首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several parasitoids of African origin have been introduced to coffee producing areas of the Americas and Asia as biological control agents of the coffee berry borer (CBB) Hypothenemus hampei (Coleoptera: Curculionidae). These parasitoids have become established in the field but their effect on the CBB has been limited. A two-year field study in Western Kenya has found Prorops nasuta (Hymenoptera: Bethylidae) to be the predominant parasitoid emerging from CBB-infested coffee berries collected on coffee trees or from the ground. P. nasuta comprises more than 75% of the total natural enemies collected. The density of P. nasuta was 90% higher in the berries collected from the ground than from the trees. Its hyperparasitoid, Aphanogmus sp. (Hymenoptera: Ceraphronidae), also emerged from both type of berries. Across the two seasons, the average P. nasuta density per berry was 18–35 times higher than that of Aphanogmus sp. Throughout the two years sampled, significantly higher numbers of P. nasuta and Aphanogmus sp. occurred between February and March, which coincides with the beginning of the rainy season. Higher numbers of live CBB females were recorded in berries collected from the trees. Nevertheless, mortality of adult CBB was considerably higher from January to March and started to decrease from April onwards. The possibly negative effects of cultural control practices in Latin America which include the removal of berries fallen to the ground on biological control of CBB are discussed, and the use of screened collection devices for these berries which would permit the release of parasitoids but prevent escape of the pest is proposed.  相似文献   

2.
In plants, PPO has been related to defense mechanism against pathogens and insects and this role was investigated in coffee trees regarding resistance against a leaf miner and coffee leaf rust disease. PPO activity was evaluated in different genotypes and in relation to methyl-jasmonate (Meja) treatment and mechanical damage. Evaluations were also performed using compatible and incompatible interactions of coffee with the fungus Hemileia vastatrix (causal agent of the leaf orange rust disease) and the insect Leucoptera coffeella (coffee leaf miner). The constitutive level of PPO activity observed for the 15 genotypes ranged from 3.8 to 88 units of activity/mg protein. However, no direct relationship was found with resistance of coffee to the fungus or insect. Chlorogenic acid (5-caffeoylquinic acid), the best substrate for coffee leaf PPO, was not related to resistance, suggesting that oxidation of other phenolics by PPO might play a role, as indicated by HPLC profiles. Mechanical damage, Meja treatment, H. vastatrix fungus inoculation and L. coffeella infestation caused different responses in PPO activity. These results suggest that coffee resistance may be related to the oxidative potential of the tissue regarding the phenolic composition rather than simply to a higher PPO activity.  相似文献   

3.
The best-known interaction between bacteria and plants is the Rhizobium-legume symbiosis, but other bacteria–plant interactions exist, such as between Burkholderia and Rubiaceae (coffee family). A number of bacterial endophytes in Rubiaceae are closely related to the soil bacterium Burkholderia caledonica. This intriguing observation is explored by investigating isolates from different geographic regions (Western Europe vs. sub-Saharan Africa) and from different niches (free-living bacteria in soil vs. endophytic bacteria in host plants). The multilocus sequence analysis shows five clades, of which clade 1 with two basal isolates deviates from the rest and is therefore not considered further. All other isolates belong to the species B. caledonica, but two genetically different groups are identified. Group A holds only European isolates and group B holds isolates from Africa, with the exception of one European isolate. Although the European and African isolates are considered one species, some degree of genetic differentiation is evident. Endophytic isolates of B. caledonica are found in certain members of African Rubiaceae, but only in group B. Within this group, the endophytes cannot be distinguished from the soil isolates, which indicates a possible exchange of bacteria between soil and host plant.  相似文献   

4.
Coffee berry borer (CBB) is the Worlds most devastating coffee pest causing an estimated US$500 million worth of losses annually through damage and control costs. Beauveria bassiana and Metarhizium anisopliae have been employed to control this pest but their low virulence (slow kill and large inoculums) is an important factor constraining their use. M. anisopliae (AaIT-Ma549) has been modified to express the scorpion toxin (AaIT) in insect hemolymph and this greatly increased pathogenicity against Manduca sexta and Aedes aegypti. Here, we demonstrate that AaIT-Ma549 was also dramatically more virulent against CBB, and we provide a much more comprehensive analysis of infection processes and post-mortality development than in the previous research. We evaluated several spore concentrations (101 through 107 spores/ml) of both the wild type and recombinant strain. At concentrations of 101, 102 and 103 spores/ml, the recombinant strain significantly increased mortality of CBB by 32.2%, 56.6% and 24.6%, respectively. The medial lethal concentration (LC50) was reduced 15.7-fold and the average survival time (AST) was reduced by 20.1% to 2.98 ± 0.1 days with 107 spores/ml. This is the first occasion that an entomopathogenic fungus has been found to kill CBB in less than 3 days. However, AaIT-Ma549 produces significantly fewer spores on cadavers than the parental strain.  相似文献   

5.
The coffee berry borer (CBB) Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae) was accidentally introduced into México in 1978, and rapidly became the main pest of coffee. As an exotic pest, its management has been mainly based on biological control methods through the introduction of parasitoids from Africa. In this context, at the beginning of the present decade, the parasitoid Phymastichus coffea LaSalle (Hymenoptera: Eulophidae) was imported to Mexico. Since then, several studies have been carried out as part of the post introduction evaluation of this parasitoid. In this paper, information concerning the parasitism and life-cycle of P. coffea in coffee farms is presented with the objective of providing information that elucidates its role as a biological control agent. P. coffea showed highly significant preferences for allocation of two eggs per host, usually one female and one male. Both offspring are able to develop and reach the adult stage successfully. Lifespan of adults is 2–3 days only. The degree of parasitism by P. coffea was more than 95% at the three altitudes tested, when releases consisted of a ratio of 10 CBB:1 parasitoid. The median survivorship of CBB parasitized by this wasp was 13, 15 and 19 days at the low, medium and high altitude coffee zones, respectively. The parasitism by P. coffea was higher when parasitoid releases were carried out simultaneously with the CBB, and decreased with the time between host and parasitoid releases. We showed that using P. coffea at a density of 1 parasitoid per 10 hosts resulted in a 3- to 5.6-fold decrease in CBB damage to the coffee seeds when compared to the control. The importance and value of these results are discussed in terms of the use of P. coffea as a biological control agent of the CBB in Latin America.  相似文献   

6.
Pathogen resistance of transgenic tobacco plants producing caffeine   总被引:1,自引:0,他引:1  
Kim YS  Sano H 《Phytochemistry》2008,69(4):882-888
Caffeine (1,3,7-trimethylxanthine) is a typical purine alkaloid, and produced by a variety of plants such as coffee and tea. Its physiological function, however, is not completely understood, but chemical defense against pathogens and herbivores, and allelopathic effects against competing plant species have been proposed. Previously, we constructed transgenic tobacco plants, which produced caffeine up to 5 microg per gram fresh weight of leaves, and showed them to repel caterpillars of tobacco cutworms (Spodoptera litura). In the present study, we found that these transgenic plants constitutively expressed defense-related genes encoding pathogenesis-related (PR)-1a and proteinase inhibitor II under non-stressed conditions. We also found that they were highly resistant against pathogens, tobacco mosaic virus and Pseudomonas syringae. Expression of PR-1a and PR-2 was higher in transgenic plants than in wild-type plants during infection. Exogenously applied caffeine to wild-type tobacco leaves exhibited the similar resistant activity. These results suggested that caffeine stimulated endogenous defense system of host plants through directly or indirectly activating gene expression. This assumption is essentially consistent with the idea of chemical defense, in which caffeine may act as one of signaling molecules to activate defense response. It is thus conceivable that the effect of caffeine is bifunctional; direct interference with pest metabolic pathways, and activation of host defense systems.  相似文献   

7.
The family Chlamydiaceae with the recombined single genus Chlamydia currently comprises nine species, all of which are obligate intracellular organisms distinguished by a unique biphasic developmental cycle. Anecdotal evidence from epidemiological surveys in flocks of poultry, pigeons and psittacine birds have indicated the presence of non-classified chlamydial strains, some of which may act as pathogens. In the present study, phylogenetic analysis of ribosomal RNA and ompA genes, as well as multi-locus sequence analysis of 11 field isolates were conducted. All independent analyses assigned the strains into two different clades of monophyletic origin corresponding to pigeon and psittacine strains or poultry isolates, respectively. Comparative genome analysis involving the type strains of currently accepted Chlamydiaceae species and the designated type strains representing the two new clades confirmed that the latter could be classified into two different species as their average nucleotide identity (ANI) values were always below 94%, both with the closest relative species and between themselves.  相似文献   

8.
《Journal of Asia》2023,26(4):102118
Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae), a coffee berry borer (CBB), is a serious pest of coffee fruits and causes economic losses in the coffee industry. With the concerns of chemical control, an alternative eco-friendly management strategy such as microbial control has emerged as the times require. Herein, a total of thirty-three fungi were isolated from CBB cadavers. Two entomopathogenic fungal isolates, NCHU-271 and NCHU-272, which showed fast insect-killing activity, were subjected to molecular identification and named “Beauveria bassiana-NCHU-271” (Bb-NCHU-271) and “Beauveria bassiana -NCHU-272” (Bb-NCHU-272). Moreover, a virulence test of Bb-NCHU-271 and Bb-NCHU-272 against CBBs was also performed. Both Bb-NCHU-271 and Bb-NCHU-272 caused 100% mortality at 8 days post inoculation (d.p.i.) and a LT50 of Bb-NCHU-271 by spraying 108 conidia/ml was less than Bb-NCHU-272. Therefore, histological evidence of Bb-NCHU-271 infected CBBs was provided to proven the infection process of B. bassiana in CBBs. Furthermore, an infestation test was performed to evaluate the differences in CBB control efficacy between the treatments of “Borers exposed to EPF first” or “Berries exposed to EPF first”. The results revealed that the “Borers exposed to EPF first” of Bb-NCHU-272 caused significantly lower survival rates and higher mycosis rates than those of Bb-NCHU-271. Only slight control effects of Bb-NCHU-271 and Bb-NCHU-272 were also observed in the “Berries exposed to EPF” treatment. In conclusion, Bb-NCHU-271 and −272 showed controlling ability to the CBBs either before or after CBB infestation into coffee berries, while application of EPFs before the CBBs bored into coffee fruits could enhance the control effect.  相似文献   

9.
Microorganisms produce volatile organic compounds (VOCs) which mediate interactions with other organisms and may be the basis for the development of new methods to control plant-parasitic nematodes that damage coffee plants. In the present work, 35 fungal isolates were isolated from coffee plant rhizosphere, Meloidogyne exigua eggs and egg masses. Most of the fungal isolates belonged to the genus Fusarium and presented in vitro antagonism classified as mutual exclusion and parasitism against the nematode-predator fungus Arthrobotrys conoides (isolated from coffee roots). These results and the stronger activity of VOCs against this fungus by 12 endophytic bacteria may account for the failure of A. conoides to reduce plant-parasitic nematodes in coffee fields. VOCs from 13 fungal isolates caused more than 40% immobility to Meloidogyne incognita second stage juveniles (J2), and those of three isolates (two Fusarium oxysporum isolates and an F. solani isolate) also led to 88-96% J2 mortality. M. incognita J2 infectivity decreased as a function of increased exposure time to F. oxysporum isolate 21 VOCs. Gas chromatography-mass spectrometry (GC-MS) analysis lead to the detection of 38 VOCs produced by F. oxysporum is. 21 culture. Only five were present in amounts above 1% of the total: dioctyl disulfide (it may also be 2-propyldecan-1-ol or 1-(2-hydroxyethoxy) tridecane); caryophyllene; 4-methyl-2,6-di-tert-butylphenol; and acoradiene. One of them was not identified. Volatiles toxic to nematodes make a difference among interacting microorganisms in coffee rhizosphere defining an additional attribute of a biocontrol agent against plant-parasitic nematodes.  相似文献   

10.
A native collection of Bacillus thuringiensis strains was screened, once a reliable bioassay technique to assess the toxicity against the coffee berry borer (CBB) first-instar larvae was developed. A first round of bioassays with 170 strains indicated that the great majority of them showed no or very little insecticidal activity and that very few showed significant levels of toxicity. Interestingly, only those strains that had previously been associated with mosquitocidal activity were also toxic to CBB. Qualitative bioassays (using one high dose) were carried out only with those native mosquitocidal strains, corroborating their significant toxicity towards the CBB first-instar larvae. Most of these strains belong to serovar israelensis. In a second approach, strains from the Institut Pasteur type collection, whose mosquitocidal activity had been previously demonstrated, were also subjected to bioassays. Only those strains that showed a comparable protein content in their parasporal crystals to the israelensis type strain also showed high levels of toxicity towards CBB. Finally, an accurate LC(50) was estimated, using purified parasporal crystals from B. thuringiensis serovar israelensis type strain, at 219.5 ng cm(-2) of diet. All the statistical requirements for a reliable estimator were fulfilled. This is the first report of B. thuringiensis serovar israelensis being active against a coleopteran species.  相似文献   

11.
Genetic diversity of 50 isolates of Neofusicoccum parvum, the predominant species of the Botryosphaeriaceae recovered from grapevines displaying symptoms of dieback and decline in New Zealand, was compared to that of isolates from Australia, South Africa, and California. The eight universally primed polymerase chain reaction (UP-PCR) primers distinguished 56 genotypes, with only four clonal pairs found. Seven main groups were identified in a neighbour-joining (NJ) tree with isolates from different regions and vineyards of New Zealand, Australia, and California distributed in different groups, indicating a high level of intra and intervineyard genetic variation. All of the South African isolates were positioned in a separate UP-PCR group, indicating that these isolates were less related to the other N. parvum isolates. When compared to fungi that reproduce sexually the genetic diversity and Shannon diversity indices were low (0.076-0.249; 0.109-0.367, respectively), genetic identity levels were high (0.76-0.95), and genetic distance levels were low (0.04-0.27). The large number of genotypes and the low number of clones in the New Zealand N. parvum populations may be explained by parasexual recombination as anastomosis was observed between nonself pairings. Pathogenicity tests using isolates from different UP-PCR groups inoculated onto either green shoots or 1-y-old grapevines detected virulence diversity, indicating intra and intervineyard variation between isolates, however, no correlation was detected between UP-PCR group and virulence.  相似文献   

12.
Surveys of Australian and South African rivers revealed numerous Phytophthora isolates residing in clade 6 of the genus, with internal transcribed spacer (ITS) gene regions that were either highly polymorphic or unsequenceable. These isolates were suspected to be hybrids. Three nuclear loci, the ITS region, two single copy loci (antisilencing factor (ASF) and G protein alpha subunit (GPA)), and one mitochondrial locus (cytochrome oxidase c subunit I (coxI)) were amplified and sequenced to test this hypothesis. Abundant recombination within the ITS region was observed. This, combined with phylogenetic comparisons of the other three loci, confirmed the presence of four different hybrid types involving the three described parent species Phytophthora amnicola, Phytophthora thermophila, and Phytophthora taxon PgChlamydo. In all cases, only a single coxI allele was detected, suggesting that hybrids arose from sexual recombination. All the hybrid isolates were sterile in culture and all their physiological traits tended to resemble those of the maternal parents. Nothing is known regarding their host range or pathogenicity. Nonetheless, as several isolates from Western Australia were obtained from the rhizosphere soil of dying plants, they should be regarded as potential threats to plant health. The frequent occurrence of the hybrids and their parent species in Australia strongly suggests an Australian origin and a subsequent introduction into South Africa.  相似文献   

13.
Significant progress has been made in elucidating the mechanisms used by plants to recognize pathogens and activate “immune” responses. A “first line” of defense can be triggered through recognition of conserved Pathogen or Microbe Associated Molecular Patterns (PAMPs or MAMPs), resulting in activation of basal (or non-host) plant defenses, referred to as PAMP-triggered immunity (PTI). Disease resistance responses can also subsequently be triggered via gene-for-gene type interactions between pathogen avirulence effector genes and plant disease resistance genes (Avr-R), giving rise to effector triggered immunity (ETI). The majority of the conceptual advances in understanding these systems have been made using model systems, such as Arabidopsis, tobacco, or tomato in combination with biotrophic pathogens that colonize living plant tissues. In contrast, how these disease resistance mechanisms interact with non-biotrophic (hemibiotrophic or necrotrophic) fungal pathogens that thrive on dying host tissue during successful infection, is less clear. Several lines of recent evidence have begun to suggest that these organisms may actually exploit components of plant immunity in order to infect, successfully colonize and reproduce within host tissues. One underlying mechanism for this strategy has been proposed, which has been referred to as effector triggered susceptibility (ETS). This review aims to highlight the complexity of interactions between plant recognition and defense activation towards non-biotrophic pathogens, with particular emphasis on three important fungal diseases of wheat (Triticum aestivum) leaves.  相似文献   

14.
The maize pathogens Fusarium verticillioides (Fv) and Fusarium proliferatum (Fp) are morphologically very similar to one another, so Fp isolates have been often mistaken as Fusarium moniliforme (the former name of Fv). The only presently accepted morphological discriminator between these species is the presence/absence of polyphialides. Here, a collection of 100 Fusarium strains, isolated from infected maize kernels on plants grown in north-western Italy, were assigned as Fv or Fp on the basis of the presence/absence of polyphialides. This classification was tested on a subset of isolates by sexual crosses, ITS and calmodulin sequencing and AFLP profiling. An ITS-RFLP assay was extended to the full collection and to a number of Fv and Fp isolates of different geographical origin and hosts. The ITS region is proposed as taxonomically informative for distinguishing between Fp and Fv.  相似文献   

15.
Life history studies were conducted in the laboratory on the African parasitoid Prorops nasuta Waterston (Hymenoptera: Bethylidae), a parasitoid of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae). The female wasp enters an infested coffee berry, kills the adult borer and seals the entrance of the berry with the body of the borer, impeding the entry of other organisms into the berry. The preoviposition period ranges from 3 to 14 days (mean 5.42 ± 0.37 SE). During this time females feed on the immature stages and paralyse fully grown larvae and pupae of the CBB. P. nasuta is an idiobiont solitary ectoparasitoid. Eggs are laid externally on the last instar larvae and pupae. Mean development time (egg to adult) for males and females was 27.7 (±0.37 SE) and 30 (±0.12 SE) days, respectively. Median survival for wasps fed on final instar CBB larvae was 27.7 days, significantly longer than any other treatment, while for females without food it was 2.5 days. In culture, females produced an average of 4.3 (±0.39 SE) progeny during their lifetimes. Adults began emerging at 30.6 days (±0.28 SE) after cultures were started and peak production was reached at 36 days, declining thereafter. Males normally emerged from coffee beans 2–3 days before females. Males usually emerged from 07:00 to 09:00h and females from 10:00 to 14:00 h. The culture sex ratio (proportion of males) was 0.21. Virgin females produced only male offspring.  相似文献   

16.
The coffee berry borer (CBB), Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae), is one of the major insect pests of coffee worldwide. The present study was designed to assess the level of infestation of coffee berries at different developmental stages across different altitudes and coffee management systems. The experiment was carried out at three locations in southwestern Ethiopia under two coffee management systems and four coffee berry development stages with three replications. Results of the study showed significantly highest proportion of damaged berries (37.5%), number of holes per berry (10.88) and number of adult CBB per berry (7.55) on dried leftover berries at low-altitude study sites. On the other hand, the lowest mean percent damaged berries, number of holes per berry and number of adults were recorded at mid- and high-altitude study sites. The study also showed that, CBB caused significantly highest damage in plantation coffee management system than garden coffee. Results of this study highlight proper harvesting at red ripe stage in order to minimise incidence of CBB. It is also important to design integrated management strategies to mitigate CBB damage especially in lowland plantation coffee production systems.  相似文献   

17.
Synthetic elicitors can be used to induce resistance in plants against pathogens and arthropod herbivores. Such compounds may also change the emission of herbivore-induced plant volatiles, which serve as important cues for parasitic wasps to locate their hosts. Therefore, the use of elicitors in the field may affect biological control of insect pests. To test this, we treated maize seedlings growing in a subtropical field in Mexico with methyl jasmonate (MeJA), an elicitor of defense responses against many insects, and benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), an elicitor of resistance against certain pathogens. Volatile emission, herbivore infestation, pathogen infection, and plant performance (growth and grain yield) of treated and untreated maize plants were measured. Application of BTH slightly reduced volatile emission in maize, while MeJA increased the emission compared to control treatments. Despite the apparent changes in volatile emissions, the elicitor application did not consistently affect infestation by Spodoptera frugiperda larvae, the main insect pest found on the maize seedlings, and had only marginal effects on parasitism rates. Similarly, there were no treatment effects on infestation by other herbivores and pathogens. Results for the six replications that stretched over one summer and one winter season were highly variable, with parasitism rates and the species composition of the parasitoids differing significantly between seasons. This variability, as well as the severe biotic and abiotic stresses on young seedlings might explain why we measured only slight effects of elicitor application on pest incidence and biological control in this specific field study. Indeed, an additional field experiment under milder and more standardized conditions revealed that BTH induced significant resistance against Bipolaris maydis, a major pathogen in the experimental maize fields. Similar affects can be expected for herbivory and parasitism rates.  相似文献   

18.
Saprolegnia species are destructive pathogens to many aquatic organisms and are found in most parts of the world. Reports based on phylogenetic analysis suggest that Saprolegnia strains isolated from aquatic animals such as crustaceans and frogs are close to Saprolegnia strains isolated from infected fish or fish eggs and vice versa. However, it has often been assumed that host specificity occurs for each individual isolate or strain. Here we demonstrate that Saprolegnia spp. can have multiple hosts and are thus capable of infecting different aquatic organisms. Saprolegnia delica, Saprolegnia hypogyna, and 2 strains of Saprolegnia diclina were isolated from aquatic insects and amphipods while S. delica, Saprolegnia ferax, Pythium pachycaule, and a Pythium sp. were isolated from the water of a medium to fast flowing river. The ITS region of the rRNA gene was sequenced for all isolates. In challenge experiments, all four isolates from insects were found to be highly pathogenic to eggs of Atlantic salmon (Salmo salar) and embryos of the African clawed frog (Xenopus laevis). We found that Saprolegnia spp. isolated from salmon eggs were also able to successfully establish infection in nymphs of stonefly (Perla bipunctata) and embryos of X. laevis). These results suggest that Saprolegnia spp. are capable of infecting multiple hosts, which may give them an advantage during seasonal variation in their natural environments.  相似文献   

19.
Brassinin is a phytoalexin produced by plants from the family Brassicaceae that displays antifungal activity against a number of pathogens of Brassica species, including Leptosphaeria maculans (Desm.) Ces. et de Not. [asexual stage Phoma lingam (Tode ex Fr.) Desm.] and L. biglobosa. The interaction of a group of isolates of L. maculans virulent on brown mustard (Brassica juncea) with brassinin was investigated. The metabolic pathway for degradation of brassinin, the substrate selectivity of the putative detoxifying hydrolase, as well as the antifungal activity of metabolites and analogs of brassinin are reported. Brassinin hydrolase activity was detectable only in cell-free homogenates resulting from cultures induced with brassinin, N'-methylbrassinin, or camalexin. The phytoalexin camalexin was a substantially stronger inhibitor of these isolates than brassinin, causing complete growth inhibition at 0.5mM.  相似文献   

20.
The Cryphonectriaceae includes important tree pathogens, especially on the Myrtales. During a routine disease survey in the Western Cape Province of South Africa, a fungus resembling the Eucalyptus pathogen Holocryphia eucalypti was observed on native Metrosideros angustifolia (Myrtales). The aims of this study were to identify the fungus and to expand surveys for fungi in the Cryphonectriaceae on M. angustifolia. Fungi were identified based on DNA sequence comparisons and morphological features, and their pathogenicity was tested on M. angustifolia under field conditions. Based on morphology and multigene phylogenetic analyses of DNA sequence data from six gene regions, we describe a new genus including a single species and three new species of Holocryphia (Cryphonectriaceae) from M. angustifolia. These fungi are provided with the names Diversimorbus metrosiderotis gen. et sp. nov., Holocryphia capensis sp. nov., Holocryphia gleniana sp. nov., and Holocryphia mzansi sp. nov. We also revise H. eucalypti, the type of the genus, to include only isolates from Eucalyptus in South Africa. Research results indicated that H. mzansi may undergo host shifts between different tree genera in the Myrtaceae. Inoculation tests showed that isolates of all the newly described species can cause lesions on the branches of M. angustifolia, indicating that they are all pathogens of this tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号