首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BRCT tandem domains, found in many proteins involved in DNA damage checkpoint and DNA repair pathways, were recently shown to be phosphopeptide binding motifs. Using solution nuclear magnetic resonance (NMR) spectroscopy and mutational analysis, we have characterized the interaction of BRCA1-BRCT domains with a phosphoserine-containing peptide derived from the DNA repair helicase BACH1. We show that a phenylalanine in the +3 position from the phosphoserine of BACH1 is bound to a conserved hydrophobic pocket formed between the two BRCT domains and that recognition of the phosphate group is mediated by lysine and serine side chains from the amino-terminal BRCT domain. Mutations that prevent phosphopeptide binding abolish BRCA1 function in DNA damage-induced checkpoint control. Our NMR data also reveal a dynamic interaction between BRCA1-BRCT and BACH1, where the bound phosphopeptide exists as an equilibrium of two conformations and where BRCA1-BRCT undergoes a transition to a more rigid conformation upon peptide binding.  相似文献   

2.
Coquelle N  Green R  Glover JN 《Biochemistry》2011,50(21):4579-4589
The BRCA1 BRCT domain binds pSer-x-x-Phe motifs in partner proteins to regulate the cellular response to DNA damage. Approximately 120 distinct missense variants have been identified in the BRCA1 BRCT through breast cancer screening, and several of these have been linked to an increased cancer risk. Here we probe the structures and peptide-binding activities of variants that affect the BRCA1 BRCT phosphopeptide-binding groove. The results obtained from the G1656D and T1700A variants illustrate the role of Ser1655 in pSer recognition. Mutations at Arg1699 (R1699W and R1699Q) significantly reduce peptide binding through loss of contacts to the main chain of the Phe(+3) residue and, in the case of R1699W, to a destabilization of the BRCT fold. The R1835P and E1836K variants do not dramatically reduce peptide binding, in spite of the fact that these mutations significantly alter the structure of the walls of the Phe(+3) pocket.  相似文献   

3.
The tumour suppressor gene BRCA1 encodes a 220 kDa protein that participates in multiple cellular processes. The BRCA1 protein contains a tandem of two BRCT repeats at its carboxy-terminal region. The majority of disease-associated BRCA1 mutations affect this region and provide to the BRCT repeats a central role in the BRCA1 tumour suppressor function. The BRCT repeats have been shown to mediate phospho-dependant protein-protein interactions. They recognize phosphorylated peptides using a recognition groove that spans both BRCT repeats. We previously identified an interaction between the tandem of BRCA1 BRCT repeats and ACCA, which was disrupted by germ line BRCA1 mutations that affect the BRCT repeats. We recently showed that BRCA1 modulates ACCA activity through its phospho-dependent binding to ACCA. To delineate the region of ACCA that is crucial for the regulation of its activity by BRCA1, we searched for potential phosphorylation sites in the ACCA sequence that might be recognized by the BRCA1 BRCT repeats. Using sequence analysis and structure modelling, we proposed the Ser1263 residue as the most favourable candidate among six residues, for recognition by the BRCA1 BRCT repeats. Using experimental approaches, such as GST pull-down assay with Bosc cells, we clearly showed that phosphorylation of only Ser1263 was essential for the interaction of ACCA with the BRCT repeats. We finally demonstrated by immunoprecipitation of ACCA in cells, that the whole BRCA1 protein interacts with ACCA when phosphorylated on Ser1263.  相似文献   

4.
5.
Monoubiquitination is a general mechanism for downregulating the activity of cell surface receptors by consigning these proteins for lysosome-mediated degradation through the endocytic pathway. The yeast Ede1 protein functions at the internalization step of endocytosis and binds monoubiquitinated proteins through a ubiquitin associated (UBA) domain. UBA domains are found in a broad range of cellular proteins but previous studies have suggested that the mode of ubiquitin recognition might not be universally conserved. Here we present the solution structure of the Ede1 UBA domain in complex with monoubiquitin. The Ede1 UBA domain forms a three-helix bundle structure and binds ubiquitin through a largely hydrophobic surface in a manner reminiscent of the Dsk2 UBA and the remotely homologous Cue2 CUE domains, for which high-resolution structures have been described. However, the interaction is dissimilar to the molecular models proposed for the hHR23A UBA domains bound to either monoubiquitin or Lys48-linked diubiquitin. Our mutational analyses of the Ede1 UBA domain-ubiquitin interaction reveal several key affinity determinants and, unexpectedly, a negative affinity determinant in the wild-type Ede1 protein, implying that high-affinity interactions may not be the sole criterion for optimal function of monoubiquitin-binding endocytic proteins.  相似文献   

6.
7.
Germline mutations in the BRCA1 tumor suppressor gene often result in a significant increase in susceptibility to breast and ovarian cancers. Although the molecular basis of their effects remains largely obscure, many mutations are known to target the highly conserved C-terminal BRCT repeats that function as a phosphoserine/phosphothreonine-binding module. We report the X-ray crystal structure at a resolution of 1.85 A of the BRCA1 tandem BRCT domains in complex with a phosphorylated peptide representing the minimal interacting region of the DEAH-box helicase BACH1. The structure reveals the determinants of this novel class of BRCA1 binding events. We show that a subset of disease-linked mutations act through specific disruption of phospho-dependent BRCA1 interactions rather than through gross structural perturbation of the tandem BRCT domains.  相似文献   

8.
Shiozaki EN  Gu L  Yan N  Shi Y 《Molecular cell》2004,14(3):405-412
The recognition of the phosphorylated BACH1 helicase by the BRCA1 C-terminal (BRCT) repeats is important to the tumor suppressor function of BRCA1. Here we report the crystal structure of the BRCT repeats of human BRCA1 bound to a phosphorylated BACH1 peptide at 2.3 A resolution. The phosphorylated serine 990 and phenylalanine 993 of BACH1 anchor the binding to BRCA1 through specific interactions with a surface cleft at the junction of the two BRCT repeats. This surface cleft is highly conserved in BRCA1 across species, suggesting an evolutionarily conserved function of phosphopeptide recognition. Importantly, conserved amino acids critical for BACH1 binding are frequently targeted for missense mutations in breast cancer. These mutations greatly diminish the ability of BRCA1 to interact with the phosphorylated BACH1 peptide. Additional structural analysis revealed significant implications for understanding the function of the BRCT family of proteins in DNA damage and repair signaling.  相似文献   

9.
Tom1 (Target of Myb1) is suggested to be involved in the transport of ubiquitinated proteins, through the interaction of its GAT (GGA and Tom1) domain with ubiquitin. Here, we demonstrate that the three-helix bundle of Tom1-GAT has two ubiquitin-binding sites recognizing the hydrophobic Ile44 surface of ubiquitin. The complex crystal structure demonstrates that the first site is a hydrophobic patch on helices alpha1 and alpha2. NMR and biochemical data revealed that the N-terminal half of helix alpha3 of Tom1-GAT constitutes the second, stronger binding site. The double-sided ubiquitin binding enhances the efficiency of recognition of ubiquitinated proteins by Tom1.  相似文献   

10.
BRCA1 is a large protein that exhibits a multiplicity of functions in its apparent role in DNA repair. Certain mutations of BRCA1 are known to have exceptionally high penetrance with respect to familial breast and ovarian cancers. The structures of the N-terminus and C-terminus of the protein have been determined. The C-terminus unit consists of two alpha-beta-alpha domains designated BRCT. We predicated two homologous BRCT regions in the BRCA1 internal region, and subsequently produced and purified these protein domains. Both recombinant domains show significant self-association capabilities as well as a preferential tendency to interact with each other. These results suggest a possible regulatory mechanism for BRCA1 function. We have demonstrated p53-binding activity by an additional region, and confirmed previous results showing that two regions of BRCA1 protein bind p53 in vitro. Based on sequence analysis, we predict five p53-binding sites. Our comparison of binding by wild-type and mutant domains indicates the sequence specificity of BRCA1-p53 interaction.  相似文献   

11.
WW domains are small protein-protein interaction modules that recognize proline-rich stretches in proteins. The class II tandem WW domains of the formin binding protein 11 (FBP11) recognize specifically proteins containing PPLPp motifs as present in the formins that are involved in limb and kidney development, and in the methyl-CpG-binding protein 2 (MeCP2), associated with the Rett syndrome. The interaction involves the specific recognition of a leucine side-chain. Here, we report on the novel structure of the complex formed by the FPB11WW1 domain and the formin fragment APPTPPPLPP revealing the specificity determinants of class II WW domains.  相似文献   

12.
Ubiquitination of proteins modifies protein function by either altering their activities, promoting their degradation, or altering their subcellular localization. Deubiquitinating enzymes are proteases that reverse this ubiquitination. Previous studies demonstrate that proteins that contain an ovarian tumor (OTU) domain possess deubiquitinating activity. This domain of approximately 130 amino acids is weakly similar to the papain family of proteases and is highly conserved from yeast to mammals. Here we report structural and functional studies on the OTU domain-containing protein from yeast, Otu1. We show that Otu1 binds polyubiquitin chain analogs more tightly than monoubiquitin and preferentially hydrolyzes longer polyubiquitin chains with Lys(48) linkages, having little or no activity on Lys(63)- and Lys(29)-linked chains. We also show that Otu1 interacts with Cdc48, a regulator of the ER-associated degradation pathway. We also report the x-ray crystal structure of the OTU domain of Otu1 covalently complexed with ubiquitin and carry out structure-guided mutagenesis revealing a novel mode of ubiquitin recognition and a variation on the papain protease catalytic site configuration that appears to be conserved within the OTU family of ubiquitin hydrolases. Together, these studies provide new insights into ubiquitin binding and hydrolysis by yeast Otu1 and other OTU domain-containing proteins.  相似文献   

13.
14.
Dok1 is a common substrate of activated protein-tyrosine kinases. It is rapidly tyrosine-phosphorylated in response to receptor tyrosine activation and interacts with ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. In chronic myelogenous leukemia cells, it has shown constitutive phosphorylation. The N-terminal phosphotyrosine binding (PTB) domain of Dok1 can recognize and bind specifically to phosphotyrosine-containing motifs of receptors. Here we report the crystal structure of the Dok1 PTB domain alone and in complex with a phosphopeptide derived from RET receptor tyrosine kinase. The structure consists of a beta-sandwich composed of two nearly orthogonal, 7-stranded, antiparallel beta-sheets, and it is capped at one side by a C-terminal alpha-helix. The RET phosphopeptide binds to Dok1 via a surface groove formed between strand beta5 and the C-terminal alpha-helix of the PTB domain. The structures reveal the molecular basis for the specific recognition of RET by the Dok1 PTB domain. We also show that Dok1 does not recognize peptide sequences from TrkA and IL-4, which are recognized by Shc and IRS1, respectively.  相似文献   

15.
The neuronal protein FE65 functions in brain development and amyloid precursor protein (APP) signaling through its interaction with the mammalian enabled (Mena) protein and APP, respectively. The recognition of short polyproline sequences in Mena by the FE65 WW domain has a central role in axon guidance and neuronal positioning in the developing brain. We have determined the crystal structures of the human FE65 WW domain (residues 253-289) in the apo form and bound to the peptides PPPPPPLPP and PPPPPPPPPL, which correspond to human Mena residues 313-321 and 347-356, respectively. The FE65 WW domain contains two parallel ligand-binding grooves, XP (formed by residues Y269 and W280) and XP2 (formed by Y269 and W271). Both Mena peptides adopt a polyproline helical II conformation and bind to the WW domain in a forward (N-C) orientation through selection of the PPPPP motif by the XP and XP2 grooves. This mode of ligand recognition is strikingly similar to polyproline interaction with SH3 domains. Importantly, comparison of the FE65 WW structures in the apo and liganded forms shows that the XP2 groove is formed by an induced-fit mechanism that involves movements of the W271 and Y269 side-chains upon ligand binding. These structures elucidate the molecular determinants underlying polyproline ligand selection by the FE65 WW domain and provide a framework for the design of small molecules that would interfere with FE65 WW-ligand interaction and modulate neuronal development and APP signaling.  相似文献   

16.
The degradation of ssrA(AANDENYALAA)-tagged proteins in the bacterial cytosol is carried out by the ClpXP protease and is markedly stimulated by the SspB adaptor protein. It has previously been reported that the amino-terminal zinc-binding domain of ClpX (ZBD) is involved in complex formation with the SspB-tail (XB: ClpX-binding motif). In an effort to better understand the recognition of SspB by ClpX and the mechanism of delivery of ssrA-tagged substrates to ClpXP, we have determined the structures of ZBD alone at 1.5, 2.0, and 2.5 A resolution in each different crystal form and also in complex with XB peptide at 1.6 A resolution. The XB peptide forms an antiparallel beta-sheet with two beta-strands of ZBD, and the structure shows a 1:1 stoichiometric complex between ZBD and XB, suggesting that there are two independent SspB-tail-binding sites in ZBD. The high-resolution ZBD:XB complex structure, in combination with biochemical analyses, can account for key determinants in the recognition of the SspB-tail by ClpX and sheds light on the mechanism of delivery of target proteins to the prokaryotic degradation machine.  相似文献   

17.
In isoleucyl-tRNA synthetase (IleRS), the "editing" domain contributes to accurate aminoacylation by hydrolyzing the mis-synthesized intermediate, valyl-adenylate, in the "pre-transfer" editing mode and the incorrect final product, valyl-tRNA(Ile), in the "post-transfer" editing mode. In the present study, we determined the crystal structures of the Thermus thermophilus IleRS editing domain complexed with the substrate analogues in the pre and post-transfer modes, both at 1.7 A resolution. The active site accommodates the two analogues differently, with the valine side-chain rotated by about 120 degrees and the adenosine moiety oriented upside down. The substrate-binding pocket adjusts to the adenosine-monophosphate and adenosine moieties in the pre and post-transfer modes, respectively, by flipping the Trp227 side-chain by about 180 degrees . The substrate recognition mechanisms of IleRS are characterized by the active-site rearrangement between the two editing modes, and therefore differ from those of the homologous valyl and leucyl-tRNA synthetases from T.thermophilus, in which the post-transfer mode is predominant. Both modes of editing activities were reduced by replacements of Trp227 with Ala, Val, Leu, and His, but not by those with Phe and Tyr, indicating that the aromatic ring of Trp227 is important for the substrate recognition. In both editing modes, Thr233 and His319 recognize the substrate valine side-chain, regardless of the valine side-chain rotation, and reject the isoleucine side-chain. The T233A and H319A mutants have detectable editing activities against the cognate isoleucine.  相似文献   

18.
Myosin-X is an important unconventional myosin that is critical for cargo transportation to filopodia tips and is also utilized in spindle assembly by interacting with microtubules. We present a series of structural and biochemical studies of the myosin-X tail domain cassette, consisting of myosin tail homology 4 (MyTH4) and FERM domains in complex with its specific cargo, a netrin receptor DCC (deleted in colorectal cancer). The MyTH4 domain is folded into a helical VHS-like structure and is associated with the FERM domain. We found an unexpected binding mode of the DCC peptide to the subdomain C groove of the FERM domain, which is distinct from previously reported β-β associations found in radixin-adhesion molecule complexes. We also revealed direct interactions between the MyTH4-FERM cassette and tubulin C-terminal acidic tails, and identified a positively charged patch of the MyTH4 domain, which is involved in tubulin binding. We demonstrated that both DCC and integrin bindings interfere with microtubule binding and that DCC binding interferes with integrin binding. Our results provide the molecular basis by which myosin-X facilitates alternative dual binding to cargos and microtubules.  相似文献   

19.
ESCRT-II, a complex that sorts ubiquitinated membrane proteins to lysosomes, localizes to endosomes through interaction between the Vps36 subunit's GLUE domain and phosphatidylinositides (PIs). In yeast, a ubiquitin (Ub)-interacting NZF domain is inserted in Vps36 GLUE, whereas its mammalian counterpart, Eap45 GLUE, lacks the NZF domain. In the Eap45 GLUE-Ub complex structure, Ub binds far from the proposed PI-binding site of Eap45 GLUE, suggesting their independent binding.  相似文献   

20.
Structural basis for endosomal targeting by the Bro1 domain   总被引:1,自引:0,他引:1  
Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号