首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Recent experimental studies have shown significant alterations of the vascular smooth muscle (VSM) tone when an artery is subjected to an elevation in pressure. Therefore, the VSM participates in the adaptation process not only by means of its synthetic activity (fibronectins and collagen) or proliferative activity (hypertrophy and hyperplasia) but also by adjusting its contractile properties and its tone level. In previous theoretical models describing the time evolution of the arterial wall adaptation in response to induced hypertension, the contribution of VSM tone has been neglected. In this study, we propose a new biomechanical model for the wall adaptation to induced hypertension, including changes in VSM tone. On the basis of Hill's model, total circumferential stress is separated into its passive and active components, the active part being the stress developed by the VSM. Adaptation rate equations describe the geometrical adaptation (wall thickening) and the adaptation of active stress (VSM tone). The evolution curves that are derived from the theoretical model fit well the experimental data describing the adaptation of the rat common carotid subjected to a step increase in pressure. This leads to the identification of the model parameters and time constants by characterizing the rapidity of the adaptation processes. The agreement between the results of this simple theoretical model and the experimental data suggests that the theoretical approach used here may appropriately account for the biomechanics underlying the arterial wall adaptation.  相似文献   

2.
Previous research in arterial remodeling in response to changes in blood pressure seldom included both hyper- and hypotension. To compare the effects of low and high pressure on arterial remodeling and vascular smooth muscle tone and performance, we have utilized an in vitro model. Porcine carotid arteries were cultured for 3 days at 30 and 170mmHg and compared to controls cultured at 100mmHg for 1 and 3 days. On the first and last day of culture, pressure-diameter and pressure-wall thickness curves were measured under normal smooth muscle tone using a high-resolution ultrasonic device. Last-day experiments included measurements where vascular smooth muscle was contracted or totally relaxed. From the data wall cross-sectional area, Hudetz elastic modulus and a contraction index related to the diameter reduction under normal smooth muscle tone were calculated. We found that although wall cross-sectional area (indicating wall mass) did not change much, Hudetz elastic modulus was significantly reduced in the 3-day hypotension group. Inspection of the wall contraction index suggests that this is due to a reduction in the vascular smooth muscle tone. Further, the peak of contraction index was found to be shifted to higher pressures in the 3-day 170mmHg group. We conclude that vascular smooth muscle performance adapts to both hypo- and hypertension at short time scales and can alter the biomechanics of the vascular wall in vitro.  相似文献   

3.
With progressing age, large arteries diminish their longitudinal stretch, which in extreme cases results in tortuosity. Increased age is also associated with loss of vessel distensibility. We measured pressure-diameter curves from muscular porcine carotid arteries ex vivo at different longitudinal stretch ratios (lambda(z) = 1.4 and 1.8) and under different vascular smooth muscle (VSM) conditions (fully relaxed, normal VSM tone, and maximally contracted). Distensibility was found to be halved by decreasing longitudinal stretch from lambda(z) = 1.8 to 1.4 at physiological pressures. This counterintuitive observation is possible because highly nonlinear elastic modulus of the artery and anisotropic properties. Furthermore, a significantly larger basal VSM contraction was observed at lambda(z) = 1.8 than 1.4, although this was clearly not related to a myogenic response during inflation. This dependence of VSM tone to longitudinal stretch may have possible implications on the functional characteristics of the arterial wall.  相似文献   

4.
Arterial smooth muscle constriction in response to pressure, i.e., myogenic tone, may involve calcium-dependent and calcium-sensitization mechanisms. Calcium sensitization in vascular smooth muscle is regulated by kinases such as PKC and Rho kinase, and activity of these kinases is known to be altered in cardiovascular disorders. In the present study, we evaluated the relative contribution of PKC and Rho kinase to myogenic tone in cerebral arteries in hypertension. Myogenic tone and arterial wall calcium in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) were measured simultaneously, and the effect of PKC and Rho kinase inhibitors on myogenic tone was evaluated. SHR arteries showed significantly greater myogenic tone than WKY arteries. Pressure/wall tension-arterial wall calcium curves showed a hyperbolic relation in WKY rats, but the curves for SHR arteries were parabolic. Myogenic tone was decreased by the Rho kinase inhibitors Y-27632 and HA-1077, with a significantly greater effect in SHR than in WKY arteries. Reduction in myogenic tone produced by the PKC inhibitor bisindolylmaleimide I in WKY and SHR arteries was significantly less than that produced by Rho kinase inhibition. The pressure-dependent increase in myogenic tone was significantly decreased by Y-27632, and the decrease was markedly greater than that produced by bisindolylmaleimide I in SHR arteries. In WKY arteries, the pressure-dependent increase in myogenic tone was decreased to a similar extent by Y-27632 and bisindolylmaleimide I. These results suggest greater myogenic tone with increased calcium sensitization in SHR arteries, largely because of Rho kinase activation, with a minor contribution of PKC activation.  相似文献   

5.
6.
The ability of arterial smooth muscle to respond to vasoconstrictor stimuli is reduced in chronic portal hypertension (PHT). Additional evidence supports the existence of a postreceptor defect in vascular smooth muscle excitation contraction coupling. However, the nature of this defect is unclear. Recent studies have shown that vasoconstrictor stimuli induce actin polymerization in smooth muscle and that the associated increase in F-actin is necessary for force development. In the present study we have tested the hypothesis that impaired actin polymerization contributes to reduced vasoconstrictor function in small mesenteric arteries derived from rats with chronic prehepatic PHT. In vitro studies were conducted on small mesenteric artery vessel rings isolated from normal and PHT rats. Isometric tension responses to incremental concentrations of phenylephrine were significantly reduced in PHT arteries. The ability to polymerize actin in portal hypertensive mesenteric arteries stimulated by phenylephrine was attenuated compared with control. Inhibition of cAMP-dependent protein kinase (PKA) restored agonist-induced actin polymerization of arteries from PHT rats to normal levels. Depolymerization of actin in arteries from normal rats reduced maximal contractile force but not myosin phosphorylation, suggesting a key role for the dynamic regulation of actin polymerization in the maintenance of vascular smooth muscle contraction. We conclude that reductions in agonist-induced maximal force development of PHT vascular smooth muscle is due, in part, to impaired actin polymerization, and prolonged PKA activation may underlie these changes.  相似文献   

7.
Acute and long-term (up to 56 days) evolution of geometry, structural properties, vascular smooth muscle (VSM) tone and histomorphometric properties of the rat common carotid arteries under induced hypertension were investigated. Hypertension was induced in 8-week old male Wistar rats by total ligation of the aorta between the two kidneys. Rats were sacrificed 2, 4, 8 and 56 days postsurgery. The arterial wall layers thicken non-uniformly during the adaptation process, the inner layers thicken more in the acute phase of hypertension, whereas the outer layers of the wall are thicker than the inner layers at the end of the adaptation phase. Collagen content in the wall media exhibits a non-linear evolution, with a rapid increase in the acute hypertension phase followed by a slower increase at long-term. The elastin content increase is slight and steady, whereas VSM shows a steady but considerable increase which outdoes the collagen increase in long-term phase. VSM tone increases rapidly in the acute phase of remodelling (0-8 days) and this increase in tone contributes to a considerable increase in arterial compliance in the operating pressure range. At long-term (56 days) VSM tone returns to near control level, but compliance is even further increased, which suggests that at long-term the compliance increase is attributed primarily to structural remodelling.  相似文献   

8.
本工作比较自发性高血压大鼠(SHR)和肾性高血压大鼠(RHR)及它们的对照动物WKY和Wistar大鼠主动脉和肠系膜动脉平滑肌Ca~(2 )内流及川芎嗪对Ca~(2 )内流的影响。结果表明高血压动物血管平滑肌(VSM)Ca~(2 )内流明显高于正常动物。体外给川芎嗪明显抑制高血压大鼠及对照动物VSMCa~(2 )内流;口饲川芎嗪,对正常动物的VSMCa~(2 )内流呈明显激活,而对高血压大鼠是明显抑制。 川芎嗪对正常及高血压动物血压无明显影响。  相似文献   

9.
Although one of the common characteristics of pulmonary hypertension is abnormal sustained vasoconstriction, the signaling pathways that mediate this heightened pulmonary vascular response are still not well defined. Protein kinase C (PKC) and Rho-kinase are regulators of smooth muscle contraction induced by G protein-coupled receptor agonists including endothelin-1 (ET-1), which has been implicated as a signaling pathway in pulmonary hypertension. Toward this end, it was hypothesized that both Rho-kinase and PKC mediate the pulmonary vascular response to ET-1 in hypertensive pulmonary arterial smooth muscle, and therefore, the purpose of this study was to determine the role of PKC and Rho-kinase signaling in ET-1-induced vasoconstriction in both normotensive (Sprague-Dawley) and hypertensive (Fawn-Hooded) rat pulmonary arterial smooth muscle. Results indicate that ET-1 caused greater vasoconstriction in hypertensive pulmonary arteries compared with the normal vessels, and treatment with the PKC antagonists chelerythrine, rottlerin, and G? 6983 inhibited the vasoconstrictor response to ET-1 in the hypertensive vessels. In addition, the specific Rho-kinase inhibitor Y-27632 significantly attenuated the effect of ET-1 in both normotensive and hypertensive phenotypes, with greater inhibition occurring in the hypertensive arteries. Furthermore, Western blot analysis revealed that ET-1 increased RhoA expression in both normotensive and hypertensive pulmonary arteries, with expression being greater in the hypertensive state. These results suggest that both PKC and Rho/Rho-kinase mediate the heightened pulmonary vascular response to ET-1 in hypertensive pulmonary arterial smooth muscle.  相似文献   

10.
Hypertension is associated with an increase in coronary artery disease, but little is known about the regulation of coronary vascular tone by endothelin-1 (ET-1) in hypertension. The present study evaluated the mechanisms mediating altered contraction to ET-1 in coronary small arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats. DOCA-salt rats exhibited an increase in systolic blood pressure and plasma ET-1 levels compared with placebo rats. Contraction to ET-1 (1 x 10(-11) to 3 x 10(-8) M), measured in isolated coronary small arteries maintained at a constant intraluminal pressure of 40 mmHg, was largely reduced in vessels from DOCA-salt rats compared with placebo rats. To determine the role of endothelin receptor binding in the impaired contraction to ET-1, (125)I-labeled ET-1 receptor binding was measured in membranes isolated from coronary small arteries. Maximum binding (fmol/mg protein) and binding affinity were similar in coronary membranes from DOCA-salt rats compared with placebo rats. Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured in freshly dissociated coronary small artery smooth muscle cells loaded with fura 2. ET-1 (10(-9) M) produced a 30 +/- 9% increase in [Ca(2+)](i) in smooth muscle cells from placebo rats, but had no effect on cells from DOCA-salt rats (2 +/- 2%). In summary, the ET-1-induced coronary artery contraction and increase in [Ca(2+)](i) are impaired in DOCA-salt hypertensive rats, whereas endothelin receptor binding is not altered. These results suggest endothelin receptor uncoupling from signaling mechanisms and indicate that impaired [Ca(2+)](i) signaling contributes to the decrease in ET-1-induced contraction of coronary small arteries in DOCA-salt hypertensive rats.  相似文献   

11.
12.
《Life sciences》1993,53(22):PL371-PL376
The role of protein tyrosine kinases (PTKs) in vascular smooth muscle (VSM) contraction was examined in spontaneously hypertensive rats (SHRs). Aorta from SHRs was hyperresponsive to PTK-mediated contraction relative to normotensive Wistar-Kyoto rats (WKYs). Aorta from SHR was also hyporesponsive to vasorelaxation by tyrphostin, a selective inhibitor of PTKs. Further, we found alterations in PTK activity in aorta from SHRs. PDGF stimulated PTK activity to a greater extent in the SHR. Tyrphostin inhibited PDGF-induced PTK stimulation in both strains, however, activity returned to basal levels in the WKY only. The results suggest that PTKs may be involved in VSM contraction and in the development of hypertension.  相似文献   

13.
The influence of hydroperoxides (hydrogen peroxide, t-butylhydroperoxide) on tone of arterial smooth muscle was studied. The results of the experiments which were performed with segments of rabbit carotid arteries under isometric conditions show that peroxide concentrations higher than 10(-4) M induced vasoconstriction. These contractions were reversible when glucose was present in the superfused solution. In the absence of glucose a long-lasting increase in tone was found. The contraction response persisted even in Ca2+-free solution. These results indicate a stimulatory effect of hydroperoxides on vascular smooth muscle probably related to a liberation of intracellularly bound calcium ions.  相似文献   

14.
Myogenic tone in the pulmonary vasculature of normoxic adult animals is minimal or nonexistent. Whereas chronic hypoxia (CH) increases basal tone in pulmonary arteries, it is unclear if a portion of this elevated tone is due to development of myogenicity. Since basal arterial RhoA activity and Rho kinase (ROK) expression are augmented by CH, we hypothesized that CH elicits myogenic reactivity in pulmonary arteries through ROK-dependent vascular smooth muscle (VSM) Ca(2+) sensitization. To test this hypothesis, we assessed the contribution of ROK to basal tone and pressure-induced vasoconstriction in endothelium-disrupted pulmonary arteries [50-300 microm inner diameter (ID)] from control and CH [4 wk at 0.5 atmosphere (atm)] rats. Arteries were loaded with fura-2 AM to continuously monitor VSM intracellular Ca(2+) concentration ([Ca(2+)](i)). Basal VSM [Ca(2+)](i) was not different between groups. The ROK inhibitor, HA-1077 (100 nM to 30 microM), caused a concentration-dependent reduction of basal tone in CH arteries but had no effect in control vessels. In contrast, PKC inhibition with GF109203X (1 microM) did not alter basal tone. Furthermore, significant vasoconstriction in response to stepwise increases in intraluminal pressure (5-45 mmHg) was observed at 12, 15, 25, and 35 mmHg in arteries (50-200 microm ID) from CH rats. This myogenic reactivity was abolished by HA-1077 (10 microM) but not by GF109203X. VSM [Ca(2+)](i) was unaltered by HA-1077, GF109203X, or increases in pressure in either group. Myogenicity was not observed in larger vessels (200-300 microm ID). We conclude that CH induces myogenic tone in small pulmonary arteries through ROK-dependent myofilament Ca(2+) sensitization.  相似文献   

15.
This study characterizes vascular responsiveness to sodium arachidonate (C 20:4) in four models of hypertension [deoxycorticosterone acetate (DOCA) hypertensive rats, two kidney-one clip (2K-1C) renal hypertensive rats, spontaneously hypertensive rats (SHR), and psychosocial hypertensive mice]. Isolated arterial strips (aorta, mesenteric artery, tail artery) were equilibrated under optimal resting tension in physiological salt solution for measurement of isometric force generation. Dose-response curves to arachidonate (10(-10) to 10(-4) g/ml) in arteries from DOCA and 2K-1C hypertensive rats were shifted to the left compared to those in arteries from control rats. In arteries from SHR and psychosocial hypertensive mice, the dose-response relationships were unchanged compared to normotensive values. Arteries from DOCA hypertensive and 2K-1C hypertensive rats developed greater maximal contractile responses to arachidonate than controls; maximal responses in arteries from SHR and psychosocial hypertensive mice were unchanged compared to normotensive values. Contractions to arachidonate were inhibited by indomethacin (0.5 and 5 micrograms/ml) and by aspirin (5 and 50 micrograms/ml). The fatty acid, oleate (C 18:1), had no effect on the contractile state of the arteries, whereas prostaglandin F2 alpha caused contraction. These results indicate altered responsiveness to exogenous arachidonate in arteries from DOCA and 2K-1C hypertensive rats, but not in arteries from SHR and psychosocial hypertensive mice.  相似文献   

16.
Blunted agonist-induced vasoconstriction after chronic hypoxia is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and decreased vessel-wall Ca(2+) concentration ([Ca(2+)]). We hypothesized that myogenic vasoconstriction and pressure-induced Ca(2+) influx would also be attenuated in vessels from chronically hypoxic (CH) rats. Mesenteric resistance arteries isolated from CH [barometric pressure (BP), 380 Torr for 48 h] or normoxic control (BP, 630 Torr) rats were cannulated and pressurized. VSM cell resting membrane potential was recorded at intraluminal pressures of 40-120 Torr under normoxic conditions. VSM cells in vessels from CH rats were hyperpolarized compared with control rats at all pressures. Inner diameter was maintained for vessels from control rats, whereas vessels from CH rats developed less tone as pressure was increased. Pressure-induced increases in vessel-wall [Ca(2+)] were also attenuated for arteries from CH rats. Endothelium removal restored myogenic constriction to vessels from CH rats and normalized VSM cell resting membrane potential and pressure-induced Ca(2+) responses to control levels. Myogenic constriction and pressure-induced vessel-wall [Ca(2+)] increases remained blunted in the presence of nitric oxide (NO) synthase inhibition for arteries from CH rats. We conclude that blunted myogenic reactivity after chronic hypoxia results from a non-NO, endothelium-dependent VSM cell hyperpolarizing influence.  相似文献   

17.
This study determined the effects of hypoxia on diameter, vascular smooth muscle (VSM) transmembrane potential (E(m)), and vascular cAMP levels for in vitro cannulated skeletal muscle resistance arteries (gracilis arteries) from Sprague-Dawley rats fed a low-salt (LS) or a high-salt (HS) diet. Arterial diameter and VSM E(m) were measured in response to hypoxia, iloprost, cholera toxin, forskolin, and aprikalim. In HS rats, arterial dilation and VSM hyperpolarization after hypoxia, iloprost, and cholera toxin were impaired versus responses in LS rats, whereas responses to forskolin and aprikalim were unaltered. Blockade of prostaglandin H(2) and thromboxane A(2) receptors had no effect on responses to hypoxia or iloprost in vessels from both rat groups, suggesting that inappropriate activation of these receptors does not contribute to the impaired hypoxic dilation with HS. Hypoxia, cholera toxin, and iloprost increased vascular cAMP levels in vessels of LS rats only, whereas forskolin increased cAMP levels in all vessels. These data suggest that reduced hypoxic dilation of skeletal muscle microvessels in rats on a HS diet may reflect an impaired ability of VSM to produce cAMP after exposure to prostacyclin.  相似文献   

18.
To study arterial remodeling in response to hypertension, Deoxycortico-sterone acetate (DOCA)-salt hypertension was induced in immature (aged 16 weeks) and middle-aged (48 weeks) rats, and biomechanical properties and wall dimensions of common carotid arteries were determined. Arterial segments were excised at 10 or 16 weeks postoperatively from the immature rats and at 16 weeks from the middle-aged ones. In vitro pressure-diameter tests were performed under normal (in Krebs-Ringer solution), active (norepinephrine), and passive (papaverine) conditions. Non-treated, age-matched rats (26, 32, and 64 weeks) were used to obtain control data. Wall thickness at in vivo blood pressure level was increased by hypertension at all ages; however, there were no significant changes in inner diameter. In hypertensive rats, arterial outer diameter was smaller under normal condition than under passive condition, indicating the increase of smooth muscle tone by hypertension. Diameter reduction developed by norepinephrine was increased by hypertension, which was significant above 100 mmHg; however, there were no significant differences between hypertensive and normotensive arteries, if compared at respective in vivo blood pressures. No significant differences were observed in wall stiffness at in vivo pressure. Wall hoop stress at in vivo blood pressure had a significant positive correlation with the pressure in 26-week old arteries. However, there were no differences in the stress between hypertension and normotension in 32- and 64-week old arteries. These results were essentially similar to previous ones observed in Goldblatt hypertension and in younger animals. Age-related differences in arterial wall remodeling were not clearly observed.  相似文献   

19.
Han HC  Marita S  Ku DN 《Journal of biomechanics》2006,39(13):2410-2418
To study the effect of pressure changes on the opening angle of arteries in organ culture, tubular segments of porcine common carotid arteries were cultured with pulsatile flow perfusion under hypertensive (150+/-20 mmHg), normotensive (100+/-20 mmHg), or hypotensive (30+/-10 mmHg) pressure while maintaining the arteris at a physiological wall shear stress of approximately 15 dyn/cm(2) for up to 3 days. Arteries were then cut into short ring segments by sections perpendicular to the axis and then cut open radially to observe the opening angle in aerated phosphate buffered saline solution (37 degrees C). Norepinephrine (NE, 10 microM), carbacol (CCh, 100 microM), and sodium nitroprusside (SNP, 10 microM) were added after the radial cut at 30, 20, and 30 min intervals, the opening angles were measured, respectively. Results show that hypertensive arteries developed a significantly larger opening angle than normotensive and hypotensive arteries, associated with a significant increase in cell proliferation. In addition, with smooth muscle contraction activated by NE, the opening angle decreases significantly in hypertensive arteries but has little change in hypotensive and normotensive arteries, indicating an enhancement of smooth muscle contraction on the lumen side of the hypertensive arterial wall. In comparison, hypotensive pressure has little effect on arterial opening angle and cell proliferation.  相似文献   

20.
To characterize the activity of the Ca2+-activated Cl- channels in vascular smooth muscle (VSM) of the spontaneous hypertensive rats (SHR), the isolated mesenteric vascular beds and tail artery strips were preparated from SHR and Wistar rats aged 7-8 weeks. The changes in contractile response to norepinphrine (NE) were taken as an index of vascular mortion. Results showed that the contractile responses of mesenteric arteries and tail arteries to NE in SHR were significantly greater than that in Wistar rats. The inhibition magnitude of the contractile response by Ca2+-activated Cl- channel blocker, niflumic acid in SHR was significantly less than that in Wistar rats. Decreasing the extracellular Cl- concentration increased the contractile response to NE significantly, but the amplitude of enhanced contractile response in SHR was greater than that in Wistar rats. It can be concluded that NE-induced contraction was enhanced in SHR, which is partly due to an increase in Cl- efflux through the Ca2+-activated Cl- channels. The chloride channel activity may be increased in association with the elevation of blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号