首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gravel KA  Morrison TG 《Journal of virology》2003,77(20):11040-11049
The activation of most paramyxovirus fusion proteins (F proteins) requires not only cleavage of F(0) to F(1) and F(2) but also coexpression of the homologous attachment protein, hemagglutinin-neuraminidase (HN) or hemagglutinin (H). The type specificity requirement for HN or H protein coexpression strongly suggests that an interaction between HN and F proteins is required for fusion, and studies of chimeric HN proteins have implicated the membrane-proximal ectodomain in this interaction. Using biotin-labeled peptides with sequences of the Newcastle disease virus (NDV) F protein heptad repeat 2 (HR2) domain, we detected a specific interaction with amino acids 124 to 152 from the NDV HN protein. Biotin-labeled HR2 peptides bound to glutathione S-transferase (GST) fusion proteins containing these HN protein sequences but not to GST or to GST containing HN protein sequences corresponding to amino acids 49 to 118. To verify the functional significance of the interaction, two point mutations in the HN protein gene, I133L and L140A, were made individually by site-specific mutagenesis to produce two mutant proteins. These mutations inhibited the fusion promotion activities of the proteins without significantly affecting their surface expression, attachment activities, or neuraminidase activities. Furthermore, these changes in the sequence of amino acids 124 to 152 in the GST-HN fusion protein that bound HR2 peptides affected the binding of the peptides. These results are consistent with the hypothesis that HN protein binds to the F protein HR2 domain, an interaction important for the fusion promotion activity of the HN protein.  相似文献   

2.
Most paramyxovirus fusion proteins require coexpression of and activation by a homotypic attachment protein, hemagglutinin-neuraminidase (HN), to promote membrane fusion. However, the molecular mechanism of the activation remains unknown. We previously showed that the incorporation of a monohistidylated lipid into F-virosome (Sendai viral envelope containing only fusion protein) enhanced its fusion to hepatocytes, suggesting that the histidine residue in the lipid accelerated membrane fusion. Therefore, we explored whether a histidine moiety in HN could similarly direct activation of the fusion protein. In membrane fusion assays, the histidine substitution mutants of HN (H247A of Sendai virus and H245A of human parainfluenza virus 3) had impaired membrane fusion promotion activity without significant changes in other biological activities. Synthetic 30-mer peptides corresponding to regions of the two HN proteins containing these histidine residues rescued the fusion promoting activity of the mutants, whereas peptides with histidine residues substituted by alanine did not. These histidine-containing peptides also activated F-virosome fusion with hepatocytes both in the presence and in the absence of mutant HN in the virosome. We provide evidence that the HN-mimicking peptides promote membrane fusion, revealing a specific histidine “switch” in HN that triggers fusion.  相似文献   

3.
Receptors for Sendai virions in human erythrocyte ghost membranes were identified by virus overlay of protein blots. Among the various erythrocyte polypeptides, only glycophorin was able to bind Sendai virions effectively. The detection of Sendai virions bound to glycophorin was accomplished either by employing anti-Sendai virus antibodies or by autoradiography, when 125I-labeled Sendai virions were used. The binding activity was associated with the viral hemagglutinin/neuraminidase (HN) glycoprotein, as inferred from the observation that the binding pattern of purified HN glycoprotein to human erythrocyte membranes was identical to that of intact Sendai virions. No binding was observed when blots, containing either human erythrocyte membranes or purified glycophorin, were probed with the viral fusion factor (F glycoprotein). Active virions competed effectively with the binding of 125I-labeled Sendai virions (or purified HN glycoprotein), whereas no competition was observed with inactivated Sendai virus. The results of the present work clearly show that protein blotting can be used to identify virus receptors in cell membrane preparations.  相似文献   

4.
Reconstituted Sendai virus envelopes containing both the fusion (F) protein and the hemagglutinin-neuraminidase (HN) (F,HN-virosomes) or only the F protein (F-virosomes) were prepared by solubilization of the intact virus with Triton X-100 followed by its removal by using SM2 Bio-Beads. Viral envelopes containing HN whose disulfide bonds were irreversibly reduced (HNred) were also prepared by treating the envelopes with dithiothreitol followed by dialysis (F,HNred-virosomes). Both F-virosomes and F,HNred-virosomes induced hemolysis of erythrocytes in the presence of wheat germ agglutinin, but the rates and extents were markedly lower than those for hemolysis induced by F,HN-virosomes. Using an assay based on the relief of self-quenching of a lipid probe incorporated in the Sendai virus envelopes, we demonstrate the fusion of both F,HN-virosomes and F-virosomes with cultured HepG2 cells containing the asialoglycoprotein receptor, which binds to a terminal galactose moiety of F. By desialylating the HepG2 cells, the entry mediated by HN-terminal sialic acid receptor interactions was bypassed. We show that both F-virosomes and F,HN-virosomes fuse with desialylated HepG2 cells, although the rate was two- to threefold higher if HN was included in the viral envelope. We also observed enhancement of fusion rates when both F and HN envelope proteins were attached to their specific receptors.  相似文献   

5.
Cell entry by paramyxoviruses requires fusion of the viral envelope with the target cell membrane. Fusion is mediated by the viral fusion (F) glycoprotein and usually requires the aid of the attachment glycoprotein (G, H or HN, depending on the virus). Human respiratory syncytial virus F protein (F(RSV)) is able to mediate membrane fusion in the absence of the attachment G protein and is unique in possessing two multibasic furin cleavage sites, separated by a region of 27 amino acids (pep27). Cleavage at both sites is required for cell-cell fusion. We have investigated the significance of the two cleavage sites and pep27 in the context of Sendai virus F protein (F(SeV)), which possesses a single monobasic cleavage site and requires both coexpression of the HN attachment protein and trypsin in order to fuse cells. Inclusion of both F(RSV) cleavage sites in F(SeV) resulted in a dramatic increase in cell-cell fusion activity in the presence of HN. Furthermore, chimeric F(SeV) mutants containing both F(RSV) cleavage sites demonstrated cell-cell fusion in the absence of HN. The presence of two multibasic cleavage sites may therefore represent a strategy to regulate activation of a paramyxovirus F protein for cell-cell fusion in the absence of an attachment protein.  相似文献   

6.
Q Yao  X Hu    R W Compans 《Journal of virology》1997,71(1):650-656
We previously observed that cell fusion caused by human parainfluenza virus type 2 or type 3 requires the expression of both the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins from the same virus type, indicating that a type-specific interaction between F and HN is needed for the induction of cell fusion. In the present study we have further investigated the fusion properties of F and HN proteins of parainfluenza virus type 1 (PI1), type 2 (PI2), and type 3 (PI3), Sendai virus (SN), and simian virus 5 (SV5) by expression of their glycoprotein genes in HeLa T4 cells using the vaccinia virus-T7 transient expression system. Consistent with previous results, cell fusion was observed in cells transfected with homotypic F/HN proteins; with one exception, coexpression of any combination of F and HN proteins from different viruses did not result in cell fusion. The only exception was found with the closely related PI1 HN and SN HN glycoproteins, either of which could interact with SN F to induce cell fusion upon coexpression as previously reported. By specific labeling and coprecipitation of proteins expressed on the cell surface, we observed that anti-PI2 HN antiserum coprecipitated PI2 F when the homotypic PI2 F and PI2 HN were coexpressed, but not the F proteins of other paramyxoviruses when heterotypic F genes were coexpressed with PI2 HN, suggesting that the homotypic F and HN proteins are physically associated with each other on cell surfaces. Furthermore, we observed that PI3 F was found to cocap with PI3 HN but not with PI2 HN, also indicating a specific association between the homotypic proteins. These results indicate that the homotypic F and HN glycoproteins are physically associated with each other on the cell surface and suggest that such association is crucial to cell fusion induced by paramyxoviruses.  相似文献   

7.
Fluorescence photobleaching recovery has been employed to study the lateral mobility of the Sendai virus envelope glycoproteins (HN, neuraminidase/hemagglutinin protein (HN) fusion protein (F) on the surface of human erythrocytes. Our results indicate that the two viral glycoproteins are laterally immobile on the cell surface prior to fusion, and become mobile during the fusion process. The two fused glycoproteins are mobilized to the same extent (diffusion coefficients of 3.1-3.3 X 10(-10) cm2/sec with mobile fractions of 0.53-0.57 for both HN and F). Their mobilization is blocked under conditions that allow virus adsorption and hemagglutination, but not virus-cell or cell-cell fusion. These findings suggest a possible role for the lateral diffusion of the viral glycoproteins in the mechanism of cell-cell fusion, enabling them to perturb the membranes of adjacent cells and lead to cell-cell fusion.  相似文献   

8.
We have analyzed the mechanism by which M protein interacts with components of the viral envelope during Sendai virus assembly. Using recombinant vaccinia viruses to selectively express combinations of Sendai virus F, HN, and M proteins, we have successfully reconstituted M protein-glycoprotein interaction in vivo and determined the molecular interactions which are necessary and sufficient to promote M protein-membrane binding. Our results showed that M protein accumulates on cellular membranes via a direct interaction with both F and HN proteins. Specifically, our data demonstrated that a small fraction (8 to 16%) of M protein becomes membrane associated in the absence of Sendai virus glycoproteins, while > 75% becomes membrane bound in the presence of both F and HN proteins. Selective expression of M protein together with either F or HN protein showed that each viral glycoprotein is individually sufficient to promote efficient (56 to 73%) M protein-membrane binding. Finally, we observed that M protein associates with cellular membranes in a time-dependent manner, implying a need for either maturation or transport before binding to glycoproteins.  相似文献   

9.
After isolation from Sendai virus, the glycoproteins HN and F retained their ability to induce hemagglutination and both heterologous and homologous cell-cell fusion. Both methods for demonstrating cell fusion indicated that the isolated HN and F glycoproteins compared favorably with whole Sendai virus as a fusogen. Conditions affecting the degree of fusion were examined and optimized. Whole virus and isolated glycoprotein preparations were characterized by electron microscopy and by SDS-polyacrylamide gel electrophoresis. Lipid analysis of the glycoprotein preparations by thin layer chromatography and gas chromatography/mass spectrometry indicated that they were partially lipid-depleted during the isolation protocol and the ratio of cholesterol to phospholipid was higher than in the whole virus. A complete fatty acid analysis was performed on lipid extracts from whole virus and from glycoprotein preparations. Detergent was removed from the glycoproteins by dialysis and by incubation with Amberlite XAD-2 resin. The detergent content of the glycoprotein preparations was monitored by gas chromatography and with [3H]Triton X-100. Both methods showed that virtually all (greater than or equal to 99.8%) of the originally added detergent was removed. Electron microscopy of the negatively-stained HN and F preparations showed primarily spherical particles 120 +/- 20 A in diameter (range 80-250 A). Since no organization reminiscent of envelopes could be demonstrated, we conclude that the fusogenic activity of Sendai virus resides in the glycoproteins per se rather than in bilayer integrated lipid-protein complexes.  相似文献   

10.
Cell entry by paramyxoviruses requires fusion between viral and cellular membranes. Paramyxovirus infection also gives rise to the formation of multinuclear, fused cells (syncytia). Both types of fusion are mediated by the viral fusion (F) protein, which requires proteolytic processing at a basic cleavage site in order to be active for fusion. In common with most paramyxoviruses, fusion mediated by Sendai virus F protein (F(SeV)) requires coexpression of the homologous attachment (hemagglutinin-neuraminidase [HN]) protein, which binds to cell surface sialic acid receptors. In contrast, respiratory syncytial virus fusion protein (F(RSV)) is capable of fusing membranes in the absence of the viral attachment (G) protein. Moreover, F(RSV) is unique among paramyxovirus fusion proteins since F(RSV) possesses two multibasic cleavage sites, which are separated by an intervening region of 27 amino acids. We have previously shown that insertion of both F(RSV) cleavage sites in F(SeV) decreases dependency on the HN attachment protein for syncytium formation in transfected cells. We now describe recombinant Sendai viruses (rSeV) that express mutant F proteins containing one or both F(RSV) cleavage sites. All cleavage-site mutant viruses displayed reduced thermostability, with double-cleavage-site mutants exhibiting a hyperfusogenic phenotype in infected cells. Furthermore, insertion of both F(RSV) cleavage sites in F(SeV) reduced dependency on the interaction of HN with sialic acid for infection, thus mimicking the unique ability of RSV to fuse and infect cells in the absence of a separate attachment protein.  相似文献   

11.
The human parainfluenza virus type 3 (HPIV3) fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins are the principal components involved in virion receptor binding, membrane penetration, and ultimately, syncytium formation. While the requirement for both F and HN in this process has been determined from recombinant expression studies, stable physical association of these proteins in coimmunoprecipitation studies has not been observed. In addition, coexpression of other heterologous paramyxovirus F or HN glycoproteins with either HPIV3 F or HN does not result in the formation of syncytia, suggesting serotype-specific protein differences. In this study, we report that simian virus 5 and Sendai virus heterologous HN proteins and measles virus hemagglutinin (H) were found to be down-regulated when coexpressed with HPIV3 F. As an alternative to detecting physical associations of these proteins by coimmunoprecipitation, further studies were performed with a mutant HPIV3 F protein (F-KDEL) lacking a transmembrane anchor and cytoplasmic tail and containing a carboxyl-terminal retention signal for the endoplasmic reticulum (ER). F-KDEL was defective for transport to the cell surface and could down-regulate surface expression of HPIV3 HN and heterologous HN/H proteins from simian virus 5, Sendai virus, and measles virus in coexpression experiments. HN/H down-regulation appeared to result, in part, from an early block to HPIV3 HN synthesis, as well as an instability of the heterologous HN/H proteins within the ER. In contrast, coexpression of F-KDEL with HPIV3 wild-type F or the heterologous receptor-binding proteins, respiratory syncytial virus glycoprotein (G) and vesicular stomatitis virus glycoprotein (G), were not affected in transport to the cell surface. Together, these results support the notion that the reported serotype-specific restriction of syncytium formation may involve, in part, down-regulation of heterologous HN expression.  相似文献   

12.
Lateral motion of the viral envelope proteins in the target cell membrane was shown recently to be essential for cell fusion by Sendai virus (Henis, Y. I., Herman-Barhom, Y., Aroeti, B., and Gutman, O. (1989) J. Biol. Chem. 264, 17119-17125). To explore the mechanism that gives rise to this requirement, we have now investigated the distribution of Sendai virus envelope proteins (F, the fusion protein, and HN, the hemagglutinin/neuraminidase protein) on human erythrocytes in the course of fusion, using fluorescence microscopy and image analysis. In these studies, both the F and the HN proteins were found to accumulate in cell-cell contact regions, on the time scale of the fusion process. We propose that migration of the viral glycoproteins to cell contact regions and accumulation at the contact sites are essential parts of the fusion mechanism and form the basis to the requirement for their lateral motion in the fusion event.  相似文献   

13.
Fluorescence photobleaching recovery was employed to study the effects of specific immobilization of Sendai virus envelope glycoproteins (F, the fusion protein, and HN, the hemagglutinin-neuraminidase) on the virally mediated fusion of human erythrocytes. Lateral immobilization of varying fractions of F and/or HN (after virus adsorption and hemagglutination, but before fusion) was achieved by cross-linking them with succinyl concanavalin A (inhibiting both F and HN) or with specific rabbit IgG directed against either F or HN. Alternatively, agglutinated cells were treated with low concentrations of the above proteins (inducing only minor inhibition of either mobility or fusion), and immobilization of F and/or HN was induced by cross-linking with a secondary antibody; this protocol ensured a minimal contribution of direct binding to the viral proteins to the inhibition of fusion. Our results demonstrate that lateral immobilization of either F or HN results in a strong inhibition of cell-cell fusion and a much weaker inhibition of virus-cell fusion. The level of cell-cell fusion was directly correlated with the level of laterally mobile viral glycoproteins in the cell membrane (either F or HN). We conclude that lateral mobility of both F and HN in the red cell membrane is essential for cell-cell fusion and that not only F but also HN has a role in this fusion event. The possible reasons for the different dependence of cell-cell and virus-cell fusion on viral glycoprotein mobility are discussed.  相似文献   

14.
Peptides derived from heptad repeat (HR) sequences of viral fusion proteins from several enveloped viruses have been shown to inhibit virus-mediated membrane fusion but the mechanism remains unknown. To further investigate this, the inhibition mechanism of two HR-derived peptides from the fusion protein of the paramyxovirus Newcastle disease virus (NDV) was investigated. Peptide N24 (residues 145-168) derived from HR1 was found to be 145-fold more inhibitory in a syncytium assay than peptide C24 (residues 474-496), derived from HR2. Both peptides failed to block lipid-mixing between R18-labeled virus and cells. None of the peptides interfered with the binding of hemagglutinin-neuraminidase (HN) protein to the target cells, as demonstrated by hemagglutining assays. When both peptides were mixed at equimolar concentrations, their inhibitory effect was abolished. In addition, both peptides induced the aggregation of negatively charged and zwitterionic phospholipid membranes. The ability of the peptides to interact with each other in solution suggests that these peptides may bind to the opposite HR region on the protein whereas their ability to interact with membranes as well as their failure to block lipid transfer suggest a second binding site. Taken together these results, suggest a mode of action for C24 and N24 in which both peptides have two different targets on the F protein: the opposite HR sequence and their corresponding domains.  相似文献   

15.
The cell fusion activity of most paramyxoviruses requires coexpression of a fusion protein (F) and a hemagglutinin-neuraminidase protein (HN) which are derived from the same virus type. To define the domain of the HN protein which interacts with the F protein in a type-specific manner a series of chimeric HN proteins between two different paramyxoviruses, Sendai virus (SN) and human parainfluenza virus type 3 (PI3), was constructed and coexpressed with the SN-F protein by using the vaccinia virus T7 RNA polymerase transient-expression system. Quantitative assays were used to evaluate cell surface expression as well as fusion-promoting activities of the chimeric HN molecules. A chimeric HN protein [SN(140)] containing 140 N-terminal amino acids derived from SN-HN and the remainder (432 amino acids) derived from PI3-HN was found to promote cell fusion with the SN-F protein. In contrast, a second chimeric HN with 137 amino acids from SN-HN at the N terminus could not promote fusion with SN-F, even though the protein was expressed on the cell surface. A construct in which the PI3-HN cytoplasmic tail and transmembrane domain were substituted for those of SN in the SN(140) chimera still maintained the ability to promote cell fusion. These results indicate that a region including only 82 amino acids in the extracellular domain, adjacent to the transmembrane domain of the SN-HN protein, is important for interaction with the SN-F protein and promotion of cell fusion.  相似文献   

16.
The role of specific sequences in the transmembrane (TM) domain of Newcastle disease virus (NDV) fusion (F) protein in the structure and function of this protein was assessed by replacing this domain with the F protein TM domains from two other paramyxoviruses, Sendai virus (SV) and measles virus (MV), or the TM domain of the unrelated glycoprotein (G) of vesicular stomatitis virus (VSV). Mutant proteins with the SV or MV F protein TM domains were expressed, transported to cell surfaces, and proteolytically cleaved at levels comparable to that of the wild-type protein, while mutant proteins with the VSV G protein TM domain were less efficiently expressed on cell surfaces and proteolytically cleaved. All mutant proteins were defective in all steps of membrane fusion, including hemifusion. In contrast to the wild-type protein, the mutant proteins did not form detectable complexes with the NDV hemagglutinin-neuraminidase (HN) protein. As determined by binding of conformation-sensitive antibodies, the conformations of the ectodomains of the mutant proteins were altered. These results show that the specific sequence of the TM domain of the NDV F protein is important for the conformation of the preactivation form of the ectodomain, the interactions of the protein with HN protein, and fusion activity.  相似文献   

17.
The biological activity of two glycoproteins, hemagglutinin and neuraminidase (HN) and fusion (F) proteins, of Sendai virus (HVJ) were studied using purified proteins. The proteins were purified by chromatography on DEAE and CM cellulose in the presence of Nonidet P-40 (NP40). The glycoproteins were reconstituted at various ratios of F to HN into lipid vesicles containing fragment A of diphtheria toxin. The association of HN and F proteins with the vesicles was confirmed by electron microscopy and sucrose density gradient centrifugation. The cytotoxic activity of vesicles containing fragment A on fusion with L cells was determined by measuring colony formation of the cells. It was found that for maximum cytotoxic activity of the vesicles, there was an optimal ratio of F to HN of two. This suggests that HN is not merely the initial binding site to the cell surface, and that interactions between HN and F proteins on the virus surface may be important for the biological activities of these proteins on the cells.  相似文献   

18.
Structure and function of a paramyxovirus fusion protein   总被引:21,自引:0,他引:21  
Paramyxoviruses initiate infection by attaching to cell surface receptors and fusing viral and cell membranes. Viral attachment proteins, hemagglutinin-neuraminidase (HN), hemagglutinin (HA), or glycoprotein (G), bind receptors while fusion (F) proteins direct membrane fusion. Because paramyxovirus fusion is pH independent, virus entry occurs at host cell plasma membranes. Paramyxovirus fusion also usually requires co-expression of both the attachment protein and the fusion (F) protein. Newcastle disease virus (NDV) has assumed increased importance as a prototype paramyxovirus because crystal structures of both the NDV F protein and the attachment protein (HN) have been determined. Furthermore, analysis of structure and function of both viral glycoproteins by mutation, reactivity of antibody, and peptides have defined domains of the NDV F protein important for virus fusion. These domains include the fusion peptide, the cytoplasmic domain, as well as heptad repeat (HR) domains. Peptides with sequences from HR domains inhibit fusion, and characterization of the mechanism of this inhibition provides evidence for conformational changes in the F protein upon activation of fusion. Both proteolytic cleavage of the F protein and interactions with the attachment protein are required for fusion activation in most systems. Subsequent steps in membrane merger directed by F protein are poorly understood.  相似文献   

19.
Paramyxoviruses initiate infection by attaching to cell surface receptors and fusing viral and cell membranes. Viral attachment proteins, hemagglutinin-neuraminidase (HN), hemagglutinin (HA), or glycoprotein (G), bind receptors while fusion (F) proteins direct membrane fusion. Because paramyxovirus fusion is pH independent, virus entry occurs at host cell plasma membranes. Paramyxovirus fusion also usually requires co-expression of both the attachment protein and the fusion (F) protein. Newcastle disease virus (NDV) has assumed increased importance as a prototype paramyxovirus because crystal structures of both the NDV F protein and the attachment protein (HN) have been determined. Furthermore, analysis of structure and function of both viral glycoproteins by mutation, reactivity of antibody, and peptides have defined domains of the NDV F protein important for virus fusion. These domains include the fusion peptide, the cytoplasmic domain, as well as heptad repeat (HR) domains. Peptides with sequences from HR domains inhibit fusion, and characterization of the mechanism of this inhibition provides evidence for conformational changes in the F protein upon activation of fusion. Both proteolytic cleavage of the F protein and interactions with the attachment protein are required for fusion activation in most systems. Subsequent steps in membrane merger directed by F protein are poorly understood.  相似文献   

20.
Ghosh JK  Peisajovich SG  Shai Y 《Biochemistry》2000,39(38):11581-11592
Viral glycoproteins catalyze the fusion between viral and cellular membranes. The fusion protein (F(1)) of Sendai virus has two fusion peptides. One is located at its N-terminus and the other, highly homologous to the HIV-1 and RSV fusion peptides, in the interior of the F(1) protein. A synthetic peptide corresponding to the internal fusogenic domain, namely, SV-201, was found to inhibit virus-cell fusion without interfering with the binding of the virus to the target cells, thus highlighting the importance of this region in Sendai virus-induced membrane fusion. However, its detailed mechanism of inhibition remains unknown. Here, we synthesized a shorter version of SV-201, namely, SV-208, an elongated one, SV-197, and two mutants of SV-201, and compared them functionally and structurally with SV-201. In contrast to SV-201, SV-208 and the two mutants do not inhibit virus-cell fusion. The differences in the oligomerization state of these peptides in aqueous solution and within the membrane, and in their ability to bind to Sendai virions, enabled us to postulate a possible mechanism of viral entry inhibition: SV-201 binds to its target in Sendai virions before the F(1) internal fusion peptide binds to the membrane, therefore blocking the F(1) conformational change required for fusion. In addition, we further characterized the fusogenic activity of the internal fusion peptide, compared to the N-terminal one, and determined its structure in the membrane-bound state by means of fluorescence, CD, and ATR-FTIR spectroscopy. Remarkably, we found that SV-201 and its elongated form, SV-197, are highly potent in inducing fusion of the highly stable large unilamellar vesicles composed of egg phosphatidylcholine, a property found only in an extended version of the HIV-1 fusion peptide. The inhibitory activity of SV-201 and its fusogenic ability are discussed in terms of the "umbrella" model of Sendai virus-induced membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号