首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hu W  Feng Z  Tang MS 《Biochemistry》2003,42(33):10012-10023
In the ras gene superfamily, codon 12 (-TGGTG-) of the K-ras gene is the most frequently mutated codon in human cancers. Recently, we have found that bulky chemical carcinogens preferentially form DNA adducts at codons 12 and 14 (-CGTAG-) in the K-ras gene in normal human bronchial epithelial (NHBE) cells. Furthermore, DNA adducts formed at codon 12 of the K-ras gene are poorly repaired compared with those at other codons including codon 14. These results suggest that targeted carcinogen-DNA adduct formation is a major reason for the observed high mutation frequency at codon 12 of the K-ras gene in human cancers. This preferential carcinogen-DNA adduct formation at codons 12 and 14 could result from effects of (1) primary sequences of these codons and their surrounding codons in the K-ras gene, (2) the chromatin structure, and/or (3) epigenetic factors such as C5 cytosine methylation or other DNA modifications at these codons and their surrounding codons. To distinguish these possibilities, we have introduced modifications with benzo[a]pyrene diol epoxide, N-hydroxy-2-aminofluorene, and aflatoxin B1 8,9-epoxide in (1) naked intact genomic DNA isolated from NHBE cells, (2) fragmented genomic DNA digested by restriction enzymes, and (3) in vitro synthesized DNA fragments containing the K-ras gene exon 1 sequence with or without methylation of the cytosines at CpG sites and the cytosines pairing with the guanines of codons 12 and 14. The distribution of carcinogen-DNA adducts in the K-ras gene was mapped at the nucleotide sequence level using the UvrABC nuclease incision method with or without the ligation-mediated polymerase chain reaction technique. We have found that carcinogens preferentially form adducts at codons 12 and 14 in the K-ras gene exon 1 in intact as well as in fragmented genomic DNA. In contrast, this preferential DNA adduct formation at codons 12 and 14 was not observed in PCR-amplified DNA fragments containing the K-ras gene exon 1 sequence. Methylation of the cytosine at the CpG site of codon 14, or the cytosine pairing with guanine of codon 14, greatly enhanced carcinogen-DNA adduct formation at codon 14 but did not affect carcinogen-DNA adduct formation at codon 12. Methylation of the cytosine pairing with the guanine of codon 12 also did not enhance carcinogen-DNA adduct formation at codon 12. Furthermore, we found that the cytosine at the CpG site of codon 14 is highly methylated in NHBE cells. These results suggest that cytosine methylation at the CpG site is the major reason for the preferential DNA damage at codon 14 and that epigenetic modification(s) other than cytosine methylation may contribute to the preferential DNA damage at codon 12 of the K-ras gene.  相似文献   

3.
Li VS  Reed M  Zheng Y  Kohn H  Tang M 《Biochemistry》2000,39(10):2612-2618
We have established that UvrABC nuclease is equally efficient in cutting mitomycin C (MC)-DNA monoadducts formed at different sequences and that the degree of UvrABC cutting represents the extent of drug-DNA bonding. Using this method we determined the effect of C5 cytosine methylation on the DNA monoalkylation by MC and the related analogues N-methyl-7-methoxyaziridinomitosene (MS-NMA) and 10-decarbamoylmitomycin C (DC-MC). We have found that C5 cytosine methylation at CpG sites greatly enhances MC and MS-NMA DNA adduct formation at those sites while reducing adduct formation at non-CpG sequences. In contrast, although DC-MC DNA bonding at CpG sites is greatly enhanced by CpG methylation, its bonding at non-CpG sequences is not appreciably affected. These cumulative results suggest that C5 cytosine methylation at CpG sites enhances sequence selectivity of drug-DNA bonding. We propose that the methylation pattern and status (hypo- or hypermethylation) of genomic DNA may determine the cells' susceptibility to MC and its analogues, and these effects may, in turn, play a crucial role in the antitumor activities of the drugs.  相似文献   

4.
DNA methylation at cytosine residues in CpG dinucleotides is a component of epigenetic marks crucial to mammalian development. In preimplantation stage embryos, a large part of genomic DNA is extensively demethylated, whereas the methylation patterns are faithfully maintained in certain regions. To date, no enzymes responsible for the maintenance of DNA methylation during preimplantation development have been identified except for the oocyte form of DNA (cytosine-5)-methyltransferase 1 (Dnmt1o) at the 8-cell stage. Herein, we demonstrate that the somatic form of Dnmt1 (Dnmt1s) is present in association with chromatin in MII-stage oocytes as well as in the nucleus throughout preimplantation development. At the early one-cell stage, Dnmt1s is asymmetrically localized in the maternal pronuclei. Thereafter, Dnmt1s is recruited to the paternal genome during pronuclear maturation. During the first two cell cycles after fertilization, Dnmt1s is exported from the nucleus in the G2 phase in a CRM1/exportin-dependent manner. Antibody microinjection and small interfering RNA-mediated knock-down decreases methylated CpG dinucleotides in repetitive intracisternal A-type particle (IAP) sequences and the imprinted gene H19. These results indicate that Dnmt1s is responsible for the maintenance methylation of particular genomic regions whose methylation patterns must be faithfully maintained during preimplantation development.  相似文献   

5.
6.
The beta-amyloid protein has been identified as the prominent component of the fibrillary aggregates of the neuritic plaques found in Alzheimer's disease (AD). In this paper, the DNA methylation pattern of the promoter region of the Alzheimer's disease amyloid precursor gene (PAD) was assessed using the recently developed genomic sequencing technique with Taq polymerase. We analyzed seven potential methylation sites between position -460 and -275 of the PAD promoter. Three of the CpG dinucleotides we analyzed are located in the flanking regions of the AP-1 binding site and heat-shock response element consensus sequences. Of the seven CpG dinucleotides present in this region, we found none to be methylated. This finding indicates that, in healthy brain tissue, cytosine methylation of this binding motif seems not to affect protein/DNA interaction. However, it remains to be determined whether methylation of these sites is significant in AD patients.  相似文献   

7.
NBL2 is a tandem 1.4-kb DNA repeat, whose hypomethylation in hepatocellular carcinomas was shown previously to be an independent predictor of disease progression. Here, we examined methylation of all cytosine residues in a 0.2-kb subregion of NBL2 in ovarian carcinomas, Wilms' tumors, and diverse control tissues by hairpin-bisulfite PCR. This new genomic sequencing method detects 5-methylcytosine on covalently linked complementary strands of a DNA fragment. All DNA clones from normal somatic tissues displayed symmetrical methylation at seven CpG positions and no methylation or only hemimethylation at two others. Unexpectedly, 56% of cancer DNA clones had decreased methylation at some normally methylated CpG sites as well as increased methylation at one or both of the normally unmethylated sites. All 146 DNA clones from 10 cancers could be distinguished from all 91 somatic control clones by assessing methylation changes at three of these CpG sites. The special involvement of DNA methyltransferase 3B in NBL2 methylation was indicated by analysis of cells from immunodeficiency, centromeric region instability, and facial anomalies syndrome patients who have mutations in the gene encoding DNA methyltransferase 3B. Blot hybridization of 33 cancer DNAs digested with CpG methylation-sensitive enzymes confirmed that NBL2 arrays are unusually susceptible to cancer-linked hypermethylation and hypomethylation, consistent with our novel genomic sequencing findings. The combined Southern blot and genomic sequencing data indicate that some of the cancer-linked alterations in CpG methylation are occurring with considerable sequence specificity. NBL2 is an attractive candidate for an epigenetic cancer marker and for elucidating the nature of epigenetic changes in cancer.  相似文献   

8.
Increased expression of 5-lipoxygenase is associated with various neuropathologies and may be related to epigenetic gene regulation. DNA methylation in promoter regions is typically associated with gene silencing. We found that human NT2 cells, which differentiate into neuron-like NT2-N cells, express 5-lipoxygenase and we investigated the relationship between 5-lipoxygenase expression and the methylation state of the 5-lipoxygenase core promoter. We used the demethylating agent 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor valproate to alter DNA methylation and to induce histone modifications. 5-Lipoxygenase expression and DNA methylation were assayed with RT-PCR and bisulfite genomic sequencing, respectively. Neuronal differentiation of proliferating NT2 precursors decreased 5-lipoxygenase expression. 5-Aza-2'-deoxycytidine increased 5-lipoxygenase mRNA levels only in proliferating cells, whereas valproate increased 5-lipoxygenase mRNA levels in a cell cycle-independent manner. In both precursors and differentiated cells, CpG dinucleotides of the promoter were poorly methylated. In precursors, both 5-aza-2'-deoxycytidine and valproate further reduced the number of methylated CpGs. Moreover, we found evidence for cytosine methylation in CpWpG (W=adenine or thymine) and other asymmetrical sequences; CpWpG methylation was reduced by valproate in NT2-N but not in NT2 cells. This is the first report demonstrating that the dynamics of DNA methylation relates to neural 5-lipoxygenase gene expression.  相似文献   

9.
10.
DNA methylation is an integral part of the mechanism of a remodeling and modification of the chromatin structure. The global complex net of chromatin modification and remodeling reactions is still to be determined, and studies of the mechanisms controlling the epigenetic processes of histone modification and DNA methylation are in their infancy. Cytosine methylation occurs predominantly in CpG sequences of the eukaryotic genome, and it also takes place at symmetric CpHpG and nonsymmetric CpHpH sites (where H is A, T, or C). The modification efficiency of the three types of DNA methylation sites depends on their genomic localization. Different regions of the eukaryotic genome are remarkable for their methylation features: CpG-islands, CpG-island shores, differentially methylated regions of imprinted genes, and regions of nonalternative site-specific modification. The three canonical sites (CpG, CpHpG, and CpHpH) differ in DNA methylation efficiency depending on their nucleotide context. An epigenetic code of DNA methylation can be assumed with context differences playing a specific functional role. The review summarizes the main up-to-date data on the structural and functional features of site-specific cytosine methylation in eukaryotic genomes. Pathogenesis-related alterations in the methylation pattern of the eukaryotic genome are considered.  相似文献   

11.
DNA methylation in states of cell physiology and pathology   总被引:11,自引:0,他引:11  
DNA methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. In a normal cell, a significant degree of methylation is characteristic for extragenic DNA (cytosine within the CG dinucleotide) while CpG islands located in gene promoters are unmethylated, except for inactive genes of the X chromosome and the genes subjected to genomic imprinting. The changes in the methylation pattern, which may appear as the organism age and in early stages of cancerogenesis, may lead to the silencing of over ninety endogenic genes. It has been found, that these disorders consist not only of the methylation of CpG islands, which are normally unmethylated, but also of the methylation of other dinucleotides, e.g. CpA. Such methylation has been observed in non-small cell lung cancer, in three regions of the exon 5 of the p53 gene (so-called "non-CpG" methylation). The knowledge of a normal methylation process and its aberrations appeared to be useful while searching for new markers enabling an early detection of cancer. With the application of the Real-Time PCR technique (using primers for methylated and unmethylated sequences) five new genes which are potential biomarkers of lung cancer have been presented.  相似文献   

12.
Most investigations on the role of DNA methylation in cancer have focused on epigenetic changes associated with known tumor suppressor genes. This may have led to an underestimation of the number of CpG islands altered by DNA methylation, since it is possible that a subset of unknown genes relevant to cancer development may preferentially be affected by epigenetic rather than genetic means and would not be identified as familial deletions, mutations, or loss of heterozygosity. We used a recently developed screening procedure (methylation-sensitive arbitrarily primed-polymerase chain reaction to scan genomic DNA for CpG islands methylated in white blood cells (WBCs) and in tumor tissues. DNA methylation pattern analysis showed little interindividual differences in the WBCs and normal epithelium (adjacent to colon, bladder, and prostate cancer cells), but with some tissue-specific differences. Cancer cells showed marked methylation changes that varied considerably between different tumors, suggesting variable penetrance of the methylation phenotype in patients. Direct sequencing of 8 of 45 bands altered in these cancers showed that several of them were CpG islands, and 2 of these sequences were identified in GenBank. Surprisingly, three of the bands studied corresponded to transcribed regions of genes. Thus, hypermethylation of CpG islands in cancer cells is not confined to the promoters of growth regulatory genes but is also found in actively transcribed regions.  相似文献   

13.
DNA sequence information that directs the translational positioning of nucleosomes can be attenuated by cytosine methylation when a short run of CpG dinucleotides is located close to the dyad axis of the nucleosome. Here, we show that point mutations introduced to re-pattern methylation at the (CpG)3 element in the chicken βA-globin promoter sequence themselves strongly influenced nucleosome formation in reconstituted chromatin. The disruptive effect of cytosine methylation on nucleosome formation was found to be determined by the sequence context of CpG dinucleotides, not just their location in the positioning sequence. Additional mutations indicated that methylation can also promote the occupation of certain nucleosome positions. DNase I analysis demonstrated that these genetic and epigenetic modifications altered the structural characteristics of the (CpG)3 element. Our findings support a proposal that the intrinsic structural properties of the DNA at the −1.5 site, as occupied by (CpG)3 in the nucleosome studied, can be decisive for nucleosome formation and stability, and that changes in anisotropic DNA bending or flexibility at this site explain why nucleosome positioning can be exquisitely sensitive to genetic and epigenetic modification of the DNA sequence.  相似文献   

14.
DNA methylation and cancer   总被引:33,自引:0,他引:33  
  相似文献   

15.
Recent studies have documented that cytosine C(5) methylation of CpG sequences enhances mitomycin C (1) adduction. The reports differ on the extent and uniformity of 1 modification at the nucleotide level. We have determined the bonding profiles for mitomycin monoalkylation in two DNA restriction fragments where the CpG sequences were methylated. Three mitomycin substrates were used and two different enzymatic assays employed to monitor the extent of drug modification at the individual base sites. Drug DNA modification was accomplished with I and 10-decarbamoylmitomycin C (2) under reductive (Na2S2O4) condilions and with N-methyl-7-methoxyaziridinomitosene (3) under nonreductive conditions. The UvrABC incision assay permitted us to quantitate the sites of drug adduction, and the lambda-exonuclease stop assay provided a qualitative estimation of drug-DNA modification consistent with the UvrABC data. We learned that C(5) cytosine methylation (m5C) enhanced the extent of overall DNA modification. Using the UvrABC endonuclease assay, we found that modification by 1 increased 2.0 and 7.4 times for the two DNA restriction fragments. Analysis of the modification sites at the nucleotide sequence level revealed that guanine (G) was the only base modified and that the overall increased level of DNA adduction was due to enhanced modification of select m5CpG* (G* = mitomycin (mitosene) adduction sites) loci compared with CpG* sites: the largest differences reached two orders of magnitude. Significantly, not all CpG* sites underwent increased drug adduction upon C(5) cytosine methylation. The effect of C(5) cytosine methylation on the drug adduction profiles was less pronounced for G* sites located within dinucleotide sequences other than CpG*. We observed that DNA methylation often led to slightly diminished adduction levels at these sites. The different m5CpG* adduction patterns provided distinctive sequence-selective bonding profiles for 1-3. We have attributed the large differences in guanine reactivity to DNA structural factors created, in part, by C(5) cytosine methylation. The significance of these findings in cancer chemotherapy is briefly discussed.  相似文献   

16.
17.
18.
An understanding of cellular processes that determine the response to ionizing radiation (IR) exposure is essential to improve radiotherapy and to assess risks to human health after accidental radiation exposure. Exposure to IR induces a multitude of biological effects. Recent studies have indicated the involvement of epigenetic events in regulating the responses of irradiated cells. DNA methylation, where the cytosine bases in CpG dimers are converted to 5-methyl cytosine, is an epigenetic event that has been shown to regulate a variety of biological processes. We investigated the DNA methylation changes in irradiated TK6 and WTK1 human cells that differ in sensitivity to IR. The global DNA methylation alterations as measured by an enzyme-linked immunosorbent assay-based assay showed hypomethylation in both type of cells. Using an arbitrarily primed polymerase chain reaction (AP-PCR) approach, we observed time-dependent dynamic changes in the regional genomic DNA methylation patterns in both cell lines. The AP-PCR DNA methylation profiles were different between TK6 and WTK1 cells, indicating the involvement of differential genomic DNA responses to radiation treatment. The analysis of the components of the DNA methylation machinery showed the modulation of maintenance and de novo methyltransferases in irradiated cells. DNMT1 mRNA levels were increased in TK6 cells after irradiation but were repressed in WTK1 cells. DNMT3A and DNMT3B were induced in both cells after radiation treatment. TET1, involved in the conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), was induced in both cells. This study demonstrates that irradiated cells acquire epigenetic changes in the DNA methylation patterns, and the associated cellular machinery are involved in the response to radiation exposure. This study also shows that DNA methylation patterns change at different genomic regions and are dependent on time after irradiation and the genetic background of the cell.  相似文献   

19.
20.
Bisulfite converts non-methylated cytosine in DNA to uracil leaving 5-methylcytosine unaltered. Here, predicted changes in restriction enzyme sites following reaction of genomic DNA with bisulfite and amplification of the product by the polymerase chain reaction (PCR) were used to assess the methylation of CpG sites. This procedure differs from conventional DNA methylation analysis by methylation-sensitive restriction enzymes because it does not rely on an absence of cleavage to detect methylated sites, the two strands of DNA produce different restriction enzyme sites and may be differentially analyzed, and closely related sequences may be separately analyzed by using specific PCR primers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号