首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin protease activity has resisted high-yield purification to homogeneity, due to its low amount in tissues, its instability, and its erratic recovery from several types of chromatography. This report outlines the preliminary characterization of a naturally-occurring insulin protease inhibitor that accounts for some of these problems in rat skeletal muscle. In these experiments, inhibitory activity was assayed by its effect upon hydrolysis of 125I-(A14)-insulin by the partially purified insulin protease activity of rat skeletal muscle cytosol. During Sephadex G-200 chromatography of cytosol at pH 7.5, inhibitory activity copurifies with insulin protease activity, and the incomplete resolution of the two activities contributes to the impression that insulin protease exists in distinct 180,000-dalton and 80,000-dalton forms. By contrast, during DEAE-Sephacel chromatography of cytosol at pH 7.5, inhibitory activity and insulin protease activity are resolved by eluting the resin with 50 mM NaCl and 200 mM NaCl, respectively. Post-DEAE-Sephacel inhibitor has an Mr(app) of 67,000 daltons or 80,000-120,000 daltons, as determined by high-performance liquid chromatography or Sephadex G-150 chromatography, respectively. Post-DEAE-Sephacel insulin protease activity exhibits a Km for insulin of 15 nM and resides in a 200,000-dalton neutral thiol protease which requires 50 micromolar calcium for its maximum insulin-degrading activity. The inhibitor reduces the enzyme's activity reversibly, nonprogressively, and non-competitively with respect to insulin, but it does not alter the enzyme's sensitivity to calcium ion. These observations suggest that calcium and an endogenous protease inhibitor may influence cellular degradation of insulin via previously unrecognized effects upon cytosolic insulin protease activity.  相似文献   

2.
Soluble extracts of rat liver contain a protein inhibitor of calcium-dependent proteases. The inhibitor has an apparent Mr = 250,000 and is separated from the calcium-dependent proteases by gel-filtration chromatography in the presence of EGTA. The inhibitor has been purified by affinity chromatography using a calcium-dependent protease covalently linked to Affi-Gel 15. The inhibitor specifically binds to this affinity resin in a calcium-dependent manner and elutes in the presence of EDTA or EGTA. The purified inhibitor appears as a single protein with Mr = 125,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Presumably it is a dimer under nondenaturing conditions. The inhibitor inhibits each of two calcium-dependent proteases from rat liver and from other tissues and species. However, it has no effect on any other protease tested.  相似文献   

3.
The activity for the hydrolysis of succinyl trialanine-4-nitroanilide was higher in kidney homogenates of female rats and mice than in those of male rats and mice. An enzyme hydrolyzing the above substrate was extracted from female rat kidney homogenate and partially purified by means of gel filtration on Sepharose 4B, anion-exchange chromatography on DEAE-Sepharose CL-6B and affinity chromatography on carbobenzoxy-L-Ala-L-Ala-D-Ala-polylysine-agarose. The purified enzyme cleaved the bond between succinyl dialanine and alanine-4-nitroanilide of the substrate and showed a Km value of 3.3 mM at the optimal pH of 7.5. The activity was increased by Ca2+ and Mg2+, but inhibited by EDTA. With oxidized insulin B chain as a substrate, the enzyme cleaved the carbonyl bonds of Ala-14, Tyr-16 and Gly-23 efficiently, and those of His-5 and His-10 less efficiently.  相似文献   

4.
1. Two cyclic AMP independent protein kinases phosphorylating preferentially acidic substrates have been identified in soluble extract from human, rat and pig thyroid glands. Both enzymes were retained on DEAE-cellulose. The first enzyme activity eluted between 60 and 100 mM phosphate (depending on the species), phosphorylated both casein and phosvitin and was retained on phosphocellulose; this enzyme likely corresponds to a casein kinase already described in many tissues. The second enzyme activity eluted from DEAE-cellulose at phosphate concentrations higher than 300 mM, phosphorylated only phosvitin and was not retained on phosphocellulose. These enzymes were neither stimulated by cyclic AMP, cyclic GMP and calcium, nor inhibited by the inhibitor of the cyclic AMP dependent protein kinases. 2. The second enzyme activity was purified from pig thyroid gland by the association of affinity chromatography on insolubilized phosvitin and DEAE-cellulose chromatography. Its specific activity was increased by 8400. 3. The purified enzyme (phosvitin kinase) was analyzed for biochemical and enzymatic properties. Phosvitin kinase phosphorylated phosvitin with an apparent Km of 100 micrograms/ml; casein, histone, protamine and bovine serum albumin were not phosphorylated. The enzyme utilized ATP as well as GTP as phosphate donor with an apparent Km of 25 and 28 microM, respectively. It had an absolute requirement for Mg2+ with a maximal activity at 4 mM and exhibited an optimal activity at pH 7.0. The molecular weight of the native enzyme was 110 000 as determined by Sephacryl S300 gel filtration. The analysis by SDS-polyacrylamide gel electrophoresis revealed a major band with a molecular weight of 35000 suggesting a polymeric structure of the enzyme.  相似文献   

5.
Gel permeation, preparative isoelectric focusing, and affinity chromatography were used to purify three inhibitors of proteolytic activity from perchloric acid extracts of last instar Galleria mellonella larvae. Electrofocusing experiments revealed three isoinhibitors with different isoelectric points: inhibitor I-1 with p1 of pH 5.6, inhibitor I-2, pH 7.7, and inhibitor I-3 (of small inhibitory activity), pH 8.6. By affinity chromatography on trypsin-Sepharose 4B the I-1 was purified 9.7 ×, but 71.1% of inhibitory activity was lost. Molecular mass of the inhibitory complex was 12,600 Da. I-1 and I-2 are relatively stable to heat at several pHs with minor stability at pH 10. I-1 and I-2 inhibit serine proteases about 2.5 times as much as sulfhydryl proteases. In the same ratio protease P-1 and protease P-2 from Metarhizium anisopliae are inhibited.  相似文献   

6.
1. Two cyclic AMP independent protein kinases phosphorylating preferentially acidic substrates have been identified in soluble extract from human, rat and pig thyroid glands/ Both enzymes were retained on DEAE-cellulose. The first enzyme activity eluted between 60 and 100 mM phosphate (depending on the species), phosphorylated both casein and phosvitin and was retained on phosphocellulose; this enzyme likely corresponds to a casein kinase already described in many tissues. The second enzyme activity eluted from DEAE-cellulose at phosphate concentrations higher than 3000 mM, phosphorylated only phosvitin and was not retained on phophocellulose. These enzymes were neither stimulated by cyclic AMP, cyclic GMP and calcium, nor inhbiited by the inhibitor of the cyclic AMP dependent protein kinases. 2. The second enzyme activity was purified from pig thyroid gland by the association of affinity chromatography on insolubilized phosvitin and DEAE-cellulose chromatography. Its specific activity was increased by 8400. 3. The purified enzyme (phosvitin kinase) was analyzed for biochemical and enzymatic properties. Phosvitin kinase phosphorylated phosvitin with an apparent Km of 100 μg/ml; casein, histone, protamine and bovine serum albumin were not phosphorylated. The enzyme utilized ATP as well as GTP as phosphate donor with an apparent Km of 25 and 28 μM, respectively. It had an absolute requirement for Mg2+ with a maximal activity at 4 mM and exhibited an optimal activity at pH 7.0. The molecular weight of the native enzyme was 110 000 as determined by Sephacryl S300 gel filtration. The analysis by SDS-polyacrylamide gel electrophoresis revealed a major band with a molecualr weight of 35 000 suggesting a polymeric structure of the enzyme.  相似文献   

7.
Incubation of rat liver plasma membrane produced histone phosphorylating activity at 75 mM Mg2+ in the soluble fraction. The release of the kinase activity was inhibited by leupeptin and bovine pancreatic trypsin inhibitor, suggesting the involvement of membrane-bound protease. When partially purified protein kinase C from rat liver cytosol was treated with the trypsin-like protease purified from rat liver plasma membrane, histone phosphorylating kinase which was independent of Ca2+ and phospholipids, produced with a molecular weight of about 5 X 10(4). These results suggest that membrane-bound, trypsin-like protease activates protein kinase C in plasma membrane and the activated kinase is released from the membrane to the soluble fraction.  相似文献   

8.
E J Fodor  H Ako  K A Walsh 《Biochemistry》1975,14(22):4923-4927
Upon fertilization, sea urchin eggs (Stronglyocentrotus pupuratus) release a protease into the surrounding sea water. This protease is in a particulate form which can be solubilized. The soluble form was purified by affinity chromatography on columns of immobilized soybean trypsin inhibitor. The purified enzyme is similar to bovine trypsin both in molecular weight (22500) and in susceptibility to inhibitors such as diisopropyl phosphofluoridate and soybean trypsin inhibitor. In contrast, extracts of unfertilized eggs appear to contain an inactive form of the enzyme which can be activated by dialysis at pH 4.6. The enzyme, as purified from extracts activated in this manner, was similar in its properties to that from fertilized eggs.  相似文献   

9.
Yeast nuclear RNA polymerase III was purified by batch adsorption to phosphocellulose, followed by ion-exchange chromatography on DEAE-Sephadex and affinity chromatography on DNA-Sepharose. Polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band which contained polymerase activity. The molecular weight estimated by sedimentation velocity centrifugation in a glycerol gradient was 380 000. Enzyme activity was inhibited 50% at 0.1 mM 1,10-phenanthroline and 100% of 1.0 mM, but was restored when 1,10-phenanthroline was removed by dialysis. Enzyme activity was not inhibited by 7,8-benzoquinoline, a nonchelating structural analogue of 1,10-phenanthroline. These results strongly suggest that inhibition of enzyme activity occurs by the formation of a reversible enzyme-zinc-phenanthroline ternary complex. The zinc content, measured by atomic absorption spectroscopy, was 2 g-atoms per mol of enzyme. Zinc was not removed from the enzyme by gel filtration on Sephadex G-25, by passage through Chelex-100 resin, or by dialysis against buffer containing 1,10-phenanthroline. Enzyme-bound zinc was removed by dialysis after denaturation of the enzyme with heat and sodium dodecyl sulfate. Enzyme-bound zinc did not exchange with free zinc. These results establish yeast nuclear RNA polymerase III as a zinc metalloenzyme.  相似文献   

10.
Membrane-free washed myofibrils derived from rat skeletal muscle homogenates contained a chymostatin-sensitive protease(s) which acted on associated myofibrillar proteins, at an optimum pH of 8.5, much less rapidly at low ionic strength (insoluble myofilaments) than at high salt concentrations (solubilized proteins). When the myofibrillar fraction was added to the particle-free cytosol prepared from the muscle extracts, proteins of the cytosol were also degraded, but the activity in this case was much more pronounced at low ionic strength. This was because inhibitor(s) of the proteinase present in the cytosol fraction were only effective at high ionic strength when all the myofibrillar (and associated) proteins were in solution. The protease was separated from the bulk of the myofibrillar proteins by gel chromatography at high ionic strength. On dialysis against a low-salt buffer, part of the enzyme was precipitated. The putative cytosolic inhibitor(s) were again only effective on the soluble enzyme at high ionic strength.  相似文献   

11.
Acid trehalase was purified from the yeast suc2 deletion mutant. After hydrophobic interaction chromatography, the enzyme could be purified to a single band or peak by a further step of either polyacrylamide gel electrophoresis, gel filtration, or isoelectric focusing. An apparent molecular mass of 218,000 Da was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate suggested a molecular mass of 216,000 Da. Endoglycosidase H digestion of the purified enzyme resulted after sodium dodecyl sulfate gel electrophoresis in one distinct band at 41,000 Da, representing the mannose-free protein moiety of acid trehalase. The carbohydrate content of the enzyme was 86%. Amino acid analysis indicated 354 residues/molecule of enzyme including 9 cysteine moieties and only 1 methionine. The isoelectric point of the enzyme was estimated by gel electrofocusing to be approximately 4.7. The catalytic activity showed a maximum at pH 4.5. The activity of the enzyme was not inhibited by 10 mM each of HgCl2, EDTA, iodoacetic acid, phenanthrolinium chloride or phenylmethylsulfonyl fluoride. There was no activation by divalent metal ions. The acid trehalase exhibited an apparent Km for trehalose of 4.7 +/- 0.1 mM and a Vmax of 99 mumol of trehalose min-1 X mg-1 at 37 degrees C and pH 4.5. The acid trehalase is located in the vacuoles. The rabbit antiserum raised against acid trehalase exhibited strong cross-reaction with purified invertase. These cross-reactions were removed by affinity chromatography using invertase coupled to CNBr-activated Sepharose 4B. Precipitation of acid trehalase activity was observed with the purified antiserum.  相似文献   

12.
Various lipids were tested as substrates for the insulin receptor kinase using either receptor partially purified from rat hepatoma cells by wheat-germ-agglutinin-Sepharose chromatography or receptor purified from human placenta by insulin-Sepharose affinity chromatography. Phosphatidylinositol was phosphorylated to phosphatidylinositol 4-phosphate by the partially purified insulin receptor. In contrast, phosphatidylinositol 4-phosphate and diacylglycerol were not phosphorylated. In some, but not all preparations of partially purified insulin receptor, the phosphatidylinositol kinase activity was stimulated by insulin (mean effect 33%). Phosphatidylinositol kinase activity was retained in insulin receptor purified to homogeneity. Insulin regulation of the phosphatidylinositol kinase was lost in the purified receptor; however, dithiothreitol stimulated both autophosphorylation of the purified receptor and phosphatidylinositol kinase activity in parallel about threefold. (Glu80Tyr20)n, a polymeric substrate specific to tyrosine kinases, inhibited the phosphatidylinositol kinase activity of the purified receptor by greater than 90% and inhibited receptor autophosphorylation by 67%. Immunoprecipitation by specific anti-receptor antibodies depleted by greater than 90% the phosphatidylinositol kinase activity in the supernatant of the purified receptor and the phosphatidylinositol kinase activity was recovered in the precipitate in parallel with receptor autophosphorylation activity. These characteristics of the phosphatidylinositol kinase activity of the purified insulin receptor and its metal ion preference paralleled those of the receptor tyrosine kinase activity and differed from bulk phosphatidylinositol kinase activity in cell extracts, which was not significantly inhibited by (Glu80Tyr20)n, stimulated by dithiothreitol or depleted by immunoprecipitation with anti-(insulin receptor) antibody. These results suggest that the insulin receptor is associated with a phosphatidylinositol kinase activity; however, this activity is not well regulated by insulin. This kinase appears to be distinct from the major phosphatidylinositol kinase(s) of cells. Its relationship to insulin action needs further study.  相似文献   

13.
Studies on proteolytic activity in commercial myoglobin preparations   总被引:2,自引:2,他引:0  
Commercial myoglobin preparations from horse skeletal muscle degraded casein. The maximum activity was at pH8-8.5. A muscle myofibril preparation was also attacked. The protease could be partly separated from the myoglobin by selective ultrafiltration through a membrane with an exclusion limit of mol.wt. 30000. A greater than 1000-fold purification of the proteolytic activity was achieved by affinity chromatography with soya-bean trypsin inhibitor bound to CM-cellulose. The enzyme preparation hydrolysed p-toluenesulphonyl-l-arginine methyl ester and N-benzyloxycarbonyl-l-tyrosine p-nitrophenyl ester. Its activity was inhibited strongly by soya-bean and ovomucoid trypsin inhibitors, serum and the soluble fraction of muscle homogenates. EDTA, p-chloromercuribenzoate and phenylmethylsulphonyl fluoride also caused some inhibition.  相似文献   

14.
A NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-OH-PGDH) from porcine kidney was purified to homogeneity by acid precipitation, blue agarose affinity chromatography, hydroxyapatite-ultrogel adsorption chromatography, DEAE-Sephadex ion-exchange chromatography and NAD(+)-agarose affinity chromatography. The specific activity of the homogeneous enzyme was 31.2 U/mg. The molecular mass of the native enzyme was estimated to be 55,000 Da, whereas that of SDS-treated enzyme was 29,000 Da indicating that the native enzyme was dimeric. Compared to human placental 15-OH-PGDH, porcine kidney enzyme gave a similar general amino acid residue distribution. Chemical modification of the enzyme with N-ethyl maleimide (3 microM), N-chlorosuccinimide (20 microM) or 2,4,6-trinitrobenzenesulfonic acid (2.5 microM) followed pseudo-first-order inactivation kinetics, and inactivation could be prevented by the presence of NAD+ (1 mM) but not of prostaglandin E1 (140 microM) indicating the involvement of cysteine, methionine and lysine residues in the coenzyme binding site. Inactivation by diethyl pyrocarbonate (1.25 mM) or phenylglyoxal (10 mM) also showed pseudo-first-order kinetics suggesting that histidine and arginine residues were catalytically or structurally important in the native enzyme. These studies provide new insights into the structure and function of 15-OH-PGDH.  相似文献   

15.
Tissue transglutaminase (E.C.2.3.2.13, R-glutaminyl-peptide: amine glutaminyl transferase), was purified from extracts of rat liver by calcium dependent affinity chromatography on casein-Sepharose. In the presence of 5 mM calcium the enzyme binds to casein Sepharose and is subsequently eluted with 5 mM EGTA. The enzyme has a molecular weight of 83,000 and its activity is dependent on calcium and reduced sulfhydryl residues. A widely distributed calcium-dependent protease (E.C. 3.4.22.17) copurified with transglutaminase by gel filtration and ion exchange chromatography. The separation of these activities prior to chromatography on casein-Sepharose is essential for the isolation of a stable transglutaminase by calcium-dependent affinity chromatography. Affinity chromatography using casein-Sepharose or other immobilized substrates may allow the calcium-dependent purification of a variety of transglutaminases.  相似文献   

16.
1. Nuclei of regenerating rat liver washed with Triton X-100 were found to contain a new protease. Since the enzymatic activity for degrading ribosomal proteins was inhibited in vivo by administration of E-64, a thiol protease inhibitor, the enzyme may participate in the degradation of newly synthesized ribosomal proteins and histones in regenerating rat liver nuclei as reported previously by us [Biochem. Biophys. Res. Commun. 75, 525-531 (1077)]. The optimum pH was 5.5. 2. The enzyme was extracted from washed nuclei and partially purified by gel filtration through Sepharose 6B. Its molecular weight was about 40 000. A maximal activity of partially purified enzyme was observed in the presence of 1 mM EDTA and 2 mM dithiothreitol at pH 5.5 It was inhibited by thio reagents, E-64, leupeptin and hevy metal ions. The enzyme degraded ribosomal proteins endoproteolytically and degraded most proteins tested as substrates, although liver cell sap proteins and serum albumin were less degraded than ribosomal proteins and histones, alpha-N-Benzoylarginine-beta-naphthylamide and benzoylarginine amide were not hydrolyzed.  相似文献   

17.
Although a potent irreversible inhibitor of high-affinity choline transport in rat brain synaptosomes, choline mustard aziridinium ion (ChM Az) appeared to be a relatively weak inhibitor of choline acetyltransferase (ChAT) in rat brain homogenates, and evidence for irreversible binding of this compound to the enzyme had not been established. Accordingly, the irreversible inactivation of partially purified rat brain ChAT by ChM Az was studied. This compound is a rather weak inhibitor of the enzyme, with 50% inhibition of ChAT activity achieved following 30 min incubation at 37 degrees C with 0.6 mM ChM Az. This result indicates that although ChM Az has affinity for many nucleophiles there was little diluting effect of the inhibitor in the crude brain homogenate which could be attributed to such reactions (50% inhibition caused by 1.8 mM ChM Az following 10 min incubation). Although the initial binding of ChM Az to ChAT may be of a competitive nature, irreversible bond formation resulted. The time-dependent alkylation reaction conformed to pseudo-first-order kinetics with an observed forward rate constant (kobs) of 0.173 min-1; the half-time (t 1/2) for irreversible binding was about 4 min. The irreversible inactivation of ChAT by ChM Az would appear to be slower than the alkylation of high-affinity choline carriers in synaptosomes by this compound, and the relatively weak inhibitory action of ChM Az against either partially purified ChAT or ChAT activity in crude rat brain homogenates is in striking contrast to previous evidence that ChAT in intact synaptosomes was inhibited irreversibly by lower concentrations of the inhibitor.  相似文献   

18.
Mantis egg fibrolase (MEF) was purified from the egg cases of Tenodera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60 and affinity chromatography on DEAE Affi-Gel blue gel. The protease was assessed homogeneous by SDS-polyacrylamide gel electrophoresis and has a molecular mass of 31500 Da. An isoelectric point of 6.1 was determined by isoelectric focusing. Amino acid sequencing of the N-terminal region established a primary structure composed of Ala-Asp-Val-Val-Gln-Gly-Asp-Ala-Pro-Ser. MEF readily digested the Aalpha- and Bbeta-chains of fibrinogen and more slowly the gamma-chain. The nonspecific action of the enzyme results in extensive hydrolysis of fibrinogen and fibrin releasing a variety of fibrinopeptide. The enzyme is inactivated by Cu2+ and Zn2+ and inhibited by PMSF and chymostatin, yet elastinal, aprotinin, TLCK, TPCK, EDTA, EGTA, cysteine, beta-mercaptoethanol, iodoacetate, E64, benzamidine and soybean trypsin inhibitor do not affect activity. Antiplasmin was not sensitive to MEF but antithrombin III inhibited the enzymatic activity of MEF. Among chromogenic protease substrates, the most sensitive to MEF hydrolysis was benzoyl-Phe-Val-Arg-p-nitroanilide with maximal activity at pH 7.0 and 30 degrees C. MEF preferentially cleaved the oxidized B-chain of insulin between Leu15 and Tyr16. D-Dimer concentrations increased on incubation of cross-linked fibrin with MEF, indicating the enzyme has a strong fibrinolytic activity.  相似文献   

19.
An antibody to a highly pure enzyme preparation was developed to facilitate detailed studies of rat adipose tissue lipoprotein lipase regulation. Lipoprotein lipase was purified by heparin-Sepharose affinity chromatography followed by preparative isoelectric focusing. The enzyme migrated as a single broad band on SDS disc gel and two-dimensional gel electrophoresis with an apparent molecular mass of 67 000 and 62 000 Da, respectively. The amino acid composition of the purified rat enzyme was virtually identical to that of bovine milk. A major protein component with no lipase activity co-eluted with the enzyme from the affinity column, but was separated by the isoelectric focusing step. The molecular mass was slightly lower (58 000 Da) but the amino acid composition of this protein was similar to that of the enzyme. An antibody raised against the purified rat enzyme was highly potent and was effective in inhibiting rat heart lipoprotein lipase, but not the salt-resistant hepatic lipase. Analysis of crude acetone-ether adipose tissue preparation on SDS slab polyacrylamide gel coupled to Western blotting revealed five protein bands = (62 000, 56 000, 41 700, 22 500, 20 000 Da). Similarly, following affinity purification by immunoadsorption, the purified antibody reacted with five equivalent protein bands. Fluorescent concanavalin A binding data indicated that the 56 kDa band is a glycosylated form of lipoprotein lipase. Pretreatment of adipose tissue with proteinase inhibitors revealed that the lower molecular mass proteins (41 700 and 20 000 Da) were degradation products of lipoprotein lipase, and the 22 500 Da band could be accounted for by non-specific binding.  相似文献   

20.
The proteinase activity present in homogenates of trophozoites of Giardia lamblia , active on azocasein and urea-denaturated hemoglobin, was separated into two different enzymes by a series of purification procedures. These procedures included gel filtration on Fractogel TSK HW-55 (F), organomercurial agarose affinity chromatography, and ion exchange chromatography on DEAE-cellulose. By chromatography on Sephadex G-100, two purified enzymes exhibited relative molecular weights of Mr= 95,000 and 35,000 ± 10%, respectively. On the basis of inhibition by thiol reagents and abrogation of this effect by dithiothreitol and cysteine, they were identified as cysteine proteinases. Proteinase I (Mr= 95,000) and proteinase II (Mr= 35,000) were active against the β-chain of insulin releasing characteristic fragments. However, differences in substrate specificities of the two enzymes could be observed by using synthetic peptides that represent sequences 1–6, 8–18, and 20–30 of the insulin β-chain. Furthermore, the synthetic tetrapeptides Arg-Gly-Phe-Phe, Arg-Gly-Leu-Hyp, and Arg-Arg-Phe-Phe were hydrolyzed by the two proteinases releasing Phe-Phe and Leu-Hyp, respectively. Compared with Arg-Gly-Phe-Phe, the rates of hydrolysis of Arg-Gly-Leu-Hyp and Arg-Arg-Phe-Phe at substrate concentrations of 1 mM were 91% and 63% (proteinase I) and 80% and 57% (proteinase II), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号