首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The functional activity in the brain is primarily composed of an interplay between excitation and inhibition. In any given region the output is based upon a complex processing of incoming signals that require both excitatory and inhibitory units. Moreover, these units must be regulated and balanced such that an integrated and finely tuned response is generated. In each of these units or synapses the activity depends on biosynthesis, release, receptor interaction, and inactivation of the neurotransmitter in question; thus, it is easily understood that each of these processes needs to be highly regulated and controlled. It is interesting to note that in case of the most prevailing neurotransmitters, glutamate and GABA, which mediate excitation and inhibition, respectively, the inactivation process is primarily maintained by highly efficient, high-affinity transport systems capable of maintaining transmembrane concentration gradients of these amino acids of 104–105-fold. The demonstration of the presence of transporters for glutamate and GABA in both neuronal and astrocytic elements naturally raises the question of the functional importance of the astrocytes in the regulation of the level of the neurotransmitters in the synaptic cleft and hence for the activity of excitatory and inhibitory neurotransmission. Obviously, this discussion has important implications for the understanding of the role of astrocytes in disease states in which imbalances between excitation and inhibition are a triggering factor, for example, epilepsy and neurodegeneration.  相似文献   

2.
Ascending subcortical pathways effectively modulate hippocampal information processing. Two components, the cholinergic and serotonergic pathways have been demonstrated to play an important role in the generation of behaviour-dependent hippocampal EEG patterns. Several findings suggest that the above projections influence the activity of hippocampal interneurons. Here we review the available data from physiological, pharmacological and receptor localization experiments, drawing attention to the crucial role of interneurons in the transfer and amplification of subcortical effects on cortical information processing. We hypothesize that, by exerting diverse actions on different subsets of interneurons, the cholinergic and serotonergic systems might change the balance of somatic and dendritic inhibition, and consequently change the integrative properties of hippocampal principal cells.  相似文献   

3.
Involvement of the adenylate cyclase system in cholinergic modulation of synaptic transmission was investigated in area CA1 in rat hippocampal slices. Microiontophoretic application of acetylcholine as well as addition of carbachol to the superfusate or of tolbutamide (a cAMP-dependent protein kinase inhibitor) depressed transmission at synapses formed by Schaffer collaterals and commissural fibers with dendrites of pyramidal cells belonging to hippocampal area CA1. Both numbers of free quanta of neurotransmitter and the likelihood of transmitter release decreased following carbachol action. Atropine suppressed the inhibitory action of carbachol on synaptic transmission. Dibutyryl cAMP and forskolin increased the amplitude of synaptic potentials and suppressed, either partially or in full, the inhibitory effects of cholinomimetics on synaptic potentials. It was concluded that cholinomimetics and activators of the adenylate cyclase system exert opposing effects on neurotransmission at synapses formed between Schaffer collaterals/commissural fibers and dendrites of pyramidal neurons belonging to hippocampal area CA1.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 435–442, July–August, 1989.  相似文献   

4.
5.
The effect of electrical stimulation of the dorsal hippocampus was studied in 17 adult cats with implanted electrodes and those effects of carbachol and dioxolane in a group of ten adult cats with a cannula and electrodes implanted in the above cited structure. Electrical stimulation induced a contralateral head-eye-body turning response in 3 cats (17.6%), only when it was associated with afterdischarge. On the other hand the cholinergic agonists evoked contralateral head-eye-body turning in nine out of ten cats in whom the injections were administered into the hippocampus. The fact that dioxolane, an exclusive muscarinic agonist evoked this behavior and that atropine sulfate blocked this response, favours the postulation that turning is due to activation of muscarinic receptors inside the dorsal hippocampus. Comparison was done between the hippocampal group with a group similarly studied with electrodes implanted in the pulvinar-lateralis posterior nucleus complex (P-LP), and in the caudate nucleus, in which the electrical stimulation evoked contralateral head-eye-body turning response without any EEG activation.  相似文献   

6.
7.
Gao J  Sui JF  Zhu ZR  Chen PH  Wu YM 《生理学报》2005,57(2):181-187
实验采用细胞外玻璃微电极采集豚鼠海马神经元放电信号,并将信号转化为峰峰间期(interspike interval,ISI)以研究麻醉和清醒状态海马锥体细胞自发放电线性和非线性特点。实验建立了豚鼠海马锥体细胞与中间神经元电生理鉴别标准;麻醉和清醒状态下豚鼠海马CA1和CA3区锥体细胞自发放电频率、时程、复杂度等无显著区别;麻醉组豚鼠海马锥体细胞ISI序列的复杂度小于清醒组,锥体细胞分型和ISI变异度等表现不同。实验表明,麻醉和清醒状态下豚鼠海马锥体细胞自发放电呈不同线性和非线性特征。传统和非线性研究手段的结合,可能较全面地反映海马锥体细胞自发放电特性。  相似文献   

8.
A temperature change from 20 to 36 degrees C results in a significant increase of neuronal responses to iontophoretic application of acetylcholine in parietal cortex slices. The most intensive changes in cholinergic responses occurred in two temperature zones: 27-29 degrees C and 34-36 degrees C. Increase in the responses to acetylcholine accompany with increasing spontaneous spike activity.  相似文献   

9.
We studied the effect of synthetic rat atrial natriuretic factor (ANF) (Ser 99-Tyr 126) on the isolated guinea pig proximal ileum. This preparation contained about one-third of the endogenous tissue ANF content which, for the most part, comes from the blood. ANF inhibited, in a dose-dependent manner, cholinergic twitch contractions (EC50 = 4.2 nM), nonadrenergic, noncholinergic (NANC) primary and rebound contractions and histamine-induced sustained tonic contraction (but not carbachol induced contraction) of the longitudinal muscle. Ascending enteric reflex (AER) contractions of the circular muscle were inhibited though not dose-dependently. We suggest pre- and post-synaptic actions of sustained intestinal tissue and blood ANF levels which may play a role in regulating motor activity and muscle tone of the small intestine.  相似文献   

10.
11.
12.
13.
The effects of endogenous and synthetic peptides containing GABA or its analogues on the GABA/benzodiazepine/chloride ionophore, complex, GABAB receptor, Cl fluxes, GABA release and GABA uptake were studied using synaptic membranes, crude synaptoneurosomal preparations and slices prepared from the rat and mouse brain. The sodium-independent binding of GABA was strongly inhibited by GABA-histidine, followed by -glutamyl-homotaurine, GABA-glycine and -glutamyl-GABA. The binding of diazepam was slightly enhanced by the same peptides. The peptides alone had no effect on the chloride fluxes, but GABA-histidine, -glutamyl-GABA and GABA-glycine enhanced while -glutamyl-homotaurine and GABA-taurine inhibited GABA-stimulated chloride uptake. GABA-histidine was the most effective displacer of baclofen binding, but -glutamyl-homotaurine was entirely ineffective. The uptake of GABA was markedly inhibited in synaptosomal preparations by GABA-histidine, while all other peptides were less effective. -Glutamyl-taurine attenuated but -glutamyl-homotaurine and GABA-glycine enhanced the potassium-stimulated release of GABA. The present actions of GABA-histidine in vitro may be of significance for GABAergic neurotransmission in vivo.  相似文献   

14.
A guinea pig model of nasal secretory responses was developed to assess the contributions of vascular permeability and glandular secretion responsible for the production of cholinergically stimulated nasal secretions. The nasal secretory responses to provocation with saline, methacholine, and atropine on the ipsilateral (challenged) side and contralateral (reflex) side were analyzed by measurement of total protein (Lowry method), guinea pig albumin (enzyme-linked immunosorbent assay), 125I-labeled bovine serum albumin after intravenous injection, and alkaline phosphatase enzyme activity in nasal fluid. Alkaline phosphatase was found to be localized to submucosal glands by zymography. Topical methacholine challenge increased the secretion of total protein, alkaline phosphatase activity, and albumin on the ipsilateral challenged side, whereas the percentage of total protein represented by albumin was not increased. This response was totally prevented by atropine pretreatment. Serial provocation with methacholine resulted in progressively reduced amounts of both the total protein and alkaline phosphatase in secretions. The observation that repeated challenges produced progressively smaller responses was also examined employing human nasal provocation. Repeating methacholine (25 mg) challenges four times at 10-min intervals in six human volunteers revealed that the initial challenge produced the largest response as reflected in total protein, albumin, lysozyme, lactoferrin, immunoglobulin (Ig) G, IgA, and secretory IgA secretion. When the constituents in secretions were analyzed in relationship to the total protein, the two vascular proteins, IgG and albumin, demonstrated the greatest decrements with repeated methacholine challenges. The glandular proteins, lactoferrin, lysozyme, and secretory IgA, either remained constant or increased in their relative proportion to total protein. Thus, cholinergic stimulation causes glandular secretion from both the guinea pig and human nasal mucosa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Hepatic cirrhosis was induced in guinea pigs by ligation of the common bile duct and innervation of the liver was studied by fluorescence histochemistry (glyoxylic acid method), acetylcholinesterase (AChE) neurohistochemistry (modified Karnovsky and Roots method), and transmission electron microscopy. In control animals the adrenergic terminals showed connections with endothelial cells, hepatocytes and fat-storing cells, but no cholinergic terminals were evident. Cirrhosis was present 6 weeks after the bile duct ligation and marked fibrosis, accompanied by bile duct proliferation, was evident in the portal areas. Numerous AChE-positive nerve fibers traversed the collagenous bundles in the fibrotic areas, and cholinergic terminals formed close contacts with fibroblasts. Each axon terminal was found to contain numerous small coreless vesicles and AChE-reaction products were confirmed in the space between a nerve terminal and a fibroblast. In contrast, fluorescence adrenergic nerve fibers and their terminals remained unchanged. This study demonstrates that parasympathetic cholinergic innervation participates in some stages in the development of hepatic cirrhosis.  相似文献   

16.
N-formyl-methionyl-leucyl-phenylalanine (FMLP), a synthetic analogue of bacterial chemotactic peptide, may play a role in airway hyperresponsiveness, and is cleaved by neutral endopeptidase-24.11 (enkephalinase). To determine the effect of FMLP on parasympathetic contraction of airway smooth muscle and its modulation by endogenous enkephalinase, we studied isolated rabbit tracheal ring segments under isometric conditions in vitro. FMLP did not cause muscle contraction, but it potentiated the contractile response to electrical field stimulation (EFS) in a dose-dependent fashion, with the maximal increase from the baseline response being 59.8 +/- 6.2% (mean +/- S.E.M., P less than 0.001), an effect that was abolished by t-Boc-Phe-Leu-Phe-Leu-Phe, partially inhibited by pyrilamine, but not by phentolamine or [D-Pro2,D-Trp7,9]substance P. In contrast, the contractile response to administered acetylcholine was not affected by FMLP. Pretreatment of tissues with thiorphan, an enkephalinase inhibitor, further potentiated the effect of FMLP on the EFS-induced contraction. These results suggest that FMLP facilitates cholinergic neurotransmission in rabbit airway smooth muscle probably by increasing acetylcholine release, and that this effect may be modulated by enkephalinase in the airway.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF) signaling has been implicated in the onset of depression and in antidepressant efficacy, although the exact role of this neurotrophin in the pathophysiology of depression remains to be elucidated. Also, the interaction between chronic stress, which may precede depression, corticosteroids and BDNF is not fully understood. The present study aimed at investigating whether long-lasting, recurrent tethering of sows during a period of 1.5 or 4.5 years leads to enduring effects on measures that may be indicative of chronic stress, compared with animals kept in a group housing system ('loose' sows). Immediately after slaughter, the frontal cortex, dorsal and ventral hippocampus were dissected and protein levels of BDNF and its receptors were analyzed and compared with plasma cortisol levels and adrenal weights. Results indicate that tethering stress reduced BDNF protein levels in the dorsal hippocampus and the frontal cortex, but not in the ventral hippocampus. In addition, levels of TrkB, the high affinity receptor for BDNF, were increased in the dorsal hippocampus. Plasma cortisol levels and adrenal weight were increased after tethering. These stress effects on BDNF levels were more pronounced after 4.5 years of recurrent tethering and negatively correlated in particular in the frontal cortex with cortisol levels and adrenal weight. This suggests that the stress effect of tethered housing on neurotrophin levels may be mediated via cortisol. Taken together, these data indicate that recurrent tethering stress in sows over 4.5 years results in a loss of neurotrophic support by BDNF, mediated by an overactive neuroendocrine system.  相似文献   

18.
19.
Isocapnic dry gas hyperpnea causes bronchoconstriction in guinea pigs that is mediated by release of tachykinins from airway sensory nerves. Exogenous neuropeptides can induce microvascular leak. Therefore we tested whether dry gas hyperpnea also elicits bronchovascular hyperpermeability by measuring Evans blue-labeled albumin extravasation along the airways of mechanically ventilated guinea pigs. We found that 1) room temperature dry gas hyperpnea increased Evans blue extravasation in extrapulmonary and intrapulmonary airways as a specific consequence of local airway heat/water losses, 2) capsaicin pretreatment ablated the bronchoconstrictor response to dry gas hyperpnea and reduced bronchovascular leak only in intrapulmonary airways, 3) phosphoramidon given to capsaicin-pretreated animals partially restored dry gas hyperpnea-induced bronchoconstriction and increased the vascular hyperpermeability response to hyperpnea in intrapulmonary airways, and 4) propranolol administration had no important effects on any of these airway responses. We conclude that dry gas hyperpnea causes bronchovascular hyperpermeability in guinea pigs. Tachykinins have a dominant role in this response in the intrapulmonary airways, although another mechanism may also contribute to the microvascular leak in the extrapulmonary airways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号