pectin-administered rats. Glycogen synthase activity was enhanced, while glycogen phosphorylase enzyme showed inhibition in pectin-treated rats. Results indicated that pectin administration might have caused an increase in the secretion of the insulin, which, in turn, had a stimulatory effect on the PKC activity in the pancreas. The decreased PKC activity in the liver and increased PKC activity in the brain and pancreas on pectin administration indicated enhanced glycogenesis and reduced glycogenolysis.  相似文献   

8.
The mitochondrial tricarboxylate (citrate) carrier plays an important role in hepatic intermediary metabolism because, among other functions, it supplies the cytosol with acetyl units for fatty-acid synthesis. In this study, the effect of polyunsaturated fatty acids (PUFA, n-6) on the function of this mitochondrial transporter and on lipogenic enzyme activities was investigated by feeding rats for 4 weeks with a 15%-fat diet composed of high linoleic safflower oil. Citrate transport was strongly reduced in liver mitochondria isolated from PUFA-treated rats. A reduced transport activity was also observed when solubilized mitochondrial citrate carrier from PUFA-treated rats was reconstituted into liposomes. In the same animals, a decrease of cytosolic lipogenic enzyme activities was observed. These results indicate a coordinated modulation of citrate carrier and of lipogenic enzyme activities by PUFA feeding. Kinetic analysis of the carrier activity showed that only V(max) decreased, whereas K(m) was almost virtually unaffected. The PUFA-mediated effect is most likely due to the reduced mRNA level and lower content of the citrate carrier protein observed in the safflower oil-fed rats.  相似文献   

9.
10.
11.
The effect of vitamin A deficiency on the drug-metabolizing enzyme system of the lung and liver was analyzed in rats fed diets with or without vitamin A for 5-6 weeks. The hepatic level of vitamin A was significantly reduced in vitamin A deficient animals. The hepatic cytochrome P-450 and b5 contents and activity of benzo(a)pyrene hydroxylase was significantly reduced in deficient animals. Contrary to this, pulmonary cytochrome P-450 and b5 contents were above the control values. No alteration in pulmonary benzo(a)pyrene hydroxylase was noted. The uridine diphosphate-glucuronosyltransferase activity of digitonin-treated microsomal membranes was below the control values both in lung and liver. However, the native uridine diphosphate-glucuronosyltransferase activity remained unchanged in the liver and was below control values in the lung.  相似文献   

12.
The activities of various ammoniagenic, gluconeogenic, and glycolytic enzymes were measured in the renal cortex and also in the liver of rats made diabetic with streptozotocin. Five groups of animals were studied: normal, normoglycemic diabetic (insulin therapy), hyperglycemic, ketoacidotic, and ammonium chloride treated rats. Glutaminase I, glutamate dehydrogenase, glutamine synthetase, phosphoenolpyruvate carboxykinase (PEPCK), hexokinase, phosphofructokinase, fructose-1,6-diphosphatase, malate dehydrogenase, malic enzyme, and lactate dehydrogenase were measured. Renal glutaminase I activity rose during ketoacidosis and ammonium chloride acidosis. Glutamate dehydrogenase in the kidney rose only in ammonium chloride treated animals. Glutamine synthetase showed no particular variation. PEPCK rose in diabetic hyperglycemic animals and more so during ketoacidosis and ammonium chloride acidosis. It also rose in the liver of the diabetic animals. Hexokinase activity in the kidney rose in diabetic insulin-treated normoglycemic rats and also during ketoacidosis. The same pattern was observed in the liver of these diabetic rats. Renal and hepatic phosphofructokinase activities were elevated in all groups of experimental animals. Fructose-1,6-diphosphatase and malate dehydrogenase did not vary significantly in the kidney and the liver. Malic enzyme was lower in the kidney and liver of the hyperglycemic diabetic animals and also in the liver of the ketoacidotic rats. Lactate dehydrogenase fell slightly in the liver of diabetic hyperglycemic and NH4Cl acidotic animals. The present study indicates that glutaminase I is associated with the first step of increased renal ammoniagenesis during ketoacidosis. PEPCK activity is influenced both by hyperglycemia and ketoacidosis, acidosis playing an additional role. Insulin appears to prevent renal gluconeogenesis and to favour glycolysis. The latter would seem to remain operative in hyperglycemic and ketoacidotic diabetic animals.  相似文献   

13.
The specific activity of the cytosolic 5'-nucleotidase in regenerating liver increased to 175% of the control level of sham-operated animals during the 2nd and 3rd day and remained elevated most of the experimental period. The total cytosolic 5'-nucleotidase activity of the regenerating liver reached the level of control rats between 2 and 3 days after the operation. The variation pattern of the enzyme, which was distinctly different from variations of other known phosphohydrolases, was strikingly similar to that of the salvage enzyme hypoxanthine/guanine phosphoribosyltransferase.  相似文献   

14.
By feeding a carbohydrate diet (without protein) to fasted rats, malic enzyme mRNA activity in the liver was increased to the level in rats fed a carbohydrate and protein diet, whereas the enzyme activity itself was increased to 60% of that level. It appears that malic enzyme mRNA activity was increased by dietary carbohydrate, while dietary protein contributed to an increase in the translation of mRNA. In the animals fed carbohydrate without protein, glucose-6-phosphate dehydrogenase mRNA activity increased to 50% of the level in rats fed the carbohydrate and protein diet, whereas the enzyme activity increased to only 25%. By feeding a protein diet (without carbohydrate), glucose-6-phosphate dehydrogenase activity increased to 65% of the level in rats fed both carbohydrate and protein. This enzyme induction appears to be more dependent on protein than carbohydrate. With the carbohydrate diet, acetyl-CoA carboxylase was induced up to the level in the carbohydrate and protein diet group, whereas fatty acid synthetase was induced to only 33%. Acetyl-CoA carboxylase induction appears to be carbohydrate dependent. On the other hand, isotopic leucine incorporation studies showed that the magnitudes of the enzyme inductions caused by the dietary nutrients should be ascribed to the enzyme synthesis rates rather than the degradation. By fat feeding, the mRNA activities of malic enzyme and glucose-6-phosphate dehydrogenase were markedly decreased along with the enzyme induction. Fat appears to reduce these enzyme inductions before the translation of mRNA.  相似文献   

15.
It has been known for over half a century that homocysteine levels are elevated in liver cirrhosis, but the basis for it is not fully understood. Using differential display, we identified betaine homocysteine methyltransferase (BHMT) as a gene down-regulated in rat liver cirrhosis and most likely involved in this dysregulation. A partial BHMT clone was isolated by screening of a cDNA library with the differential display fragment. The full-length gene was generated by primer extension of cDNA. Expression levels of BHMT in cirrhotic livers of bile duct ligated rats were compared to controls by Northern and Western blotting as well as by enzyme activity measurements. BHMT mRNA levels were reduced to 29+/-23% in established liver cirrhosis induced by bile duct ligation (BDL) as compared to controls. Enzyme assays in crude liver homogenates showed a similar reduction in BHMT activity in bile duct ligated rat livers. By Western blotting, BHMT could be detected in crude liver homogenates of control animals, but was reduced to below the limit of detection in cirrhotic livers. In conclusion, these findings establish a reduced BHMT enzyme activity in cirrhotic rat livers, which may explain the elevated plasma homocysteine levels in cirrhosis.  相似文献   

16.
In our chronic experiments (over several months), the activity and protein amount of glycerol-3-phosphate dehydrogenase (GPDH) in mitochondria isolated from the liver of adult male and female inbred Lewis strain euthyroid (EU), hyperthyroid (TH), and hypothyroid (HY) rats were analyzed by biochemical and Western blot methods. The TH status was induced by intraperitoneal injections of 3,3',5-triiodo- L-thyronine and the HY status with 0.05% solution of methimazole in drinking water. The TH status led to a significant increase and the HY status to a significant decrease of enzyme activity and protein amount in both male and female animals. These changes were, however, more pronounced in females. The EU and TH female rats also showed a significantly higher activity and the TH female rats showed also a significantly higher enzyme amount in comparison with males, while the HY rats showed low levels in both sexes. The glycerol-3-phosphate-dependent oxygen consumption of freshly isolated rat liver mitochondria from the TH animals was higher in comparison with the EU animals and it was activated by idebenone, a synthetic analogue of coenzyme Q, in both the EU and TH rats. Measurements of serum thyroid hormone levels and analysis of anatomical parameters (relative heart and thyroid gland weights) confirmed that our procedures inducing the TH and HY states are efficient and reliable and that determination of GPDH can serve as an additional criterion for the evaluation of the thyroid hormone status.  相似文献   

17.
The activity of rat liver asparagine synthetase [EC 6.3.1.1]increased when animals maintained on 25% protein diet were placed on 15% or 6% protein diet. The enzyme activity level rose within one day, reached a maximum in 7 or 10 days after switching the diet and thereafter dropped gradually. During the purification of the enzyme from rats on 25% or 6% protein diet, the yield and increase of the specific activity were similar in the two groups. Combination of the liver extracts from two such groups demonstrated that the amount of endogeneous inhibitors of the enzyme did not change on replacing the diet. The elevation of the enzyme activity in rats fed 6% casein diet was suppressed by an injection of cycloheximide or actinomycin D. It is suggested that the change in the enzyme activity was due to alteration of the amount of the enzyme.  相似文献   

18.
We examined whether regulation of glutamine: fructose-6-phosphate amidotransferase (GFA), the rate-limiting enzyme of the hexosamine pathway, is tissue specific and if so whether such regulation occurs at the level of gene expression. We compared GFA activity and expression and levels of UDP-hexosamines and UDP-hexoses between insulin-sensitive (liver and muscle) tissues and a glucose-sensitive (placenta) tissue from 19 day pregnant streptozotocin diabetic and non-diabetic rats. In pregnant non-diabetic rats GFA activities averaged (1521+/-75 pmol/mg protein x min) in the placenta, 895+/-74 in the liver and 81+/-11 in muscle (p<0.001 between each tissue). In the diabetic rats, GFA activities were approximately 50% decreased both in the liver (340+/-42 pmol/mg protein x min, p<0.05 vs control rats) and in skeletal muscle (46+/-3, p<0.05) compared to control rats. In the placenta, GFA activities were identical between diabetic (1519+/-112 pmol/mg protein x min) and non-diabetic (1521+/-75) animals. In the liver, the reduction in GFA activity could be attributed to a significant decrease in GFA mRNA concentrations, while GFA mRNA concentrations were similar in the placenta between diabetic and non-diabetic animals. UDP-N-acetylglucosamine (UDP-GlcNAc), the end product of the hexosamine pathway, was significantly reduced in the liver and in skeletal muscle but similar in the placenta between diabetic and non-diabetic rats. In summary, GFA activity and expression and the concentration of UDP-GlcNAc are decreased in the liver but unaltered in the placenta, although GFA activity is almost 2-fold higher in this tissue than in the liver. These data provide the first evidence for tissue specific regulation of GFA and for its regulation at the level of gene expression.  相似文献   

19.
Protein phosphatase-1 and 2A, accounting for all the hepatic activity regulating phosphorylase, were assayed in streptozotocin-induced (8 weeks) diabetic Wistar rats. Cytosolic protein phosphatase-1 and 2A were distinguished by chromatography on heparin-Sepharose and by inhibition with inhibitor-2. Approx. 25-35% increases in type-1 phosphorylase phosphatase activity measured in cytosols were registered in diabetic rats when compared with control and 24 h fasting animals. The enrichment of protein phosphatase-1 in the cytosol of streptozotocin-treated rat livers could not be attributed to the reduced glycogen content with the onset of diabetes, since this elevated level of type-1 phosphatase was not observed in fasting rats with low glycogen content. The translocation of type-1 phosphatase from the particulate fraction into the cytosol was also recorded in trypsin-treated samples of diabetic rat livers. The apparent molecular weight of type-1 phosphatase in the cytosol of control and fasted rats was 160,000 as judged by gel filtration. The type-1 phosphatase activity that was released from the particulate fraction by streptozotocin-induced diabetes identified a further enzyme species (Mr 110,000) in the cytosol. Our data imply that the higher levels of cytosolic protein phosphatase-1 in diabetic rat liver could be a consequence of the dissociation of the catalytic subunit of protein phosphatase-1 and the glycogen-binding subunit in rat livers.  相似文献   

20.
Cholestatic liver disease is recognized by extreme collagen formation and deposition, which is mediated by free radicals. The aim of the current study was to investigate the probable hepatoprotective effects of hydroalcoholic extract of watercress (WC) against oxidative stress and liver injury in bile duct ligation (BDL)- induced cholestatic rats. A total of 32 male Wistar rats were divided into four groups; sham control (SC), BDL, SC + hydroalcoholic extract of WC and BDL + hydroalcoholic extract of WC. WC-treated rats received daily WC 500 mg/kg/day for 10 days. Biochemical tests, hepatic oxidative stress markers, and antioxidant enzymes activity were estimated. Further, liver hydroxyproline content was assayed and histological analysis was made. The BDL model markedly elevated the protein carbonyl (PCO) and hydroxyproline contents and decreased the glutathione peroxidase (GPx) activity. Hydroalcoholic extract of WC significantly decreased the surge in liver PCO and hydroxyproline levels and increased the reduced GPx enzyme activity contents in the hepatic tissue. As determined by hematoxylin and eosin staining, BDL considerably induced hepatocyte necrosis. Moreover, these changes were significantly attenuated by the hydroalcoholic extract of WC treatment. Our data indicate that the hydroalcoholic extract of WC extract attenuated liver damage in BDL rats by decreasing the hydroxyproline content and histopathological indexes. Also, it reduced oxidative stress by preventing the hepatic protein oxidation and enhancing the activity of the GPx enzyme via antioxidative effect and free-radical scavenging. Our findings suggest that hydroalcoholic extract of WC could be a beneficial new curative agent for cholestatic liver damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号