首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been widely suggested that selenium (Se) deficiency play an important role in the pathophysiology of epilepsy. It has been reported that Se provides protection against the neuronal damage in patients and animals with epilepsy by restoring the antioxidant defense mechanism. The neuroprotective effects of topiramate (TPM) have been reported in several studies but the putative mechanism of action remains elusive. We investigated effects of Se and TPM in neuronal PC12 cell by evaluating Ca2+ mobilization, lipid peroxidation and antioxidant levels. PC12 cells were divided into eight groups namely control, TPM, Se, H2O2, TPM + H2O2, Se + H2O2, Se + TPM and Se + TPM + H2O2. The toxic doses and times of H2O2, TPM and Se were determined by cell viability assay which is used to evaluate cell viability. Cells were incubated with 0.01 mM TPM for 5 h and 500 nM Se for 10 h. Then, the cells were exposed to 0.1 mM H2O2 for 10 h before analysis. The cells in all groups except control, TPM and Se were exposed to H2O2 for 15 min before analysis. Cytosolic Ca2+ release and lipid peroxidation levels were higher in H2O2 group than in control, Se and TPM combination groups although their levels were decreased by incubation of Se and TPM combination. However, there is no difference on Ca2+ release in TPM group. Glutathione peroxidase activity, reduced glutathione and vitamin C levels in the cells were lower in H2O2 group than in control, Se and TPM groups although their values were higher in the cells incubated with Se and TPM groups than in H2O2 groups. In conclusion, these results indicate that Se induced protective effects on oxidative stress in PC12 cells by modulating cytosolic Ca2+ influx and antioxidant levels. TPM modulated also lipid peroxidation and glutathione and vitamin C concentrations in the cell system.  相似文献   

2.
3.
The mitochondrial transition pore (MTP) is implicated as a mediator of cell injury and death in many situations. The MTP opens in response to stimuli including reactive oxygen species and inhibition of the electron transport chain. Sporadic Parkinson’s disease (PD) is characterized by oxidative stress and specifically involves a defect in complex I of the electron transport chain. To explore the possible involvement of the MTP in PD models, we tested the effects of the complex I inhibitor and apoptosis-inducing toxin N-methyl-4-phenylpyridinium (MPP+) on cyclosporin A (CsA)-sensitive mitochondrial swelling and release of cytochrome c. In the presence of Ca2+ and Pi, MPP+ induced a permeability transition in both liver and brain mitochondria. MPP+ also caused release of cytochrome c from liver mitochondria. Rotenone, a classic non-competitive complex I inhibitor, completely inhibited MPP+-induced swelling and release of cytochrome c. The MPP+-induced permeability transition was synergistic with nitric oxide and the adenine nucleotide translocator inhibitor atractyloside, and additive with phenyl arsine oxide cross-linking of dithiol residues. MPP+-induced pore opening and cytochrome c release were blocked by CsA, the Ca2+ uniporter inhibitor ruthenium red, the hydrophobic disulfide reagent N-ethylmaleimide, butacaine, and the free radical scavenging enzymes catalase and superoxide dismutase. MPP+ neurotoxicity may derive from not only its inhibition of complex I and consequent ATP depletion, but also from its ability to open the MTP and to release mitochondrial factors including Ca2+ and cytochrome c known to be involved in apoptosis.  相似文献   

4.
Parkinson''s disease (PD) is the most common neurodegenerative movement disorder, characterized by loss of dopominergic (DA) neurons in substantia nigra pars compacta (SNpc), and can be experimentally mimicked by the neurotoxin MPP+ in vitro models. In this study, we investigated the potential protective effect of SKF-96365, a non-specific inhibitor of SOCE (store-operated calcium entry), on MPP+ induced cytotoxicity in PC12 cells. We found that pretreatment with SKF-96365 (10 µM and 50 µM) 30 min before injury significantly increased cell viability, decreased LDH release, prevented nuclear damage, and inhibited apoptotic cell death in MPP+ stressed PC12 cells. The results of calcium image using the ratiometric calcium indicator Fura-2-AM also showed that SKF-96365 reduced the intracellular calcium overload induced by MPP+ in PC12 cells. In addition, SKF-96365 decreased the expression of Homer1, a more recently discovered postsynaptic scaffolding protein with calcium modulating function, following MPP+ administration in PC12 cells, while had no statistically significant effects on endoplasmic reticulum (ER) calcium concentration. Furthermore, overexpression of Homer1 by using recombinant lentivirus partly reversed protective effects of SKF-96365 against MPP+ injury. The ER Ca2+ release was further amplified and ER calcium recovery was delayed by Homer1 upregulation in PC12 cells following MPP+ insult. Taken together, these data suggest that SKF-96365 protects PC12 cells against MPP+ induced cytotoxicity, and this protection may be at least in part on the inhibition of intracellular calcium overload and suppression of Homer1-mediated ER Ca2+ release.  相似文献   

5.
Behçet disease (BD) is a chronic, inflammatory, and multisystemic condition with an uncertain pathogenesis. One of the major immunologic findings in BD pathogenesis is increase in activity of neutrophil. An increase in the cytosolic free Ca2+ [Ca2+]i concentration that induces Ca2+ signaling is an important step that participates in the neutrophil activation and reactive oxygen species production that leads to tissue damage in body cells. We aimed to investigate the effects of colchicine on oxidative stress and Ca2+ release in serum and neutrophil of BD patients with active and inactive periods. Twelve Behçet patients (6 active and 6 inactive) and 6 control subject were included in the study. Disease activity was considered by clinical findings. Serum and neutrophil samples were obtained from the patients and control subjects. Neutrophils from patients with active BD were divided into three subgroups and were incubated with colchicine, verapamil + diltiazem, and colchicine + verapamil + diltiazem, respectively. Erythrocyte sedimentation rate, leucocytes counts, serum C-reactive protein, neutrophil, and serum lipid peroxidation and intracellular Ca2+ release levels were higher in active and inactive groups than in the control group, although their levels were lower in active group than in inactive group. However, neutrophil Ca2+ release levels were decreased in colchicine, verapamil + diltiazem, and colchicine + verapamil + diltiazem groups group compared to active group. Serum glutathione, vitamin A, vitamin E, and β-carotene concentrations were lower in active and inactive groups than in the control group, although serum vitamin E and β-carotene concentrations were higher in the inactive group than in the active group. Neutrophil and serum glutathione peroxidase activity within the three groups did not change. In conclusion, we observed the importance of Ca2+ influx into the neutrophils and oxidative stress in the pathogenesis and activation of the patients with BD. Colchicine induced protective effects on oxidative stress by modulating Ca2+ influx in BD patients.  相似文献   

6.
Dopaminergic nuclei in the basal ganglia are highly sensitive to damage from oxidative stress, inflammation, and environmental neurotoxins. Disruption of adenosine triphosphate (ATP)-dependent calcium (Ca2+) transients in astrocytes may represent an important target of such stressors that contributes to neuronal injury by disrupting critical Ca2+-dependent trophic functions. We therefore postulated that plasma membrane cation channels might be a common site of inhibition by structurally distinct cationic neurotoxicants that could modulate ATP-induced Ca2+ signals in astrocytes. To test this, we examined the capacity of two dopaminergic neurotoxicants to alter ATP-dependent Ca2+ waves and transients in primary murine striatal astrocytes: MPP+, the active metabolite of 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and 6-hydroxydopamine (6-OHDA). Both compounds acutely decreased ATP-induced Ca2+ transients and waves in astrocytes and blocked OAG-induced Ca2+ influx at micromolar concentrations, suggesting the transient receptor potential channel, TRPC3, as an acute target. MPP+ inhibited 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced Ca2+ transients similarly to the TRPC3 antagonist, pyrazole-3, whereas 6-OHDA only partly suppressed OAG-induced transients. RNAi directed against TRPC3 inhibited the ATP-induced transient as well as entry of extracellular Ca2+, which was augmented by MPP+. Whole-cell patch clamp experiments in primary astrocytes and TRPC3-overexpressing cells demonstrated that acute application of MPP+ completely blocked OAG-induced TRPC3 currents, whereas 6-OHDA only partially inhibited OAG currents. These findings indicate that MPP+ and 6-OHDA inhibit ATP-induced Ca2+ signals in astrocytes in part by interfering with purinergic receptor mediated activation of TRPC3, suggesting a novel pathway in glia that could contribute to neurotoxic injury.  相似文献   

7.
Microglial activation and release of inflammatory cytokines and chemokines are crucial events in neuroinflammation. Microglial cells interact and respond to other inflammatory cells such as T cells and mast cells as well as inflammatory mediators secreted from these cells. Recent studies have shown that neuroinflammation causes and accelerates neurodegenerative disease such as Parkinson’s disease (PD) pathogenesis. 1-methyl-4-phenyl-pyridinium ion (MPP+), the active metabolite of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine activates glial cells and mediate neurodegeneration through release of inflammatory mediators. We have shown that glia maturation factor (GMF) activates glia and induces neuroinflammation and neurodegeneration and that MPP+ activates mast cells and release proinflammatory cytokines and chemokines. The chemokine (C-C motif) ligand 2 (CCL2) levels have been shown to be elevated and play a role in PD pathogenesis. In the present study, we analyzed if MPP+ activates mouse and human mast cells to release chemokine CCL2. Mouse bone marrow-derived mast cells (BMMCs) and human umbilical cord blood-derived cultured mast cells (hCBMCs) were incubated with MPP+ (10 µM) for 24 h and CCL2 levels were measured in the supernatant media by ELISA. MPP+-significantly induced CCL2 release from BMMCs and hCBMCs. Additionally, GMF overexpression in BMMCs obtained from wild-type mice released significantly more CCL2, while BMMCs obtained from GMF-deficient mice showed less CCL2 release. Further, we show that MPP+-induced CCL2 release was greater in BMMCs–astrocyte co-culture conditions. Uncoupling protein 4 (UCP4) which is implicated in neurodegenerative diseases including PD was detected in BMMCs by immunocytochemistry. Our results suggest that mast cells may play role in PD pathogenesis.  相似文献   

8.
The neurotoxin 1-methy-4-phenylpyridinium (MPP+) is used for its’ capacity to induce Parkinsonism through its inhibitory effects on mitochondrial complex I. This inhibition disrupts cellular energy formation and aerobic glycolysis. The objective of this study was to demonstrate that the toxic effect of mitochondrial aerobic pathway inhibition with MPP+ can be reduced by stimulating anaerobic glycolysis using glucose supplementation. In this study, C6 Glioma cell viability was examined in the presence of different concentrations of MPP alone and with the addition of glucose. The results obtained indicate that there was a significant increase (P < 0.001) in cell viability in cells treated with glucose and MPP+ verses cells treated with MPP+ alone. Fluorometric analysis using 100 uM Rhodamine 123 indicated mitochondrial membrane potential was not restored in MPP+ treated cells with glucose; however, normal cell viability was confirmed using 2 ug/ml Fluorescein diacetate. This dual fluorescence indicated mitochondrial damage from MPP+ while glucose augmented cell survival. Further confirmation of cell survival upon damage to the mitochondria was evident in TUNEL staining. Positive staining was prominent only in MPP+ treatment groups alone, while control and co-treated groups exhibited little to no TUNEL staining. ATP measurements of all MPP+ treated groups exhibited a significant (P < 0.001) decrease verses control. Groups co-treated with MPP+ and glucose revealed a significant increase (250 μM group: P < 0.001) in ATP. It was concluded from this study that glucose supplementation was able to sustain cellular viability and ATP production through anaerobic glycolysis despite the inhibitory effect of MPP+ on aerobic glycolysis.  相似文献   

9.
The process of store-operated calcium entry (SOCE), whereby the release of intracellular Ca2+ from endoplasmic reticulum (ER) activates Ca2+ influx channels in the plasma membrane, has been demonstrated to impact a diverse range of cell functions. In the present study, we investigated the potential protective effect of SOCE inhibition against 1-methyl-4-phenylpyridinium (MPP+) injury by using pharmacological antagonists or specific small interfering RNA (siRNA) in PC12 cells. The results showed that both antagonists (15 μM MRS-1845 and 50 μM ML-9) and stromal interacting molecule-1 (STIM1) targeted siRNA (Si-STIM1) significantly increased cell viability, decreased apoptotic cell death and reduced intracellular reactive oxygen species (ROS) production and lipid peroxidation in MPP+ injured PC12 cells. SOCE inhibition also prevented MPP+ induced mitochondrial dysfunction and activation of mitochondrial related apoptotic factors, while had no effect on mitochondrial biogenesis. Moreover, inhibition of SOCE by antagonists and siRNA increased the expression levels of Homer1a mRNA and protein, and knockdown of Homer1a expression by specific siRNA partly reversed the protective effects induced by SOCE inhibition in PC12 cells. All these results indicated that SOCE inhibition protected PC12 cells against MPP+ insult through upregulation of Homer1a expression, and SOCE might be an ideal target for investigating therapeutic strategy against neuronal injury in PD patients.  相似文献   

10.
In the present study, we investigated the protective mechanism of paeoniflorin (PF), a monoterpene glycoside extracted from Radix Paeoniae alba roots, on MPP+-induced neurotoxicity in cultured rat pheochromocytoma cells (PC12). Our work included examination of cell viability assessment, amounts of released lactic dehydrogenase (LDH), intracellular Ca2+ concentration, cell apoptosis, mitochondrial membrane potential, caspase-3 activity, and expression profiling of two apoptosis-related genes (Bcl-2 and Bax). It was shown that, PF functioned as an MPP+ antagonist, being able to suppress apoptosis, decrease LDH release and Ca2+ concentration, attenuate membrane potential collapse and, inhibit caspase-3 activation, decrease in Bax/Bcl-2 ratio. These observations suggest that PF could protect PC12 cells against MPP+-induced injury and the mechanism PF’s neuroprotective effect was closely associated with Bcl-2 up-regulation and Bax down-regulation. PF has neuroprotective effects on MPP+-induced apoptosis in PC12 cells via regulating mitochondrial membrane potential and Bcl-2/Bax/caspase-3 signaling pathways, and this new insight will help develop a PF-based therapeutic strategy for treatmenting neurodegenerative diseases and injury.  相似文献   

11.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease (AD) associated with mitochondrial dysfunction mediated by oxidative stress. Astrocytes regulate neuronal function via the modulation of synaptic transmission and plasticity, secretion of growth factors, uptake of neurotransmitters, and regulation of extracellular ion concentrations and metabolic support of neurons. Therefore, this study was undertaken to investigate the mechanism of action of insulin on a 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity of events associated in cell viability and toxicity to the expression profile of cell signaling pathway proteins and genes in rat C6 glial cells. The various concentrations of MPP+ alone inhibited cell viability in a dose-dependent manner. Pretreatment of insulin prevented the cell death and lowered the intracellular reactive oxygen species and calcium ion influx by MPP+. Insulin also suppressed the α-synuclein and elevated the insulin signaling pathway molecules IR, IGF-1R, IRS-1 and IRS-2 in C6 cells through phosphorylation of Akt/ERK survival pathways. Moreover, insulin inhibits MPP+-induced Bax to Bcl-2 ratio. These results suggest that insulin has a protective effect on the MPP+-toxicity in C6 glial cells.  相似文献   

12.
1-Methyl-4-phenylpyridinium (MPP+) or 6-hydroxydopamine (6-OHDA) caused a nuclear damage, the mitochondrial membrane permeability changes, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in PC12 cells. Nicardipine (a calcium channel blocker), EGTA (an extracellular calcium chelator), BAPTA-AM (a cell permeable calcium chelator) and calmodulin antagonists (W-7 and calmidazolium) attenuated the MPP+-induced mitochondrial damage and cell death. In contrast, the compounds did not reduce the toxicity of 6-OHDA. Treatment with MPP+ or 6-OHDA evoked the elevation of intracellular Ca2+ levels. Unlike cell injury, addition of nicardipine, BAPTA-AM and calmodulin antagonists prevented the elevation of intracellular Ca2+ levels due to both toxins. The results show that the MPP+-induced formation of the mitochondrial permeability transition seems to be mediated by elevation of intracellular Ca2+ levels and calmodulin action. In contrast, the 6-OHDA-induced cell death seems to be mediated by Ca2+-independent manner.  相似文献   

13.
Wang X  Su B  Liu W  He X  Gao Y  Castellani RJ  Perry G  Smith MA  Zhu X 《Aging cell》2011,10(5):807-823
Selective degeneration of nigrostriatal dopaminergic neurons in Parkinson’s disease (PD) can be modeled by the administration of the neurotoxin 1‐methyl‐4‐phenylpyridinium (MPP+). Because abnormal mitochondrial dynamics are increasingly implicated in the pathogenesis of PD, in this study, we investigated the effect of MPP+ on mitochondrial dynamics and assessed temporal and causal relationship with other toxic effects induced by MPP+ in neuronal cells. In SH‐SY5Y cells, MPP+ causes a rapid increase in mitochondrial fragmentation followed by a second wave of increase in mitochondrial fragmentation, along with increased DLP1 expression and mitochondrial translocation. Genetic inactivation of DLP1 completely blocks MPP+‐induced mitochondrial fragmentation. Notably, this approach partially rescues MPP+‐induced decline in ATP levels and ATP/ADP ratio and increased [Ca2+]i and almost completely prevents increased reactive oxygen species production, loss of mitochondrial membrane potential, enhanced autophagy and cell death, suggesting that mitochondria fragmentation is an upstream event that mediates MPP+‐induced toxicity. On the other hand, thiol antioxidant N‐acetylcysteine or glutamate receptor antagonist D‐AP5 also partially alleviates MPP+‐induced mitochondrial fragmentation, suggesting a vicious spiral of events contributes to MPP+‐induced toxicity. We further validated our findings in primary rat midbrain dopaminergic neurons that 0.5 μm MPP+ induced mitochondrial fragmentation only in tyrosine hydroxylase (TH)‐positive dopaminergic neurons in a similar pattern to that in SH‐SY5Y cells but had no effects on these mitochondrial parameters in TH‐negative neurons. Overall, these findings suggest that DLP1‐dependent mitochondrial fragmentation plays a crucial role in mediating MPP+‐induced mitochondria abnormalities and cellular dysfunction and may represent a novel therapeutic target for PD.  相似文献   

14.
Cardiac hypertrophy plays a major role in heart failure and is related to patient morbidity and mortality. Calcium overloading is a main risk for cardiac hypertrophy, and Na+/K+-ATPase (NKA) has been found that it could not only regulate intracellular Na+ levels but also control the intracellular Ca2+ ([Ca2+]i) level through Na+/Ca2+-exchanger (NCX). Recent studies have reported that klotho could affect [Ca2+]i level. In this study, we aimed at exploring the role of klotho in improving isoproterenol-induced hypertrophic response of H9C2 cells. The H9C2 cells were randomly divided into control and isoproterenol (ISO) (10 μM) groups. Klotho protein (10 μg/ml) or NKAα2 siRNA was used to determine the changes in isoproterenol-induced hypertrophic response. The alterations of [Ca2+]i level were measured by spectrofluorometry. Our results showed that H9C2 cells which were treated with isoproterenol presented a higher level of [Ca2+]i and hypertrophic gene expression at 24 and 48 h compared with the control group. Moreover, the expressions of NKAα1 and NKAα2 were both increased in control and ISO groups after treating with klotho protein; meanwhile, the NKA activity was increased and NCX activity was decreased after treatment. Consistently, the [Ca2+]i level and hypertrophic gene expression were decreased in ISO group after klotho protein treatment. However, these effects were both prevented by transfecting with NKAα2 siRNA. In conclusion, these findings demonstrated that klotho inhibits isoproterenol-induced hypertrophic response in H9C2 cells by activating NKA and inhibiting the reverse mode of NCX and this effect may be associated with the upregulation of NKAα2 expression.  相似文献   

15.
In the present work, we have evaluated the effect of an acute addition of melatonin on cholecystokinin octapeptide (CCK-8)-evoked Ca2+ signals and amylase secretion in mouse pancreatic acinar cells. For this purpose, freshly isolated mouse pancreatic acinar cells were loaded with fura-2 to study intracellular free Ca2+ concentration ([Ca2+]c). Amylase release and cell viability were studied employing colorimetric methods. Our results show that CCK-8 evoked a biphasic effect on amylase secretion, finding a maximum at a concentration of 0.1 nM and a reduction of secretion at higher concentrations. Pre-incubation of cells with melatonin (1 μM–1 mM) significantly attenuated enzyme secretion in response to high concentrations of CCK-8. Stimulation of cells with 1 nM CCK-8 led to a transient increase in [Ca2+]c, followed by a decrease towards a constant level. In the presence of 1 mM melatonin, stimulation of cells with CCK-8 resulted in a smaller [Ca2+]c peak response, a faster rate of decay of [Ca2+]c and lower values for the steady state of [Ca2+]c, compared with the effect of CCK-8 alone. Melatonin also reduced the oscillatory pattern of Ca2+ mobilization evoked by a physiological concentration of CCK-8 (20 pM), and completely inhibited Ca2+ mobilization induced by 10 pM CCK-8. On the other hand, Ca2+ entry from the extracellular space was not affected in the presence of melatonin. Finally, melatonin alone did not change cell viability. We conclude that melatonin, at concentrations higher than those found in blood, might regulate exocrine pancreatic function via modulation of Ca2+ signals.  相似文献   

16.
Aldehyde stress contributes to molecular mechanisms of cell death and the pathogenesis of Parkinson’s disease (PD). The neurotoxin 1-Methy-4-Phenylpyridinium Ion (MPP+) is commonly used to model PD. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme detoxifying aldehydes. The aim of this study is to evaluate whether MPP+-induced neurotoxicity is involved in aldehyde stress by modulation of ALDH2. Our results demonstrated that treatment of PC12 cells with MPP+ leads to aldehyde stress by increasing in loads of malondialdehyde and 4-hydroxynonenal, which indicated that MPP+-induced aldehyde stress contributes to its cytotoxicity in PC12 cells. We also showed that MPP+ up-regulates the expression and activity of ALDH2 in PC12 cells and that inhibition of ALDH2 by its specific inhibitor daidzin prevents MPP+-induced decrease in cell viability and increases in apoptosis, oxidative stress and aldehyde stress in PC12 cells. These findings suggest that aldehyde stress contributes to MPP+-induced toxicity in PC12 cells by upregulation of ALDH2. This study provides a novel insight into the role of ALDH2 in the neurotoxicity of MPP+.  相似文献   

17.
Impaired mitochondrial function in glial and neuronal cells in the substantia nigra is one of the most likely causes of Parkinson’s disease. In this study, we investigated the protective role of glucose on early key events associated with MPP+-induced changes in rat C6 astroglial cells. Studies were carried out to examine alterations in mitochondrial respiratory status, membrane potential, glutathione levels, and cell cycle phase inhibition at 48 h in 2 and 10 mM glucose in media. The results obtained suggest that MPP+ caused significant cell death in 2 mM glucose with LC50 0.14 ± 0.005 mM, while 10 mM glucose showed highly significant protection against MPP+ toxicity with LC50 0.835 ± 0.03 mM. This protection was not observed with cocaine, demonstrating its compound specificity. MPP+ in 2 mM glucose decreased significantly mitochondrial respiration, membrane potential and glutathione levels in a dose dependent manner, while 10 mM glucose significantly restored them. MPP+ in 2 mM glucose arrested the cells at G0/G1 and G2/M phases, demonstrating its dual inhibitory effects. However, in 10 mM glucose, MPP+ caused G0/G1 arrest only. In summary, the results suggest that loss of cell viability in 2 mM glucose group with MPP+ treatments was due to mitochondrial dysfunction caused by multilevel mechanism, involving significant decrease in mitochondrial respiration, membrane potential, glutathione levels, and dual arrest of cell phases, while 10 mM glucose rescued astroglial cells from MPP+ toxicity by significant maintenance of these factors.  相似文献   

18.
Peroxiredoxin‐5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca2+ homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca2+ fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH‐SY5Y cells to dissect the role of this enzyme in 1‐methyl‐4‐phenylpyridinium (MPP)+‐induced cell death. Our data show that mitochondria‐dependent apoptosis triggered by MPP+, assessed by the measurement of caspase‐9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca2+, Ca2+‐dependent activation of calpains and Bax cleavage. Finally, using Ca2+ channel inhibitors (Nimodipine, Dantrolene and 2‐APB), we show that Ca2+ release arises essentially from ER stores through 1,4,5‐inositol‐trisphosphate receptors (IP3R). Altogether, our results suggest that the MPP+ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca2+ transporters via a crosstalk between mitochondria and ER.  相似文献   

19.
20.
Parkinson's disease (PD) is a typical neurodegenerative disease. α-Lipoic acid (α-LA) can reduce the incidence of neuropathy. The present study explored the role and mechanism of α-LA in 1-methyl-4-phenylpyridinium (MPP+)-induced cell model of PD. The PD model was induced via treating PC12 cells with MPP+ at different concentrations. MPP+ and α-LA effects on PC12 cells were assessed from cell viability and ferroptosis. Cell viability was detected using the cell counting kit-8 assay. Malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), iron, reactive xygen species (ROS), and glutathione (GSH) concentrations, and ferroptosis-related protein SLC7A11 and GPx4 expressions were used for ferroptosis evaluation. p-PI3K, p-Akt, and nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels were detected. The PI3K/Akt/Nrf2 pathway inhibitors were applied to verify the role of the PI3K/Akt/Nrf2 pathway in α-LA protection against MPP+-induced decreased cell viability and ferroptosis. MPP+-reduced cell viability and induced ferroptosis as presented by increased MDA, 4-HNE, iron, and ROS concentrations, and reduced levels of GSH and ferroptosis marker proteins (SLC7A11 and GPx4). α-LA attenuated MPP+-induced cell viability decline and ferroptosis. The PI3K/Akt/Nrf2 pathway was activated after α-LA treatment. Inhibiting the PI3K/Akt/Nrf2 pathway weakened the protection of α-LA against MPP+ treatment. We highlighted that α-LA alleviated MPP+-induced cell viability decrease and ferroptosis in PC12 cells via activating the PI3K/Akt/Nrf2 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号