首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integration of living cells with novel microdevices requires the development of innovative technologies for manipulating cells. Chemical surface patterning has been proven as an effective method to control the attachment and growth of diverse cell populations. Patterning polyelectrolyte multilayers through the combination of layer‐by‐layer self‐assembly technique and photolithography offer a simple, versatile, and silicon compatible approach that overcomes chemical surface patterning limitations, such as short‐term stability and low‐protein adsorption resistance. In this study, direct photolithographic patterning of two types of multilayers, PAA (poly acrylic acid)/PAAm (poly acryl amide) and PAA/PAH (poly allyl amine hydrochloride), were developed to pattern mammalian neuronal, skeletal, and cardiac muscle cells. For all studied cell types, PAA/PAAm multilayers behaved as a cytophobic surface, completely preventing cell attachment. In contrast, PAA/PAH multilayers have shown a cell‐selective behavior, promoting the attachment and growth of neuronal cells (embryonic rat hippocampal and NG108‐15 cells) to a greater extent, while providing little attachment for neonatal rat cardiac and skeletal muscle cells (C2C12 cell line). PAA/PAAm multilayer cellular patterns have also shown a remarkable protein adsorption resistance. Protein adsorption protocols commonly used for surface treatment in cell culture did not compromise the cell attachment inhibiting feature of the PAA/PAAm multilayer patterns. The combination of polyelectrolyte multilayer patterns with different adsorbed proteins could expand the applicability of this technology to cell types that require specific proteins either on the surface or in the medium for attachment or differentiation, and could not be patterned using the traditional methods. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

2.
The structural changes of bovine serum albumin (BSA) and hen egg white lysozyme (HEL) upon their adsorption onto the surface or their embedding into the interior of poly(allylamine hydrochloride)-(poly(styrenesulfonate) (PAH-PSS) multilayer architectures were investigated by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The presence of the polyelectrolytes seems, as previously observed for fibrinogen (J. Phys. Chem. B 2001, 105, 11906-11916), to prevent intermolecular interactions and, thus, protein aggregation at ambient temperature. The secondary structure of the proteins was somewhat altered upon adsorption onto the polyelectrolyte multilayers. The structural changes were larger when the charges of the multilayer outer layer and the protein were opposing. The adsorption of further polyelectrolyte layers onto protein-terminated architectures (i.e., embedding the proteins into a polyelectrolyte multilayer) did not cause considerable further changes in their secondary structures. The capacity of the polyelectrolyte architectures to delay the formation of intermolecular beta-sheets upon increasing temperatures was not uniform for the studied proteins. PSS in contact with HEL could largely prevent the heat-induced aggregation of HEL. In contrast, PAH had hardly any effect on the aggregation of BSA. The differences are explained on the basis of protein-polyelectrolyte interactions, affected mostly by the nature and the strength of the ionic interactions between the polyelectrolyte-protein contact surfaces.  相似文献   

3.
Surface modification by deposition of ordered protein systems constitutes one of the major objectives of bio-related chemistry and biotechnology. In this respect a concept has recently been reported aimed at fabricating multilayers by the consecutive adsorption of positively and negatively charged polyelectrolytes. We investigate the adsorption processes between polyelectrolyte multilayers and a series of positively and negatively charged proteins. The film buildup and adsorption experiments were followed by Scanning Angle Reflectometry (SAR). We find that proteins strongly interact with the polyelectrolyte film whatever the sign of the charge of both the multilayer and the protein. When charges of the multilayer and the protein are similar, one usually observes the formation of protein monolayers, which can become dense. We also show that when the protein and the multilayer become oppositely charged, the adsorbed amounts are usually larger and the formation of thick protein layers extending up to several times the largest dimension of the protein can be observed. Our results confirm that electrostatic interactions dominate protein/polyelectrolyte multilayer interactions.  相似文献   

4.
Homopolynucleotides--poly(adenylic acid), poly(A), and poly(uridylic acid), poly(U)--were assembled, layer-by-layer, into thin films with poly(ethylenimine), PEI. Various combinations and sequences of polynucleotide and PEI were used to highlight contributions of electrostatic versus hydrogen bonding as driving forces for multilayer build-up. Assembly of alternating poly(A) and poly(U) failed to yield growing films, due to excessively strong interactions between these complimentary strands. The surface morphology of multilayers depended on the deposition order and whether films had been annealed by salt. Films assembled from preformed A/U duplexes (having high persistence lengths) were very smooth. Individual adsorption steps, followed by optical waveguide light-mode spectroscopy, showed that only complementary polynucleotides adsorb by H-bonding to the surface of a growing multilayer. In contrast to behavior usually observed for polyelectrolyte multilayer build-up, the films decreased in thickness with increasing salt concentration.  相似文献   

5.
The selective interaction between polyelectrolyte multilayers (PEM) consecutively adsorbed from poly(ethyleneimine) (PEI) and poly(acrylic acid) (PAC) and a binary mixture containing concanavalin A (COA) and lysozyme (LYZ) based on electrostatic interaction is reported. The composition and structure of the PEM and the uptake of proteins were analyzed by in situ attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy, and the morphology and thickness were characterized by atomic force microscopy (AFM) and ellipsometry. The PEM dissociation degree and charge state and the protein adsorption were shown to be highly dependent on the outermost layer type and the pH in solution. High protein uptake was obtained under electrostatically attractive conditions. This was used to bind selectively one protein from a binary mixture of LYZ/COA. In detail it could be demonstrated that six-layered PEM-6 at pH = 7.3 showed a preferential sorption of positively charged LYZ, while at PEM-5 and pH = 7.3 negatively charged COA could be selectively bound. No protein sorption from the binary mixture was observed at pH = 4.0 for both PEM, when COA, LYZ, and the outermost PEI layer of PEM-5 were positively charged or the outermost PAC layer of PEM-6 was neutral. Furthermore, from factor analysis of the spectral data the higher selectivity was found for PEM-5 compared to PEM-6. Increasing the ionic strength revealed a drastic decrease in the selectivity of both PEM. Evidence was found that the proteins were predominantly bound at the surface and to a minor extent in the bulk phase of PEM. These results suggest possible working regimes and application fields of PEI/PAC multilayer assemblies related to the preparative separation of binary and multicomponent protein mixtures (biofluids, food) as well as to the design of selective protein-resistant surfaces.  相似文献   

6.
Culture of A7r5 smooth muscle cells on a polyelectrolyte multilayer film (PEMU) can influence various cell properties, including adhesion, motility, and cytoskeletal organization, that are modulated by the extracellular matrix (ECM) in vivo. ECM contribution to cell behavior on PEMUs was investigated by determining the amount of fibronectin (FN) bound to charged and hydrophobic PEMUs by optical waveguide lightmode spectroscopy and immunofluorescence microscopy. FN bound best to poly(allylamine hydrochloride) (PAH)-terminated and Nafion-terminated PEMUs. FN bound poorly to PEMUs terminated with a copolymer of poly(acrylic acid) (PAA) and 3-[2-(acrylamido)-ethyl dimethylammonio] propane sulfonate (PAA-co-AEDAPS). Cells adhered and spread well on the Nafion-terminated PEMU surfaces. In contrast, cells spread less and migrated more on both FN-coated and uncoated PAH-terminated PEMU surfaces. Both cells and FN interacted much better with Nafion than with PAA-co-PAEDAPS in a micropatterned PEMU. These results indicate that A7r5 cell adhesion, spreading, and motility on PEMUs can be independent of FN binding to the surfaces.  相似文献   

7.
Cholesterol biosensors prepared by layer-by-layer technique   总被引:5,自引:0,他引:5  
The analysis of formation, deposition and characterization of cholesterol oxidase (COX) layer-by-layer films were performed. Initially, a layer of polyanion, poly(styrene sulfonate) (PSS) was adsorbed followed by a layer of polycation, poly(ethylene imine) (PEI) on each solid substrate from aqueous solutions. The alternating layers were formed by consecutive adsorption of polycations (PEI) and negatively charged proteins (COX) and cholesterol esterase (CE). A strong interaction between protein and polyelectrolyte improves the stability of the alternating multilayer; however, it can change a native protein conformation and impair the protein activity. The PSS/PEI/COX, PSS/PEI/COX/PEI/CE, PSS/PEI/COX-CE/PEI etc. layered structures were prepared on the surface of a platinum electrode, ITO coated glass plate, quartz crystal microbalance, quartz plates, mica and silicon substrates. Optical and gravimetric measurements based on an ultraviolet–visible absorption spectroscopy and a quartz crystal microbalance revealed that the enzyme multilayers thus prepared consist of molecular layered of the proteins. The surface morphology of such bilayer films was investigated by using atomic force microscopy. The electrochemical redox processes of the enzyme-layered films deposited either on platinum or ITO coated glass plate were investigated. The response current of cholesterol oxidase electrode with concentration of cholesterol was investigated at length.  相似文献   

8.
Polyelectrolyte multilayer films assembled from a hydrophobic N-alkylated polyethylenimine and a hydrophilic polyacrylate were discovered to exhibit strong antifouling, as well as antimicrobial, activities. Surfaces coated with these layer-by-layer (LbL) films, which range from 6 to 10 bilayers (up to 45 nm in thickness), adsorbed up to 20 times less protein from blood plasma than the uncoated controls. The dependence of the antifouling activity on the nature of the polycation, as well as on assembly conditions and the number of layers in the LbL films, was investigated. Changing the hydrophobicity of the polycation altered the surface composition and the resistance to protein adsorption of the LbL films. Importantly, this resistance was greater for coated surfaces with the polyanion on top; for these films, the average zeta potential pointed to a near neutral surface charge, thus, presumably minimizing their electrostatic interactions with the protein. The film surface exhibited a large contact angle hysteresis, indicating a heterogeneous topology likely due to the existence of hydrophobic-hydrophilic regions on the surface. Scanning electron micrographs of the film surface revealed the existence of nanoscale domains. We hypothesize that the existence of hydrophobic/hydrophilic nanodomains, as well as surface charge neutrality, contributes to the LbL film's resistance to protein adsorption.  相似文献   

9.
Ye X  Jiang X  Yu B  Yin J  Vana P 《Biomacromolecules》2012,13(2):535-541
A binary micropattern of anthracene-contained hyperbranched poly(ether amine) (hPEA-AN) network and poly(ether amine) (PEA) brush on gold surface was developed and explored. First, a micropatterned hPEA-AN network array on gold surface was fabricated by photolithography via photodimerization of anthracene moieties, and a PEA brush was subsequently immobilized on the remaining free gold surface areas by chemical adsorption of thiol groups. The patterned hPEA-AN network exhibits selectivity with respect to the adsorption of hydrophilic dyes: Methyl orange is strongly adsorbed, but rhodamine 6G is not, as indicated by the fluorescence response. The PEA brush domain exhibits excellent protein adsorption repellency, whereas the hPEA-AN network layer readily adsorbs protein. These characteristics make the binary hPEA-AN network and PEA brush array sensitive to different kinds of dyes and proteins, which open up pathways to potential applications as microsensors, biochips, and bioassays.  相似文献   

10.
Human mesenchymal stem cells (hMSCs) are colony‐forming unit fibroblasts (CFU‐F) derived from adult bone marrow and have significant potential for many cell‐based tissue‐engineering applications. Their therapeutic potential, however, is restricted by their diminishing plasticity as they are expanded in culture. In this study, we used N‐isopropylacrylamide (NIPAM)‐based thermoresponsive polyelectrolyte multilayer (N‐PEMU) films as culture substrates to support hMSC expansion and evaluated their effects on cell properties. The N‐PEMU films were made via layer‐by‐layer adsorption of thermoresponsive monomers copolymerized with charged monomers, positively charged allylamine hydrochloride (PAH), or negatively charged styrene sulfonic acid (PSS) and compared to fetal bovine serum (FBS) coated surfaces. Surface charges were shown to alter the extracellular matrix (ECM) structure and subsequently regulate hMSC responses including adhesion, proliferation, integrin expression, detachment, and colony forming ability. The positively charged thermal responsive surfaces improved cell adhesion and growth in a range comparable to control surfaces while maintaining significantly higher CFU‐F forming ability. Immunostaining and Western blot results indicate that the improved cell adhesion and growth on the positively charged surfaces resulted from the elevated adhesion of ECM proteins such as fibronectin on the positively charge surfaces. These results demonstrate that the layer‐by‐layer approach is an efficient way to form PNIPAM‐based thermal responsive surfaces for hMSC growth and removal without enzymatic treatment. The results also show that surface charge regulates ECM adhesion, which in turn influences not only cell adhesion but also CFU‐forming ability and their multi‐lineage differentiation potential. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

11.
Hydrogen-bonded multilayers comprised of polyacrylamide (PAAm) and a weak polyelectrolyte, such as poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMA), were investigated for their surface-cell interactions. The assembled films were lightly cross-linked thermally or photochemically in order to render them stable in a physiological environment. Both PAA/PAAm and PMA/PAAm multilayers were found to exhibit a high resistance to the adhesion (cytophobicity) of mammalian fibroblasts, even with only a single bilayer coating. Protein adsorption to the multilayers, as revealed by surface plasmon resonance measurements, was greatly reduced for fibronectin and serum-containing medium. In situ swelling experiments indicate that the H-bonded multilayers are hydrogellike coatings capable of a high level of swelling in buffered solution. Utilizing the H-bonding nature of these multilayers, we were able to micropattern the films to create more complex cell-resistant/-adhesive surfaces. The long-term stability of the cell-resistant multilayers was found to be exceptionally good even under conditions (pH 7.4, buffered solution) where a high degree of swelling takes place. No degradation of the micropatterned films was observed over a period of a month, during which time the multilayer coatings remained highly resistant to cell-adhesion.  相似文献   

12.
The surface of chitosan films was modified using acid chloride and acid anhydrides. Chemical composition at the film surface was analyzed by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). ATR-FTIR data verified that the substitution took place at the amino groups of chitosan, thus forming amide linkages, and the modification proceeded to the depth at least 1 microm. Choices of molecules substituted at the amino groups of the glucosamine units did affect the hydrophobicity of the film surface, as indicated by air-water contact angle analysis. The surface became more hydrophobic than that of non-modified film when a stearoyl group (C(17)H(35)CO-) was attached to the films. The reaction of chitosan films with succinic anhydride or phthalic anhydride, however, produced more hydrophilic films. Selected modified films were subjected to protein adsorption study. The amount of protein adsorbed, determined by bicinchoninic acid (BCA) assay, related to the types of attached molecules. The improved surface hydrophobicity affected by the stearoyl groups promoted protein adsorption. In contrast, selective adsorption behavior was observed in the case of the chitosan films modified with anhydride derivatives. Lysozyme adsorption was enhanced by H-bonding and charge attraction with the hydrophilic surface. While the amount of albumin adsorbed was decreased possibly due to negative charges that gave rise to repulsion between the modified surface and albumin. This study has demonstrated that it is conceivable to fine-tune surface properties which influence its response to bio-macromolecules by heterogeneous chemical modification.  相似文献   

13.
Poly(ethylene glycol) (PEG)-stabilized liposomes were recently shown to exhibit differences in cell uptake that were linked to the liposome charge. To determine the differences and similarities between charged and uncharged PEG-decorated liposomes, we directly measured the forces between two supported, neutral bilayers with terminally grafted PEG chains. The measurements were performed with the surface force apparatus. The force profiles were similar to those measured with negatively charged PEG conjugates of 1, 2-distearoyl-sn-glycero-3-phosphatidyl ethanolamine (DSPE), except that they lacked the longer ranged electrostatic repulsion observed with the charged compound. Theories for simple polymers describe the forces between end-grafted polymer chains on neutral bilayers. The force measurements were complemented by surface plasmon resonance studies of protein adsorption onto these layers. The lack of electrostatic forces reduced the adsorption of positively charged proteins and enhanced the adsorption of negatively charged ones. The absence of charge also allowed us to determine how membrane charge and the polymer grafting density independently affect protein adsorption on the coated membranes. Such studies suggest the physical basis of the different interactions of charged and uncharged liposomes with proteins and cells.  相似文献   

14.
Phenylboronate chromatography (PBC) has been applied for several years, however details regarding the mechanisms of interactions between the ligand and biomolecules are still scarce. The goal of this work is to investigate the various chemical interactions between proteins and their ligands, using a protein library containing both glycosylated and nonglycosylated proteins. Differences in the adsorption of these proteins over a pH range from 4 to 9 were related to two main properties: charge and presence of glycans. Acidic or neutral proteins were strongly adsorbed below pH 8 although the uncharged trigonal form of phenylboronate (PB) is less susceptible to forming electrostatic and cis‐diol interactions with proteins. The glycosylated proteins were only adsorbed above pH 8 when the electrostatic repulsion between the boronate anion and the protein surface was mitigated (at 200 mM NaCl). All basic proteins were highly adsorbed above pH 8 with PB also acting as a cation‐exchanger with binding occurring through electrostatic interactions. Batch adsorption performed at acidic conditions in the presence of Lewis base showed that charge‐transfer interactions are critical for protein retention. This study demonstrates the multimodal interaction of PBC, which can be a selective tool for separation of different classes of proteins.  相似文献   

15.
Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation.  相似文献   

16.
Self-assembled multilayers comprised of alternate layers of polyphenol oxidase (PPO) and poly(allylamine) (PAH) or PPO and poly(diallyldimethylamine) (PDDA), deposited on a 3-mercaptopropanesulfonic acid (MPS)-modified gold surface, were studied "in-situ" (under water) by means of ellipsometry and quartz crystal microbalance (QCM), and "ex-situ" (in open air) by ellipsometry and fourier transform infrared reflection-absorption spectroscopy (FT-IRRAS). Optical ellipsometric properties of (PAH)(n)(PPO)(n) and (PDDA)(n)(PPO)(n) multilayers were obtained at two wavelengths, employing an isotropic single-layer model with the substrate parameters measured after thiol adsorption. Film thickness as well as ellipsometric mass values based on the de Feijter equation were also evaluated. The quartz crystal impedance analysis showed that self-assembled multilayers behaved as acoustically thin films, and therefore, the shifts observed in the film inductive impedance parameter were interpreted in terms of gravimetric mass. The enzyme mass up-take in each adsorption step was determined on PAH or on PDDA topmost layer. A comparative study between the ellipsometric thickness and acoustic mass values allowed us to obtain average values of "apparent" densities of (2.1 +/- 0.1) and (2.4 +/- 0.1) g cm(-3) for (PAH)(n)(PPO)(n) and (PDDA)(n)(PPO)(n) multilayers, respectively. The content of water included in the open polymer-enzyme structure was evaluated by comparison of QCM and ellipsometric mass values. FT-IRRAS spectra of each layer in (PAH)(n)(PPO)(n) and (PDDA)(n)(PPO)(n) films were recorded, and the intensity ratio of the amide bands was evaluated to obtain information about layer-by-layer enzyme conformation. An enzyme/polycation distribution model for (PAH)(n)(PPO)(n)and (PDDA)(n)(PPO)(n) multilayer structures is presented on the basis of combined ellipsometric, QCM, and FT-IRRAS results.  相似文献   

17.
X-ray diffraction and spectroscopic techniques were used to characterize ultrathin fatty acid multilayers having a bound surface layer of cytochrome c. Three to six monolayers of arachidic acid were deposited onto an alkylated glass surface, using the Langmuir-Blodgett method. These fatty acid multilayer films were stored either in a 1 mM NaHCO3 pH 7.5 solution or a buffered 10 microM cytochrome c solution, pH 7.5. After washing extensively with buffer, these multilayer films were assayed for bound cytochrome c by optical spectroscopy. It was found that the cytochrome c bound only to the odd-numbered monolayer films (which have hydrophilic surfaces). The theoretical number of cytochrome c molecules bound to the ultrathin multilayer films having three or five monolayers was calculated as N = 1.2 x 10(13)/cm2 (assuming a hexagonally close-packed monolayer of protein), which would produce an optical density of 0.002 at a wavelength of 550 nm; for a three or five monolayer ultrathin film that was incubated with cytochrome c, OD550 approximately equal to 0.002. The protein was released from the film when treated with greater than 100 mM KCl solution, as would be expected for an electrostatic interaction. Meridional x-ray diffraction data were collected from the arachidic acid films with and without a bound cytochrome c layer. A box refinement technique, previously shown to be effective in deriving the profile structures of nonperiodic ultrathin films, was used to determine the multilayer electron density profiles. The electron density profiles and their autocorrelation functions showed that bound cytochrome c resulted in an additional electron dense feature on the multilayer surface, consistent with a bound cytochrome c monolayer. The position of the bound protein relative to the multilayer surface was independent of the number of fatty acid monolayers in the multilayer. Future studies will use these methods to investigate the structures of membrane protein complexes bound directly to the surface of multilayer films.  相似文献   

18.
We have previously shown that cytochrome c can be electrostatically bound to an ultrathin multilayer film having a negatively charged hydrophilic surface; furthermore, x-ray diffraction and absorption spectroscopy techniques indicated that the cytochrome c was bound to the surface of these ultrathin multilayer films as a molecular monolayer. The ultrathin fatty acid multilayers were formed on alkylated glass, using the Langmuir-Blodgett method. In this study, optical linear dichroism was used to determine the average orientation of the heme group within cytochrome c relative to the multilayer surface plane. The cytochrome c was either electrostatically or covalently bound to the surface of an ultrathin multilayer film. Horse heart cytochrome c was electrostatically bound to the hydrophilic surface of fatty acid multilayer films having an odd number of monolayers. Ultrathin multilayer films having an even number of monolayers would not bind cytochrome c, as expected for such hydrophobic surfaces. Yeast cytochrome c was covalently bound to the surface of a multilayer film having an even number of fatty acid monolayers plus a surface monolayer of thioethyl stearate. After washing extensively with buffer, the multilayer films with either electrostatically or covalently bound cytochrome c were analyzed for bound protein by optical absorption spectroscopy; the orientation of the cytochrome c heme was then investigated via optical linear dichroism. Polarized optical absorption spectra were measured from 450 to 600 nm at angles of 0 degrees, 30 degrees, and 45 degrees between the incident light beam and the normal to the surface plane of the multilayer. The dichroic ratio for the heme alpha-band at 550 nm as a function of incidence angle indicated that the heme of the electrostatically-bound monolayer of cytochrome c lies, on average, nearly parallel to the surface plane of the ultrathin multilayer. Similar results were obtained for the covalently-bound yeast cytochrome c. Furthermore, fluorescence recovery after photobleaching (FRAP) was used to characterize the lateral mobility of the electrostatically bound cytochrome c over the monolayer plane. The optical linear dichroism and these initial FRAP studies have indicated that cytochrome c electrostatically bound to a lipid surface maintains a well-defined orientation relative to the membrane surface while exhibiting measurable, but highly restricted, lateral motion in the plane of the surface.  相似文献   

19.
Peng J  Su Y  Shi Q  Chen W  Jiang Z 《Bioresource technology》2011,102(3):2289-2295
A mild and facile grafting of poly(ether glycol) methyl ether methacrylate (PEGMA) monomers onto polyethersulfone (PES) was carried out. Then, the PES-g-PEGMA membranes with integrally anisotropic morphology were fabricated through the coupling of non-solvent induced phase inversion and surface segregation. Compared with PES control membrane, the surface hydrophilicity of PES-g-PEGMA membranes was remarkably enhanced due to the drastic enrichment of poly(ethylene glycol) (PEG) segments on the membrane surface; protein adsorption was significantly inhibited due to the hydrogen bonding interactions between hydrophilic groups and water molecules. Ultrafiltration experiments were used to assess the permeability and protein fouling resistance of the PES-g-PEGMA membranes. It was found that the PES-g-PEGMA membranes with higher surface coverage of PEG segments displayed stronger antibiofouling property. Moreover, the stable antibiofouling property for PES-g-PEGMA membranes was acquired due to covalent bonding interactions between hydrophilic PEGMA side chains and PES main chains.  相似文献   

20.
Layer-by-layer self-assembly of two polysaccharides, hyaluronan (HA) and chitosan (CH), was employed to engineer bioactive coatings for endovascular stents. A polyethyleneimine (PEI) primer layer was adsorbed on the metallic surface to initiate the sequential adsorption of the weak polyelectrolytes. The multilayer growth was monitored using a radiolabeled HA and shown to be linear as a function of the number of layers. The chemical structure, interfacial properties, and morphology of the self-assembled multilayer were investigated by time-of-flight secondary ions mass spectrometry (ToF-SIMS), contact angle measurements, and atomic force microscopy (AFM), respectively. Multilayer-coated NiTi disks presented enhanced antifouling properties, compared to unmodified NiTi disks, as demonstrated by a decrease of platelet adhesion in an in vitro assay (38% reduction; p = 0.036). An ex vivo assay on a porcine model indicated that the coating did not prevent fouling by neutrophils. To assess whether the multilayers may be exploited as in situ drug delivery systems, the nitric-oxide-donor sodium nitroprusside (SNP) was incorporated within the multilayer. SNP-doped multilayers were shown to further reduce platelet adhesion, compared to standard multilayers (40% reduction). When NiTi wires coated with a multilayer containing a fluorescently labeled HA were placed in intimate contact with the vascular wall, the polysaccharide translocated on the porcine aortic samples, as shown by confocal microscopy observation of a treated artery. The enhanced thromboresistance of the self-assembled multilayer together with the antiinflammatory and wound healing properties of hyaluronan and chitosan are expected to reduce the neointimal hyperplasia associated with stent implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号